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1 Overview

In previous lectures, we’ve discussed data structures that efficiently provided many nice properties. How-
ever, we have never discussed any data structures that provide the somewhat magical property of time travel.

In this lecture we discuss temporal data structures, which will allow us to view and/or modify our data
structure at various points in the past, in addition to its present state. The specific behaviors of these data
structures are defined below.

2 Temporal Data Structures

There are two primary models of temporal data structures. The first, called persistence, is based on the
branching-universe model of time travel. In this model, going back in time and making changes creates a
new branch of the data structure that differs from the original branch. The second, called retroactivity, works
on the idea of round-trip time travel. Here, a time traveller goes back in time, makes a change, and then
returns to observe the effects of his or her change. This model gives us a there is a linear timeline with no
branching.

2.1 Persistence

We begin by describing the levels of desired persistence. With data structure persistence, we would like to
keep all versions of the data structure available for updates and queries. Each persistence level, however
will vary based on where updates are allowed and how branches and nodes are modified and created.

1. Partial Persistence – In this persistence model, we may query any previous version of the data struc-
ture, but we may only update the latest version. This implies a linear ordering among the versions.

2. Full Persistence – In this model, both updates and queries are allowed on any version of the data
structure. The versions here form of a branching tree.

3. Confluent Persistence – In this model, we use combinators to combine input of > 1 previous versions
to output a new single version. Rather than a branching tree, combinations of versions induce a DAG
structure on the version graph.

4. Functional Persistence – This model takes its name from functional programming where objects are
immutable. The versions in this model are likewise immutable, so revisions do not alter the existing
nodes in the data structure, but create new ones instead. Okasaki discusses these as well as other
functional data structures in his book [9].
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Each of the succeeding levels of persistence imply the preceding ones. That is, Functional Persistence =⇒
Confluent Persistence =⇒ Full Persistence =⇒ Partial Persistence. Functional implies confluent because
we simply use the combinators to append a new combined version. Confluent implies full if we do not use
combinators. Lastly, full implies partial if we only update the most recent version.

Figure 1: Abstract cartoons of the major persitence types.

2.1.1 Partial Persistence

This result is due to Driscoll, Sarnak, Sleator, and Tarjan [6]. We work within the pointer machine model
and require O(1) in-degree per node, meaning that ≤ p = O(1) nodes point to any node. Each node stores
some data and a constant number of pointers to children, reverse pointers to parents, and version modifica-
tion data (in a “modification box”). To maintain partial persistence, each node stores a reverse pointer to
the parent node representing the most recent version of the data structure. A modification can be thought of
as the tuple (time, f ield,value), consisting of the time of the modification, the field being modified, and the
new value.

An update on a field at some time t can come across two cases:

• The node has space – We can simply add the modification (t, f ield,value) to the modification box.
All subsequent accesses of this modified node will check the modification box to override any initial
data stored in the node.

• The node is full – We make a copy of the node, but using only the latest values. That is, we overwrite
one of the nodes fields with the value that was stored in the modification box, and make the modifi-
cation box of the new node empty. We propagate this change up to node’s ancestors as follows: each
ancestor makes a modification to change its child pointer to the newly created node. If that ances-
tor’s modification box happens to be full, then we copy that node and propagate up. These changes
propagate until we stop at the root.
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Using Φ = the number of full latest nodes, we can prove constant time amortized updates. Further study by
Brodal [2] has shown it to also be O(1) in the worst case.

2.1.2 Full Persistence

This result is also due to [6]. We again assume a pointer machine with ≤ p incoming pointers per node.
We can speak of the version list, which is equivalent to a pre-order traversal of the version tree. Deitz and
Sleator showed we can insert and compare the order of nodes in this so called list-order data structure (the
version list) in O(1) time [4]. We will discuss this data structure in more depth in lecture 19. A related open
question is whether we can support O(1) worst-case full persistence?

Each node can store up to 2p modifications. When a node is full, we split it into two roughly half-full
nodes (like B-trees). Using Φ = the number of full nodes in all versions, we get O(1) amortized cost. Each
data structure node is represented by a linked list of nodes, and there’s a second phase of the operation to
update reverse pointers. Deitz developed a fully persistent array that can be achieved in O(lg lgn) × over-
head in the word RAM model [5].
OPEN: Is there a matching lower bound for both full and partial persistence? This question may have been
solved by Pătrascu et al. (unpublished).

Figure 2: Persistence of a binary tree. We need a modification box the size of the in-degree of each data structure
node (just one for trees).

2.1.3 Confluent Persistence

Confluent persistence has been explored in functional data structures [9]. Deques (double ended queues
allowing stack and queue operations) with concatenation can be done in constant time per operation (Kaplan,
Okasaki, and Tarjan [7]). We can create implicity exponential deques in polynomial time by recursively
concatenating a node with itself. The general transformation due to Fiat and Kaplan [8] is as follows:

• d(v) = depth of node v in version DAG

• e(v) = 1+ lg( number of paths root to v)

• overhead: lg( number of updates )+maxv(e(v))
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• poor when e(v) = 2u where u is the number of updates (see Figure 1). This is still exponentially better
than the non-persistent model.

OPEN: When can you do better? Lists with split and concatenate? Trees? General pointer machine? Array
with cut and paste? Special DAGs? Others?

2.2 Retroactivity

Retroactive data structures store a data structure under a sequence of operations. We would like to be able to
go back in time, change an operation, and then observe the effects of that change in the current state of the
data structure. The induced timeline is linear. Much of this work is due to Demaine, Iacono, and Langerman
[3].

The allowed operations are

• Insert(t,x) – Retroactively do operation x at time t

• Delete(t) – Retroactively undo operation at time t

• Query(t,x) – Do query x at time t

We define partial retroactivity as allowing queries at the present time and full retroactivity as allowing
queries at any time. Some cases of partial retroactivity are easy to implement. If updates are commutative:
x ◦ y = y ◦ x, then we can support retroactive insertion of operations at no additional asymptotic cost (im-
plement Insert(t,x) by executing x at the present time). If updates, in addition to being commutative, are
also invertible: x ◦ x−1 = NOP, then we can support partial retroactivity at no additional asymptotic cost
(Insert(t,x) by executing x at the present time and Delete(t) by executing x−1 at the present time where x−1

is the inverse of the operation at time t).

2.2.1 The Rollback Method

There are a few general transformations that we can prove bounds for. One is the rollback method, in which
we perform a retroactive operation at r time units in the past. We can do this with a factor of r overhead by
keeping a log of all updates done to the DS such that every change can be reversed. The rollback method
needs an Ω(r) lower bound. To see this, we examine a data structure that maintains two values, X and Y ,
both initialized to 0. We can perform the following operations on our data structure:

• setX(x) – Sets X ← x

• addY (∆) – Sets Y ← Y +∆

• multXY () – Sets Y ← X ·Y

• query() – Returns Y

Consider the following sequence of operations: addY (an), multXY (), addY (an−1), multXY (), ..., addY (a0).
This is Horner’s rule for evaluating the polynomial p(x) = ∑

n
i=0 aixi. Now suppose we perform Insert(t = 0,
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setX(x0)) to change the x value of the evaluated polynomial x0. Frandsena, Hansen, and Miltersen in 2001
showed that evaluating a polynomial of degree n requires Ω(n) time over any field, independent of any pre-
processing of the ais. This holds in the “history-independent algebraic decision tree” model, which implies
the same result for the integer RAM and generalized real RAM models [10]. This is somewhat disappoint-
ing result because it says that in the retroactive model, we can’t do any persistence maintenance that’s better
than just going back in time, performing the new operation, and then re-executing all of the operations in
our history past that point.

In the cell-probe model, Frandsena et al. also proved a lower bound of Ω(
√

r/ lgr). They had a data
structure that maintained n words and supported arithmetic updates (+/·). Computing a fast fourier trans-
form takes O(n lgn) time, but changing one weights wi of the FFT needs Ω(

√
n) time, from which we

derive the Ω(
√

r/ lgr) lower bound. An open question is whether the tightest cell-probe lower bound is
Ω(

√
r/poly lgr).

2.2.2 Priority Queues

Let us turn our attention to partially retroactive priority queues. The defining features of priority queues
is the delete-min() operation, which makes the set of operations on priority queues non-commutative. We
can plot the status of our data structure in the plane. The x-axis represents time and y-axis represents key
value. Every insert(t,k) operation creates a horizontal ray that starts at point (t,k) and shoots to the right.
Every delete-min() operation creates a vertical ray that starts at (t,−∞) and shoots upwards, stopping at
the horizontal ray of the element it deletes. It turns the horizontal ray into a line segment with endspoints
(t,k) and (dk,k), where dk is the time of key k’s deletion. This creates nonintersecting upsidedown “L”
shapes, where each L corresponds to an insert and the delete-min() that deletes it. Refer to Figure 3 for an
animation.

Figure 3: The “L” representation of a sequence of operations. Dotted horizontal lines represent bridges. [3]

Let Q0 be the current state of our priority queue and Qt be its state at time t. We call time t a bridge if
Qt ⊆ Q0. There are four combinations of retroactive operations:

1. Insert(t,“insert(k)”) – Insert key k into Qt . The resulting element we insert into Q0 is the largest
element that was deleted after time t. See Figure 4.

2. Delete(t,“delete-min()”) – Undo the delete-min at time t. This is identical to re-inserting the element
that was being deleted at the time of deletion (i.e. nullify the upwards delete-min() arrow by inserting
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the appropriate key right at that time). Thus, it is the same as the above case and we insert into Q0 the
largest element that was deleted after time t.

3. Insert(t,“delete-min()”) – Delete the minimum key at time t. The element we delete from Q0 is the
minimum value of Qt ′ , where t ′ is the first bridge after t. This essentially pushes the bridge forward
in time. See Figure 5.

4. Delete(t,“insert(k)”) – Undo the insertion of key k at time t. If k ∈ Q0 we remove it from there. If
not, then we again delete the minimum value of Qt ′ where t ′ is the first bridge after t. The idea is that
since k /∈ Q0, it didn’t make it to its next bridge. Therefore, removing the insertion of that number
will cascade up the deletes before that bridge, so the minimum element from the that bridge will get
removed by the last cascaded delete.

Figure 4: The Insert(t,“insert(k)”) operation causes a cascade of changes of delete times, and one insertion
into Q0. [3]

Figure 5: The Insert(t,“delete-min()”) operation causes a cascade of changes of delete times, and one
deletion into Q0. [3]

We can perform all of these operations in O(lgm) worst-case, where m is the total number of updates, present
or retroactive, performed on the priority queue. We first store a balanced BST insertions keyed on insertion
time. We augment each node of this tree with the max key k′ /∈ Q0 over every node’s subtree. This lets us
find the maximum key among all elements inserted after a time t ′ but not in Q0 in O(lgm) time. We can also
find the minimum key among all elements inserted before a time t ′ and still in Q0 in the same runtime if we
maintain in every node the minimum of all keys in its subtree still in Q0. These are useful for operations 1
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and 2, and 3 and 4, respectively.

To find the last bridge before t or the first bridge after t, we maintain a list of updates which we store
in a modified (a,b)-tree developed by Fleischer [11]. If we assign a weight of 0 to insert(k) for k ∈ Q0, +1
to insert(k) for k /∈ Q0, and -1 for delete-min(), every bridge in the tree corresponds to a prefix sum of 0.
This allows us to find bridges in O(lgm) time, which we use for every operation.
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