6.851: Advanced Data Structures Spring 2007

Lecture 2 — 14 February, 2007
Prof. Erik Demaine Scribes: Christopher Moh, Aditya Rathnam

1 Overview

In the last lecture we covered linked lists and some results regarding the move-to-front heuristic.
We discovered that although move-to-front was competitive in the single finger model, it was
not competitive in a multi-finger model, when compared to the Order-By-Next-Request (OBNR)
algorithm. In today’s lecture we will talk about Binary Search Trees (BSTs) instead of lists, and
in particular, splay trees.

BSTs store elements in internal nodes, and every node satisfies the following symmetric property:
for every non-leaf node, the value of its left child (if present) is less than or equal to the value of the
node, and the value of the right child (if present) is more than or equal to the value of the node.

We keep a pointer to the current element, initially at the root, and allow the following operations:
move the pointer to the left, to the right, or to rotate the current node. Note that rotations are
unambiguous as each node has at most one sibling. We can perform accesses by simply moving
down the left or right pointers depending on how the value at the node compares with the search
value. Unless stated otherwise (notably in the finger theorems stated below), we assume that the
pointer starts at the root for every access.

1.1 One Extra Claim from Last Lecture

Before we start, we will make the following claim:

Claim 1. The amortized cost of OBN R(x), that is, the cost OBNR achieves when accessing element
x 1is less than or equal to 1+ 4[log(w,)] where w, is the number of distinct elements accessed since
the last access to x, including x itself.

The above bound is known as a working set bound: The running time of OBNR when all accesses
are fairly close to each other is logarithmic in the size of this so-called working set, and not in the
size of the entire set of elements.

2 Cost Models for BSTs

We will examine the basic cost models but first some quick notation. A general access sequence is
of the form (z1, 2, x3,...,Tny); where m denotes the total number of acesses. We use n to denote
the number of elements in the BST.

For the static and dynamic models, we will examine the idea of competitiveness. In general, an
online algorithm is said to be a-competitive if for all access sequences x, the cost of the algorithm

on sequence x, COST(z) < aOPT(z) where OPT(x) is the minimum possible cost of accessing
sequence x. Note that under certain models, OPT(x) can be computed offline, that is, if all accesses
are known in advance. We say that an online algorithm is optimal if it is O(1)-competitive.

2.1 Worst case

In the worst case, the cost per access is Q(lgn) for a balanced BST like a red-black tree or an AVL
tree. However, we hope to do better than that. We begin by presenting preliminary examples of
sequences for which we can achieve o(lgn) bounds. For instance, if the sequence is (1,2, ...,n) (m =
n), we can achieve O(1) cost per access by starting with a linear, sorted tree and rotating it after
each access:

2.2 Stochastic and Static models

In the stochastic model, the x;’s in the access sequence are i.i.d. random variables; element i € [n]
is accessed with probability p;. In a degenerate case where 3¢ : p; = 1, storing element ¢ at the root
allows us to achieve roughly O(1) time per access.

In the static model, the z;’s are not necessarily independent. This minor change has significant
implications: For example, we will see below that the Transpose algorithm is stochastically optimal
but not statically optimal.

In general, the setup is similar to a Huffman tree, which is a data structure that stores data only
at the leaves, and attempts to minimize the expected depth of an element chosen according to the
given distribution. This expected depth matches the entropy of the distribution, up to an additive
1. The entropy is defined as:

1
H= Zmlgp—j +0(1)

The Huffman tree achieves the entropy bound O(H), which from information theory is the optimal
bound. BSTs are more constrained in that they must arrange nodes in symmetric order in the
tree. However, we will see that it is still possible to match the entropy bound (up to an additive
factor). We also note that it is possible for BSTs to slightly beat the entropy bound for some access
sequences because unlike Huffman trees (which achieve the entropy bound) they can store elements
in internal nodes.

In the stochastic and static models, we disallow rotations; that is, the tree is static and cannot be
modified from its initial configuration. Under this model, we can find an optimal BST via dynamic
programming (DP) and in this way for any sequence x calculate OPT'(z).

First observe that only the frequency of accessing each element matters; because the tree is static,
temporal correlations are inconsequential. If we have a deterministic sequence of accesses, p; is
the number of appearances of i in our sequence divided by m (the empirical probability). The DP
looks at each element r, and tries to place r at the root. For each r, we have two subproblems:
finding an optimal left subtree and an optimal right subtree.

Cost(r) = 1+ Pr(left) « Cost(left) + Pr(right) * Cost(right)

In general, the subproblems are finding the optimal tree for an interval of the elements, so there
are O(n?) subproblems. Trying all roots for each subproblem gives a dynamic program with run
time O(n3). Knuth improved the DP to run in O(n?) [?]. Whether we can achieve a better result
is an open problem (3-SUM hard?). In this static case, the optimal cost per access is bounded by:

<H-+3

OPT

H—-lgH —1ge+1<
access
From information theory, O(H) is the statically optimal bound. This means that this (offline) BST
is O(1)-competitive against any static tree. Here we have to know the p;’s in advance and thus the
algorithm is offline. As we will see later, splay trees give us an online statically optimal algorithm.

2.3 Dynamic model

In linked lists, the constant-finger model proved to be better than the one-finger model. For trees
however, we simply examine the one-finger model as the constant-finger model does not provide
much added benefit. Building on the Sleator and Tarjan cost model from the last lecture, we pay
1 unit for each standard rotation we perform using a node x and its parent. We use the notation
Rotate(x) to specify that we are rotating x with its parent. In the subsequent two sections, we will
consider some algorithms for self-organizing trees and conclude by detailing the properties of splay
trees.

There is no known algorithm to calculate the cost of the optimal dynamic binary search tree for all
access sequences. In addition, it is not known whether any online BST is O(1)-competitive.

3 BST Access Algorithms

3.1 Transpose

The Transpose algorithm for BST's takes the search element x and performs a standard rotation to
move x one level closer to the root everytime it is requested. Unfortunately, this algorithm is bad
for uniform searches because it generates all binary trees with equal probability [?]. This gives us
an average search cost of O(y/n), which is worse than a balanced binary tree.

3.2 Move-to-root

The Move-to-root algorithm extends the Transpose idea by repeatedly rotating the search element
x all the way to the root, every time it is requested. The repeated rotations result in better search
performance - the search cost is within a factor of 2in2 =~ 1.38 of the statically optimal tree in the
stochastic model. This is still not statically optimal however, as repeated rotations cause many
nodes to get too deep into the tree, causing a performance hit when they are requested.

4 Splay Trees

Splay trees were first introduced by Sleator and Tarjan [?] and are an elegant self-organizing binary
search tree. Splay trees search for an element x and then always bring x to the root. First, we
locate x by walking down the tree and comparing with the elements. Then, depending on the
placement of x, we perform one of two special rotations shown below until we bring x to the root.
At the end, we may need to perform a regular rotation if x becomes the child of the root. Splay
trees do not maintain any balance or auxiliary information but nonetheless, achieve a remarkable
set of properties including static optimality and are conjectured to satisfy dynamic optimality as
well.

The zig-zig case:

Zig-wig case:

The zig-zag case:

4.1 Access Lemma

We state a fundamental result about Splay trees without proof. For details, consult [?].

Lemma 2. For each element x; in the tree, we give it an arbitrary positive weight w;. For any node
x, let Wy, be Y) Wi Let the potential ® be denoted as) log W,. Then the amortized cost

i€subtree(x

4

of a single rotation (zig-zig or zig-zag) is at most 3(log W2 — log W), where the superscripts
old and new denote the values of W, before and after the rotation.

Corollary 3. From telescoping the sum above through all rotations needed in a splay step, the
amortized cost of access(z) is at most O(log Wipee — log W) + 1, where Wipee be the value of W,
when x is the root of the tree.

The above access lemma can be used to prove many theorems about splay trees, as we will see
below. It counts rotations, instead of the path length needed to access the element from the root,
but this is simply a constant factor difference, as the splay step rotates the accessed element all the
way back to the root. To see that the potential function makes sense, consider a perfectly balanced
tree and a perfectly unbalanced tree (i.e. a linked list), and assume that w; = 1 for all elements.
The potential of the perfectly balanced tree is O(n), while that of the linked list is O(nlogn). This
confirms our intuition that unbalanced trees should have a higher potential.

Finally, we note that the above lemma only holds when the number of accesses is 2(nlogn). This
is because unlike standard amortized analysis, the initial potential is non-zero. We can only ignore
this initial potential (so-called “startup cost”) if the number of accesses is large enough. Since
Doz — Prin = O(nlogn), where @4, and P, denote the maximum and minimum possible
potential, we need the number of accesses to be Q(nlogn).

5 Results and Conjectures about Splay trees

5.1 Results following from the Access Lemma

We will give four results that follow directly (with some ingenuity) from the access lemma.

5.1.1 Logarithmic Access Cost

For every element in the tree, we give it weight w; = 1. Then Wy..e = n and the cost of access is
O(logn —log 1) = O(logn). Intuitively, this lemma is pleasing because it confirms that splay trees
do no worse than balanced BSTs.

5.1.2 Static Optimality Theorem

Let each element ¢ have a fixed probability of access p; = %, where m is the total number of
accesses and f; the frequency of accessing element ¢. Set w; = p;. Since the sum of probabilities is
1, then Wy,ee = 1, and the cost of accessing element i is O(log 1 — logp;) = O(—log p;).

This result shows that splay trees achieve the entropy bound and thus do as well as the best offline
static tree. The most amazing thing about this is that splay trees are completely online and have
no idea what p; is, yet they still achieve this bound. Although we used p; in the analysis, the splay
tree is completely ignorant of it.

5.1.3 Static Finger Theorem

Suppose we fix one of the elements f in the tree as a “finger”. That is to say, all searches start

from this “finger” instead of from the root. Set w; = 1+(11 7z < (z‘—lf)Z when i # f. Then the
2

weight of the tree Wipee < 223;1 de < 2397 512 = I- = O(1). Then the cost of access is
O(log O(1) — log W) =01 +log(1+(x—f))) = (log[2 + |z — fl])-

This theorem shows that regardless of what finger is chosen, a splay tree does as well as a BST
with that finger, and runs in time logarithmic to the distance of the element from the finger. Thus,
if you access some element near the finger, the amortized cost of accessing that element is cheap.
This is remarkable because splay trees have no idea where the finger is.

5.1.4 Working Set Theorem

Let t;(x) be the number of distinct elements accessed since the last access of element x before time
i. We set the potential of a key w, at time i to be ﬁ We can show, using analysis similar to
that of the static finger theorem, that Wipee < %2 = O(1). After applying the access lemma, the
cost of accessing element z is O(1+logt;(x;). This shows that the cost of accessing elements within
a working set is logarithmic in the size of that set and not in the size of the entire set of elements.
Equivalently, it says that if you accessed something you accessed recently, the cost of accessing it

is cheap.

The observant reader might note something fishy here: We are changing the potential after every
access! In particular, after accessing element x, w, increases to 1. If during the reweighting of the
entire tree, the total potential increases, then we have obtained “free” potential from the reweighting
and the above analysis is flawed.

However, we will show that this is not the case. Note that for all elements y # x, w, cannot
increase: It either decreases, if x was accessed for the first time since y was last accessed, and
stays the same otherwise. Hence the only potential increase that can come from the reweighting is
from the increase in w,. But after each access, goes to the root, and therefore the only subtree
where the potential increases is the root, and the only W; value affected is Wy.c.. But we already
know that Wi, is upper bounded, and we have used this upper bound, so the potential can never
increase after re-weighting. Therefore, this potential change is justified and our analysis holds.

5.2 Other Results

The results here are cited without proof.

5.2.1 Scanning Theorem

The Scanning Theorem, demonstrated by Tarjan [?], states the following:

Theorem 4. If elements of a splay tree are accessed sequentially in order, then the total running
time is linear, regardless of the initial structure of the splay tree.

5.2.2 Dynamic Finger Theorem

The Dynamic Finger Theorem (formerly conjecture) which was first conjectured in [?] and finally
proven by Cole et al.[?], [?] after a lengthy analysis, states:

Theorem 5. The amortized cost of accessing the it" element x; is O(log[l + |z; — z;_1]]).

The intuition behind this theorem is the static finger theorem: suppose instead of having a fixed
finger, the finger could move after every access (we have to pay a cost for moving the finger around).
In this case, it is always optimal to move the finger to the next element accessed: since we have
to touch the next element anyway, why not take the fastest route to it, instead of returning to
the original finger (or root) position? This theorem therefore shows that splay trees run within a
constant factor of this optimal bound.

5.3 Conjectures

In this section, we show results that are conjectured to be true about splay trees but have not been
proved.

5.3.1 Dynamic Optimality Conjecture

The Dynamic Optimality conjecture is one of the biggest open problems in the field of self-adjusting
data structures. It was first stated in [?]:

Conjecture 6. Consider an optimal offline algorithm OPT that is allowed to modify the tree via
rotations between accesses. The cost of access is the same i.e. 1 plus the depth of the accessed node.
In addition, each rotation costs O(1). The conjecture is that the run time of splay trees is within a
constant factor of OPT for any access sequence.

If the dynamic optimality conjecture is correct, then splay trees are O(1)-competitive even in a
general dynamic model. This is a very powerful result: splay trees are as good as any other tree
on any given request sequence, even if the other tree is specially designed for the given request
sequence. We note as an aside that splay trees can be easily shown to be at least O(logn)-
competitive dynamically.

It is an open question as to whether there exists any BST (not just splay trees) that satisfy the
dynamic optimality conjecture. In the next few lectures, we will see recent results on this problem
that have reduced the competitive gap from O(logn) to O(loglogn) [?].

5.3.2 The Unified Conjecture

In the lecture, we have shown several properties of splay trees, but how do they all compare to each
other? We note the following:

e The Working set theorem implies the static optimality theorem, which in turn implies the
static finger theorem.

e The Dynamic finger theorem implies the static finger theorem.

In addition, Iacono [?] has proposed the following unified conjecture:

Conjecture 7. The amortized cost to access element x; is upper bounded by:

O(minloglti(y) + |z: — y| +2])
Intuitively, this suggests that element x; is cheap to access if there exists some different element
y that is both spatially (in terms of the structure of the tree) and temporally (in terms of access
time) close to it. The unified conjecture, if true, would imply both the working set and dynamic

finger theorems. It is not known whether the unified conjecture holds for a BST, but Badoiu and
Demaine [?] have shown that it can be done on a pointer machine.

5.3.3 Traversal conjecture
Conjecture 8. Supposing we have two splay trees, each with the same elements. Take a preorder

traversal of one of the splay trees to obtain an access sequence. The conjecture is that the cost of
accessing elements in this access sequence in order in the other splay tree is O(n) [?].

5.3.4 Deque conjecture
Supposing now we have two fingers, and we can choose to start our search pointer from either of

them during an access. After each access, we are allowed to move either finger by one element,
thus simulating a double-ended queue (deque). We now have the following conjecture:

Conjecture 9. The cost of m accesses in splay tree of n elements is O(m +n) [?].

As an aside, it is known that the cost is at most O((m + n)a(m +n)) [?].

5.3.5 Removing elements from the access sequence

Finally, an unpublished but simple conjecture states:

Conjecture 10. Consider a sequence of accesses on a splay tree. If any of these accesses is
removed, the resulting sequence of accesses is cheaper than the original sequence of accesses.

This conjecture seems obvious, but has so far remained resistant to attacks.

References

[1] B. Allen and J.I. Munro, Self-organizing binary search trees, Journal of the ACM, 25, 546-535,
1978.

2]

[3]

M. Badoiu and E. Demaine, A Simplified, Dynamic Unified Structure, Latin America Theo-
retical Informatics, 466-473, 2004.

E. Demaine, D. Harmon, J. Tacono, M. Patrascu, Dynamic Optimality—Almost, Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), p.
484-490, October 17-19, 2004.

R. Cole, B. Mishra, J. Schmidt, and A. Siegel, On the dynamic finger conjecture for splay trees.
Part I: Splay sorting log n-block sequences, STAM Journal of Computing, 30(1), 1-43, 2000.

R. Cole, On the dynamic finger conjecture for splay trees. Part II: The proof, SIAM Journal
of Computing, 30(1), 44-85, 2000.

J. Tacono, Alternatives to Splay Trees with o(logn) worst case access times, Symposium on
Discrete Algorithms, 516-522, 2001.

D. Knuth, Optimal binary search trees, Acta Informatica 1, p. 14-25, 1971.

D. Sleator and R. Tarjan, Self-Adjusting Binary Search Trees, Journal of the ACM, 32, 652-686,
1985.

R. Sundar, On the Deque conjecture for the splay algorithm, Combinatorica 12(1), 95-124,
1992.

R. Tarjan, Sequential access in splay trees takes linear time, Combinatorica 5(5), 367-378,
1985.

