
6.851: Advanced Data Structures Spring 2007

Lecture 1 — February 12, 2007

Prof. Erik Demaine Scribe: Ray C. He

1 Overview

In this lecture we discussed the topics to be covered later in class. We also talked about linked
lists as a data structure and how access times for elements can be optimized using a self-adjusting
linked list, by using algorithms such as Move-To-Front and Order-By-Next-Request.

2 Linked Lists and the World of Self-Adjusting Data Structures

Self-adjusting data structures will change even as we access data. Ideally, we want the second
access to our data structure to take O(1) time, even if it longer to access the data the first time
around.

The data structure we want to examine is the linked list, where each element contains a pointer to
the next. The query sent to the list would be: access(x), which would cost i, assuming x can be
found in the ith position in the list.

2.1 Linear Search Model

A regular linear search through a linked list of n elements has time complexity n in the worst
case, and n/2 in the average case. But this average-case analysis assumes a randomly, uniformly
distributed set of elements. What if the search probabilities are not uniformly distributed? The
stochastic model is used to model the situation in which there is some probability distribution
among elements.

2.2 The Stochastic Model

The stochastic model makes two assumptions:

• Searches request element i with probability pi.

• The requests are independent events.

The optimal scheme for arranging a linked list then is to put the elements with the highest prob-
ability at the front of the list, i.e., to arrange the elements in order of decreasing probability. For
our list of n elements with probabilities p1, p2, . . . , pn, if we relabel so that p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn,
then the cost of this optimal scheme is cost(OPT ) =

∑n
i=1 ipi. (Note that OPT will be used here

as an abbreviation for “optimal”.)

1



What if the probabilities in the distribution of elements are not known? One can change the list
order on-the-fly to adapt to the input distribution, to make searches fast. This is the notion of
self-adjusting data structures.

2.3 The General Model

The general (non-stochastic) model is used to model situations where the search requests are cor-
related. The general model can be described in terms of its definition of frequency and probability.
In an arbitrary request sequence x1, x2,· · · , xm, let fi (the frequency of i) be the number of re-
quests for i. Thus

∑n
i=1 fi = m, the total number of requests. The “probability” (really a relative

frequency) of i is pi = fi/m.

If we were omnicient and knew how many requests for each element were going to occur, we could
store the elements by decreasing request frequency: f1 ≥ f2 ≥ f3 ≥ · · · ≥ fn. Because the elements
are pre-arranged and do not change place during the request sequence, this scheme is called the
static optimal. Its cost is

∑n
i=1 ifi, for an amortized cost per element of

∑n
i=1 ipi.

We can do better than this static optimal however, if the order of the elements can be changed on
the fly, leading to the notion of dynamic optimality. Two new model changes are now introduced
that provide a framework for analysis of dynamic ordering schemes within the general model. These
model changes are intentionally restrictive, to allow for clear-cut analysis of the ideas at hand. To
start, we have a an initially arbitrarily ordered list or an initially empty list (that is, find(x) will
append x to the list).

2.3.1 one-finger model

This basic cost model, also called the Sleator-Tarjan cost model, is as follows:

• find(x) starts at the front of the list.

• To search and find element i at position i, the cost is i (moving forwards and backwards by
1 position costs 1).

• To swap two adjacent elements, the cost is 1 (a “paid swap”).

• Upon finding an element, moving it partially toward the front or completely to the front is
free (a “free swap”).

Thus, Move-to-Front and Tranpose make only free swaps.

2.3.2 constant-finger model

All the fingers in the constant finger model start at the front fo the list, and each finger has the
same behavior as the finger in the one-finger model. Operations such as standard pointer copying
are allowed.

2



2.4 Natural access(x) algorithms

Following are three schemes for on-the-fly ordering:

1. Frequency Count (FC) — Count the requests for each element and store the request counts
with each element. Then order the list of elements by those counts.

2. Transpose — Swap an element with the one in front of it upon request.

3. Move-to-front (MTF) — Move an element to the front upon each request for it.

In the last two schemes, state is maintained entirely in the list itself. The frequency count scheme
uses additional space for each element to keep its state. This extra space makes frequency count a
little more “messy”.

2.5 Performance of Dynamic Ordering Schemes

How do these dynamic ordering schemes perform in the stochastic model? The following is a
summary of research that has been done in this area. Note that these analyses only hold if the
request sequence is sufficiently long, which is necessary for the stochastic model to really “kick in”.

• cost(FC) ∼ OPT [Bit79]

• cost(Transpose) ≥ cost(MTF ) [Riv76]
(This inequality is strict unless n ≤ 2 or all pi’s are equal)

• cost(MTF ) < 2 × OPT [Riv76]

• cost(MTF ) ≤ π
2
× OPT [CHS88]

• For some distributions, the previous bound is tight [GMS81]

2.5.1 Transpose

Interestingly, cost(Transpose) can be very bad under this scheme [BM85]. The following example
shows why this is so. Suppose your list looks like 3, 4, 5, . . . , n, 1, 2 and the request sequence is
1, 2, 1, 2, . . .
︸ ︷︷ ︸

m

. Then cost(Transpose) =
∑n

i=1 i+(m−n)n ∼ mn because elements 1 and 2 never make

it out of the back of the list. On the other hand, cost(static OPT ) in this case is
∑n

i=1 i + 1.5m ∼
1.5m because only 2 items are ever requested.

2.5.2 Static Optimality

It turns out that cost(MTF or FC) ≤ 2 × cost(static OPT ), so both these schemes will do much
better than Transpose in this request sequence. In general, this property is called static optimality.

3



Why MTF performs this well can be shown by looking at how many unsuccessful comparisons are
made when looking for an element. In other words, how many times are we looking for j but find
i? If we then sum costij for all i, j, we get the total cost for searches for all elements in our set.

Suppose fi ≤ fj. Static OPT orders i before j. So, in OPT, costij = fi, and the number of times i
is found when looking for j is fi, because i will always be encountered before j on each search for
j.

The worst case for MTF is that we see (i) fi − fj times, and we see (j, i) fj times. Therefore, for
MTF, costij ≤ 2fj .

Therefore, cost(MTF ) ≤ 2 × cost(staticOPT ).

2.5.3 Dynamic Optimality

Until now, we have been comparing to “static OPT”, which is defined to be the optimal list order
subject to the constraint that the list order cannot change in the middle of the request sequence. (In
the stochastic model, this constraint didn’t matter, because we assumed that the search requests
were independent: since we weren’t able to predict what was coming next, no algorithm could
preemptively optimize the list order to take advantage of information about future requests.) In
some sense, comparing the MTF and FC algorithms to static optimality is “cheating”, because we
are using dynamic information to approximate a particular static ordering.

Henceforth, we drop the independence assumption; we will talk about request sequences. If an
algorithm has the entire future request sequence available to it, then the algorithm will be able
to outpace a statically optimum algorithm. In our model, we allow the optimum algorithm to
be omniscient. (The terminology suggests that such a model would be unreasonable, but we talk
about these algorithms all the time; usually we call them offline algorithms.) We expect that OPT
would re-order its list dynamically to use its information about the future request sequence. If
we’re lucky, we’ll still be able to design non-omniscient (online) algorithms that are nearly as good
as the optimal omniscient (offline) algorithm.

2.5.4 Terms and background

First, we need to define our terms; we shall evaluate our algorithms using the following definition:

Definition 1. (Competitiveness) Algorithm A is c-competitive if there is a number b such that,
for all request sequences σ,

costA(σ) ≤ c · costOPT(σ) + b,

where OPT is an omniscient optimum algorithm.

That is, for all inputs σ, our online algorithm A runs at most c times slower than the best possible
algorithm. Note that algorithm A is handicapped: it only learns the request sequence as the searches
happen, while OPT is an omniscient algorithm; it has access to the entire request sequence ahead
of time.

4



2.5.5 Dynamic Optimality Results

Given a cost model and a definition of c-competitive, we can discuss the goodness of the algorithms
we’ve seen so far. [ST85] showed the following:

• The Move-to-Front algorithm is 2-competitive.

• Frequency-Count is not O(1)-competitive.

• Transpose is not O(1)-competitive.

We will present the competitiveness proof for Move-To-Front shortly. Intuitively, Transpose is not
O(1)-competitive because the request sequence C D A B A B A B ... will never bring either A

or B to the front, giving an arbitrarily bad cost. Similarly, Frequency-Count can be foiled by a
sequence of n As, followed by n − 1 Bs, followed by n − 2 Cs, etc.

Can we find an algorithm that is better than 2-competitive? The following unpublished result by
Karp and Raghavan answers this question in the negative:

Theorem 2. No deterministic algorithm is c-competitive, where c < 2.

2.6 Order By Next Request (OBNR)

We finish our discussion of Munro’s Order-By-Next-Request (OBNR) strategy [ONR] by showing
that the amortized cost of the algorithm achieves the entropy bound. OBNR is an offline (omni-
scient) algorithm, in that we know for each element the time that it will be accessed. So, upon
request to an element at position i, we do the following:

1. Continue scan to position ddiee, where ddiee = 2dlg ie is the hyperceiling of i.

2. Sort these elements according to when they will next be requested.

The total cost for a permutation of the elements was Θ(n lg n). By contrast, Move-To-Front (or any
online strategy) can cost Θ(n2) (with the startup model, or with a nasty permutation of the list
matching its initial order). Per element, the costs are Θ(lg n) versus Θ(n), which is an exponential
discrepancy.

While OBNR may seem “unfair” because it requires “knowing the future” (i.e., knowing when each
element will be accessed), it is important to realize that this assumption is sometimes realistic. For
example, when generating a minimum spanning tree, it is possible to predict the order of the nodes
that are going to be visited—so in this sense we “know” the future.

Comparing ONR and MTF. Consider a list with n distinct keys; the access sequence consists
of a repetition of a particular permutation of the keys. For definiteness, we fix the request sequence
consisting of repetitions of (1, 2, . . . , 16). Table 1 illustrates the execution of ONR on this request
sequence. Note that every ith access costs 2i. The total cost of n accesses for one instance of the
permutation is n · (1/2 · 2 + 1/4 · 4 + 1/8 · 8 + · · · ) which is O(n lg n), giving an amortized cost per
access of O(lg n).

5



Table 1: Execution of the Order-by-Next-Request algorithm. At each point the list is a sequence
of blocks, with elements in each block sorted in next-request order.

Search for... Cost List after searching (next request circled)

initialize 16 1 2© 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 2 1 3© 4 5 6 7 8 9 10 11 12 13 14 15 16
3 4 3 4© 1 2 5 6 7 8 9 10 11 12 13 14 15 16
4 2 4 3 1 2 5© 6 7 8 9 10 11 12 13 14 15 16
5 8 5 6© 7 8 1 2 3 4 9 10 11 12 13 14 15 16
6 2 6 5 7© 8 1 2 3 4 9 10 11 12 13 14 15 16
7 4 7 8© 5 6 1 2 3 4 9 10 11 12 13 14 15 16
8 2 8 7 5 6 1 2 3 4 9© 10 11 12 13 14 15 16
9 16 9 10© 11 12 13 14 15 16 1 2 3 4 5 6 7 8

By contrast, MTF (or any online algorithm) might cost Θ(n) per request, since we can choose a
request sequence that always requests the element that is currently last in the list.

2.6.1 OBNR cost analysis

Theorem 3. The amortized cost of OBNR to access an element is ≤ 1+4dlg re, where r = number
of distinct elements accessed since this element was last accessed (including the element itself).

Corollary 4. The total cost of OBNR is ≤ m + 4
∑n

i=1dlg
m
fi
e, where fi = number of occurences

of i. Let pi = fi

m
, the probability of accessing element i. Then the following statements are true:

1. The amortized cost for element i is O(lg 1
pi

).

2. The “expected” cost for a random element is O(
∑n

i=1 pi lg
1
pi

).

3. The total cost is O(m
∑n

i=1 pi lg
1
pi

).

The bound in statement 2 above represents the entropy of the probability distribution characterized
by the pi. This is promising because it shows that the expected cost of OBNR for a random element
approaches the information-theoretic lower bound.

Now let’s prove the above theorem.

Proof: We begin with two failed attempts (at calculating the cost of OBNR) before demonstrating
the correct approach.

Proposition 1: Charge the elements in the last block (i.e. the largest block).

This is a bad idea because most of these elements might never be requested.

Proposition 2: Charge the elements in the front (i.e. the small blocks, for some notion of small).

6



Unfortunately, this is still a bad idea because there aren’t enough elements in these blocks; most
of the elements (a constant fraction) are actually in the two largest blocks.

Proposition 3: Soak the middle class: charge a cost of ddiee to the penultimate block b of size ddiee+1

4

(unless the request is for the first element, in which case we charge the first element).

Claim 5. An element i is charged at most once in any block, between two requests for i.

Suppose i is in block b. There are two cases to consider:

Case 1: i gets charged in block b and either stays in b or moves forward. This is shown by the solid
arrow in Figure 1. Elements from the new position of i to the end of block b + 1 serve as a buffer
because we know they will remain in the same relative order until i is accessed (i.e. they will only
be accessed after i is accessed first). In this case, i can’t be charged unless it moved to block b + 1
and the resulting buffer did not extend to fill block b + 2 (and then an element in block b + 2 was
requested).

Case 2: i moves to block b + 1. This is shown by the dashed arrow in Figure 1. In this case, i may
get charged by a request in block b + 2, but again this will only happen once between two requests
for i (see Claim 3).

Figure 1: Possible movement of element i after a request for i. Case 1 is illustrated by the solid
arrow; Case 2 is illustrated by the dashed arrow.

Now we ask the following question: how many blocks can i possibly be in? We know that i is
charged at most once per block. Let r be the number of distinct elements accessed between two
accesses to i. Then the farthest right i can possibly move is position r. This leads us to the
following two conclusions:

1. i can be in at most dlg re blocks, so there will be ≤ dlg re charges attributed to i.

2. The amortized cost to access element i will therefore be ≤ 4dlg re + 1, where the additional
1 represents the base charge of accesses to the front of the list.

References

[BM85] J. L. Bentley and C. C. McGeoch. Amortized analyses of self-organizing sequential search
heuristics. Comm. ACM 28:404–411, 1985.

[Bit79] J. R. Bitner. Heuristics that Dynamically Organize Data Structures. SIAM J. Comput.
8(1):82–110, Feb. 1979.

[CHS88] F. R. K. Chung, D. J. Hajela, P. D. Seymour: Self-organizing sequential search and
Hilbert’s inequalities. J. Comp. Systems Sc. 36(2):148–157, 1988.

7



[FW93] M. L. Fredman and D. E. Willard. Surpassing the Information Theoretic Bound with
Fusion Trees. J. Comp. System Sc. 47(3):424–436, 1993.

[GMS81] G. H. Gonnet, J. I. Munro and H. Suwanda. Exegesis of Self-Orgainzing Linear Search.
SIAM J. Comput. 10(3):613–637, Aug. 1981.

[Riv76] R. Rivest. On self-organizing sequential search heuristics. Communications of the ACM
19(2):63–67, Feb. 1976.

[ONR] J.I. Munro. On the Copmletitiveness of Linear Search. Proceedings of the 8th Annual
European Symposium on Algorithms. 338–345, 2000.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM 28(2):202–208, Feb. 1985.

8


