
6.851 Advanced Data Structures (Spring’07)

Prof. Erik Demaine TA: Oren Weimann

Problem 9 – Solution

Cache Oblivious Median Finding.

1. Conceptually partition the array into N/5 5-tuples.

2. Compute the median of each 5-tuple by two parallel scans. Takes Θ(N/B + 1) memory
transfers, assuming that M ≥ 2B.

3. Recursively compute the median m of these medians (i.e. a recursive call on a problem of
size N/5).

4. Partition the array into the elements ≤ m and the elements > m by doing three parallel scans,
one reading the array, and two others writing the partitioned arrays. This takes Θ(N/B + 1)
memory transfers assuming that M ≥ 3B.

5. Count the lengths of these two subarrays and recurse into the appropriate half.

Recurrence for running time (see e.g. CLRS):

T (N) = T (1/5N) + T (7/10N) + O(N)

Recurrence for number of memory transfers:

T (N) = T (1/5N) + T (7/10N) + O(N/B + 1)

What’s the base case? First try: T (O(1)) = O(1). Then there are N c leaves in the recursion tree,
where c ≈ 0.83978031 and each leaf incurs a constant number of memory transfers. So T (N) is at
least Ω(N c), which is larger than O(N/B + 1) when N is larger than B but smaller than BN c.
Second try: T (O(B)) = O(1), because once the problem fits into O(1) blocks, all five steps incur
only a constant number of memory transfers. Then there are only (N/B)c leaves in the recursion
tree, which cost only O((N/B)c) = o(N/B) memory transfers. Thus the cost per level decreases
geometrically from the root, so the total cost is the cost of the root: O(N/B + 1).

1c is the solution to (1/5)c +(7/10)c = 1 which arises from plugging L(N) = Nc into the recurrence for the number
L(N) of leaves: L(N) = L(N/5) + L(7N/10), L(1) = 1.

1


