6.851 ADVANCED DATA STRUCTURES (SPRING’07)
Prof. Erik Demaine TA: Oren Weimann

|Problem 9 — Solution]

Cache Oblivious Median Finding.
1. Conceptually partition the array into N/5 5-tuples.

2. Compute the median of each 5-tuple by two parallel scans. Takes O(N/B + 1) memory
transfers, assuming that M > 2B.

3. Recursively compute the median m of these medians (i.e. a recursive call on a problem of
size N/5).

4. Partition the array into the elements < m and the elements > m by doing three parallel scans,
one reading the array, and two others writing the partitioned arrays. This takes ©(N/B +1)
memory transfers assuming that M > 3B.

5. Count the lengths of these two subarrays and recurse into the appropriate half.

Recurrence for running time (see e.g. CLRS):
T(N)=T(1/5N)+T(7/10N) + O(N)
Recurrence for number of memory transfers:
T(N)=T(1/5N)+T(7/10N)+ O(N/B + 1)

What’s the base case? First try: T(O(1)) = O(1). Then there are N€ leaves in the recursion tree,
where ¢ 2~ 0.8397803! and each leaf incurs a constant number of memory transfers. So T'(IV) is at
least Q(N€), which is larger than O(N/B + 1) when N is larger than B but smaller than BN€.
Second try: T(O(B)) = O(1), because once the problem fits into O(1) blocks, all five steps incur
only a constant number of memory transfers. Then there are only (N/B)¢ leaves in the recursion
tree, which cost only O((N/B)¢) = o(N/B) memory transfers. Thus the cost per level decreases
geometrically from the root, so the total cost is the cost of the root: O(N/B + 1).

!¢ is the solution to (1/5)°+4(7/10)¢ = 1 which arises from plugging L(N) = N€ into the recurrence for the number
L(N) of leaves: L(N) = L(N/5) + L(7TN/10), L(1) = 1.



