Lecture 12 Integer Data Structures

- hashing: O(1) for membership. Beat O(lgn) for successor and predecessor queries.
- elements (inputs, outputs, memory cells) are w-bit integers from universe U = {0,1,...,u — 1},
u=2".

Models of Computation

\ Transdichotomous RAM \

[Pentium RAM | [WordRAM| AC° RAM|

Pointer Machine

e cell probe model: Only pay for memory access. Non-realistic, but good for proving lower
bounds.

e transdichotomous RAM: integers can be used as pointers (w > lgn). “computer” changes
with the problem size...
= idea: necessary just to address the input.

e word RAM: transdichotomous + only “C-style” operations (+ = * / % & | = = << >>).

e ACY" RAM: transdichotomous + only “AC” operations (constant depth, poly sized circuits
with unbounded fan-in)
- excludes multiplication.

e Pointer-machine: directed graph, constant branching factor.

Predecessor/Successor problem

Maintain a set S of n w-bit integers from a universe U = {0,1,...,u — 1} of size u = 2% (word
RAM) under:

e INSERT(z), z€lU

e DELETE(x), z €S

e SUCCESSOR(z), x€lU

e PREDECESSOR(z), = €U

| | | AV | | |

| | | <> | | |

Classic Results

data structure time/op space model
1962 BST’s O(lgn) O(n) BST
1975 van Emde Boas [1] O(lglgu) O(u) word / AC® RAM
1983 y-fast tries [2] O(lglgu) w.h.p. O(n) word RAM
1993 fusion trees [3] O lglglgnu> O(n) word / AC® RAM [4]

Combination O(y/Ign):
1
Iflglgu < v/lg n then use van Emde Boas or y-fast tries. Otherwise, use fusion trees: O < &1t > <

lglgu
O(VIgn).

van Emde Boas

O(lglgu) time means we binary search on bits of query word x.

binary(z) = 0110011100 € S
high(z) low(z)

low-order bits (low(x)) distinguish /u consecutive items.
high-order bits (high(x)) distinguish \/u of these clusters.

U
[o[1[1]o[1]o[0]0] 0| o[ofo[o]1] 1| o[o] 1|0|0|0|0| 1]1]
v N N J
Ju

\\//

Summary [1 [o | 1

We create y/u + 1 recursive substructures.

e /u substructures: S[0], S[1],...,S[\/u — 1] representing partition of universe (above).

e A single substructure S.summary of size \/u.
S.summaryli] = 1 < S[i] is non empty.

INSERT(z, S)
1 NsERT(low(z), S[high(z)])
2 INSERT(high(zx), S.summary)

Analysis: T'(u) = 2T(y/u) + O(1) = T = 1gu, need to get rid of the 2

Fix: VS we add

e S.min = the minimum element of S.
- not stored in an S[i] recursively (but still counts as making S non empty).
- S.min = none < S is empty.

e S.max = the minimum element of S, unlike the min, this is also stored recursively.

- An inserted item to S[i] is either the only item in S[i] or S.summaryli] was already 1 .

set as S[i].min no need to update summary

INSERT(z, S)

—_
o

1

© 00 J O U i W N

if S.min = none
then S.min «— r and return

if z < S.min
then SwAP(z, S.min)

if S[high(x)] is empty (.min = none)
then S[high(z)].min «— low(x)

INSERT(high(z), S.summary)

else INSERT(low(z), S[high(x)])

if x > Smax
then Smax —

SUCCESSOR(z, S)

1

ST W N

if z < Somin
then return S.min
if low(x) < S[high(z)].maz (successor is in S[high(z)])
then return high(z) - 1/|S| + SUCCESSOR(low(z), S[high(x)])
else i« SUCCESSOR(high(z),S.summary)
return i - \/|S] + S[i].min

-T(u) =T(u)+0(1) =T =1glgu.
- predecessor and delete similar.
- only problem: space

y-fast tries

— 0
®/ RO ®/ \@)

' AN /
\/ ~ 7~ AN - \,
R CENCERCENO SR ORI
) ~< ~< ~<£) X ~<)
/ \ / \ / \ / \ / \ / \ / \ / \
0 1 1 0 0

e store all prefixes of the binary representation of x € S in a hash table.
e binary search the root-to-z path to find the deepest 1-node (say y).

— if z € left(y) then min(right(y)) = successor(z).
— if z € right(y) then max(left(y)) = predecessor(x)

e use a linked list on S to find the other succ/pred.
e O(lglgu) for pred/succ, O(lg u) for insert/delete, O(nlgu) space.

Indirection

e cluster elements of .S into consecutive groups of size O(Igu).
e store each group in balanced BST.

e use hash table solution on representatives from each group.
~—_———

some x€U in the right range

= O(n) space.

Predecessor/Successor:
- hash table finds pred/succ representatives.
- search the two corresponding BSTs.

Insert/Delete:

e insert/delete from BST (find via pred(z))

e if BST grows by x2 then split. if BST shrinks by x% then merge with neighbor & possibly resplit.
= takes O(lgu) time (why?) and happens only every Q(lgu) updates.
= O(1) amortized.

General Indirection:

Reduce any solution with O(Iglgu) query time, n - (1gu)°™ space, and (1gu)°") update to O(n) space and
O(lglgu) update (query time unchanged).

References

[1] P. van Emde Boas, Preserving Order in a Forest in less than Logarithmic Time, FOCS, 75-84, 1975.

[2] Dan E. Willard, Log-Logarithmic Worst-Case Range Queries are Possible in Space ©(n), Inf. Process.
Lett. 17(2): 81-84 (1983)

[3] M. Fredman, D. E. Willard, Surpassing the Information Theoretic Bound with Fusion Trees, J. Comput.
Syst. Sci, 47(3):424-436, 1993.

[4] A. Andersson, P. B. Miltersen, M. Thorup, Fusion Trees can be Implemented with ACY Instructions
Only, Theor. Comput. Sci, 215(1-2): 337-344, 1999.

