Lecture 12 Integer Data Structures

- hashing: O(1) for membership. Beat $O(\lg n)$ for successor and predecessor queries.
- elements (inputs, outputs, memory cells) are w-bit integers from universe $\mathcal{U} = \{0, 1, \dots, u-1\}$, $u = 2^w$.

Models of Computation

- cell probe model: Only pay for memory access. Non-realistic, but good for proving lower bounds.
- transdichotomous RAM: integers can be used as pointers $(w \ge \lg n)$. "computer" changes with the problem size...
 - \Rightarrow idea: necessary just to address the input.
- $word\ RAM$: transdichotomous + only "C-style" operations (+ * / % & | ^ ~ << >>).
- AC^0 RAM: transdichotomous + only "AC" operations (constant depth, poly sized circuits with unbounded fan-in)
 - excludes multiplication.
- Pointer-machine: directed graph, constant branching factor.

Predecessor/Successor problem

Maintain a set S of n w-bit integers from a universe $\mathcal{U} = \{0, 1, \dots, u-1\}$ of size $u = 2^w$ (word RAM) under:

- INSERT(x), $x \in \mathcal{U}$
- DELETE(x), $x \in S$
- SUCCESSOR(x), $x \in \mathcal{U}$
- PREDECESSOR(x), $x \in \mathcal{U}$

Classic Results

	data structure	time/op	space	model
1962	BST's	$O(\lg n)$	O(n)	BST
1975	van Emde Boas [1]	$O(\lg \lg u)$	O(u)	word / AC^0 RAM
1983	y-fast tries [2]	$O(\lg \lg u)$ w.h.p.	O(n)	word RAM
1993	fusion trees [3]	$O\left(\frac{\lg n}{\lg \lg u}\right)$	O(n)	word / AC^0 RAM [4]

Combination $O(\sqrt{\lg n})$:

If $\lg \lg u \le \sqrt{\lg n}$ then use van Emde Boas or y-fast tries. Otherwise, use fusion trees: $O\left(\frac{\lg n}{\lg \lg u}\right) \le O(\sqrt{\lg n})$.

van Emde Boas

 $O(\lg \lg u)$ time means we binary search on bits of query word x.

$$\operatorname{binary}(x) = \underbrace{01100}_{high(x)} \underbrace{11100}_{low(x)} \in S$$

low-order bits (low(x)) distinguish \sqrt{u} consecutive items. high-order bits (high(x)) distinguish \sqrt{u} of these clusters.

We create $\sqrt{u} + 1$ recursive substructures.

- \sqrt{u} substructures: $S[0], S[1], \ldots, S[\sqrt{u}-1]$ representing partition of universe (above).
- A single substructure S.summary of size \sqrt{u} . $S.summary[i] = 1 \Leftrightarrow S[i]$ is non empty.

INSERT(x, S)

- 1 INSERT(low(x), S[high(x)])
- 2 INSERT(high(x), S.summary)

Analysis: $T(u) = 2T(\sqrt{u}) + O(1) \Rightarrow T = \lg u$, need to get rid of the 2.

- only problem: space

- S.min =the minimum element of S.
 - not stored in an S[i] recursively (but still counts as making S non empty).
 - $S.min = none \Leftrightarrow S$ is empty.
- S.max = the minimum element of S, unlike the min, this is also stored recursively.
- An inserted item to S[i] is either the only item in S[i] or S.summary[i] was already 1 .

```
no need to update summary
INSERT(x, S)
  1 if S.min = none
        then S.min \leftarrow x and return
  3
     if x < S.min
        then SWAP(x, S.min)
  4
     if S[high(x)] is empty (.min = none)
  6
        then S[high(x)].min \leftarrow low(x)
  7
               INSERT(high(x), S.summary)
  8
        else INSERT(low(x), S[high(x)])
 9
     if x > S.max
10
        then S.max \leftarrow x
SUCCESSOR(x, S)
   if x < S.min
1
2
      then return S.min
   if low(x) < S[high(x)].max (successor is in S[high(x)])
      then return high(x) \cdot \sqrt{|S|} + \text{SUCCESSOR}(low(x), S[high(x)])
      else i \leftarrow SUCCESSOR(high(x), S.summary)
5
            return i \cdot \sqrt{|S|} + S[i].min
- T(u) = T(\sqrt{u}) + O(1) \Rightarrow T = \lg \lg u.
- predecessor and delete similar.
```

y-fast tries

- store all prefixes of the binary representation of $x \in S$ in a hash table.
- binary search the root-to-x path to find the deepest 1-node (say y).
 - if $x \in left(y)$ then min(right(y)) = successor(x).
 - if $x \in right(y)$ then $\max(left(y)) = predecessor(x)$
- \bullet use a linked list on S to find the other succ/pred.
- $O(\lg \lg u)$ for pred/succ, $O(\lg u)$ for insert/delete, $O(n \lg u)$ space.

Indirection

- cluster elements of S into consecutive groups of size $\Theta(\lg u)$.
- $\bullet\,$ store each group in balanced BST.
- use hash table solution on $\underbrace{representatives}_{\text{some }x\in\mathcal{U} \text{ in the right range}}$ from each group. $\Rightarrow O(n)$ space.

Predecessor/Successor:

- hash table finds pred/succ representatives.
- search the two corresponding BSTs.

Insert/Delete:

• insert/delete from BST (find via pred(x))

- if BST grows by $\times 2$ then split. if BST shrinks by $\times \frac{1}{4}$ then merge with neighbor & possibly resplit.
 - \Rightarrow takes $O(\lg u)$ time (why?) and happens only every $\Omega(\lg u)$ updates.
 - $\Rightarrow O(1)$ amortized.

General Indirection:

Reduce any solution with $O(\lg \lg u)$ query time, $n \cdot (\lg u)^{O(1)}$ space, and $(\lg u)^{O(1)}$ update to O(n) space and $O(\lg \lg u)$ update (query time unchanged).

References

- [1] P. van Emde Boas, Preserving Order in a Forest in less than Logarithmic Time, FOCS, 75-84, 1975.
- [2] Dan E. Willard, Log-Logarithmic Worst-Case Range Queries are Possible in Space $\Theta(n)$, Inf. Process. Lett. 17(2): 81-84 (1983)
- [3] M. Fredman, D. E. Willard, Surpassing the Information Theoretic Bound with Fusion Trees, J. Comput. Syst. Sci, 47(3):424-436, 1993.
- [4] A. Andersson, P. B. Miltersen, M. Thorup, Fusion Trees can be Implemented with AC^0 Instructions Only, Theor. Comput. Sci, 215(1-2): 337-344, 1999.