
Lecture 11

Hashing: static perfect hashing via FKS, dynamic cuckoo hashing

The Problem: Membership/Dictionary: maintain a set S of n items from a universe U under:
- query(x): x ∈ S? (+ information associated with x)
- insert(x) (dynamic)
- delete(x) (dynamic)

The Solution: A hash function h : U → [m] for some positive integer m < |U |.
– maintain a table T [1 . . . m] of linked lists (chains)
– insert(x): add x to T [h(x)].
– query(x): scan T [h(x)].
– ∀h there exist x 6= y s.t h(x) = h(y) ⇒ our goal is short chains.

Theorem 1. If m > n and h is selected uniformly from all hash functions then insert/delete/query
take O(1) expected time.

However, a random hash function requires |U | lg m bits to represent ⇒ infeasible.

Universal Hashing:

weak universal hashing is enough to obtain O(1) expected time per operation.

Definition 1. A set H of hash functions is a weak universal family if for all x, y ∈ U , x 6= y,

Pr
h←H

[h(x) = h(y)] =
O(1)
m

.

- Sometimes called d-universal for probability= d
m .

- Why is weak universal enough?
Pick m so that n

m = O(1), and randomly pick h ∈ H. Let Iy = 1 iff h(x) = h(y).

E[chain length] = E


∑

y∈S

Iy


 =

∑

y∈S

E[Iy] = 1 +
∑

y 6=x

Pr[h(x) = h(y)] ≤ 1 + n · O(1)
m

= O(1)

- Dictionary construction: randomly choose h ∈ H and hash all elements. If there’s a chain that is
“too long”, pick a new h and rehash (rebuild the table from scratch, we will use this idea a lot).

- An example weak universal family: Hp,m = {ha,b | a ∈ {1, 2, . . . , p}, b ∈ {0, 1, 2, . . . , p}}, for some
prime p > |U |, where ha,b(x) = ((ax + b) mod p) mod m. Proof in CLRS.

Definition 2. H is a strong universal family if for all distinct x, y ∈ U , and for all a, b ∈ [m],

Pr
h←H

[h(x) = a ∧ h(y) = b] =
O(1)
m2

.

Definition 3. H is k-independent if for all k distinct items x1, . . . , xk ∈ U , and for all a1, . . . , ak ∈
[m],

Pr
h←H

[h(x1) = a1 ∧ h(x2) = a2 ∧ . . . ∧ h(xk) = ak] =
O(1)
mk

.

- An example k-independent family: again, pick some prime p > |U |.

H = {h | h(x) = (c0 + c1x + · · ·+ ck−1x
k−1) mod m, for some c0, c1, . . . , ck−1 ∈ [p]}.

Theorem 2 (Siegel, 1989). ∀ε > 0, ∃ a nΩ(1)-independent family of hash functions, each repre-
sented in nε space, and evaluated in O(1) time.

Theorem 3 (Pagh, Ostlin, 2003). ∃ a n-independent family of hash functions, each represented
in O(n) words, and evaluated in O(1) time.

Worst-case Guarantees in Static Hashing:

-Universal hashing gives good performance only in expectation ⇒ vulnerable to an adversary.

Theorem 4 (Gonnet, 1981). Let H be an n-independent family of hash functions. The expected
length of the longest chain is Θ

(
lg n

lg lg n

)
.

⇒ We can construct a static hash table with Θ
(

lg n
lg lg n

)
worst-case query time:

– pick a random h ∈ H, hash every x ∈ S (in O(n) time).
– if longest-chain ≤ 2·expected-length then stop.
– otherwise, pick a new h and start over.

Pr(bad hash function) ≤ 1
2 ⇒ O(1) trials, O(n) expected construction time.

- Mitzenmacher 1996 [3]: By using two hash functions (insert to the shorter list, search is in both
lists) we can get Θ(lg lg n) worst-case query time.

FKS - Static Hashing (Fredman, Komlós, Szemerédi [1])

- Construct static hash table with no collisions in expected O(n) time, O(n) worst-case space, and
O(1) worst-case query time.
- Requires only a weak universal family H
- Easy to implement.

First attempt: If m = Ω(n2) and we randomly pick h ∈ H then

E[number of collisions] =
∑

x,y∈S, x 6=y

Pr[h(x) = h(y)] =
(

n

2

)
· c

m
≤ 1

2

⇒ After expected O(1) trials, we get a collision-free hash function (total time is O(m) = O(n2)).

Second attempt: If m = n, the same calculation yields

E[number of collisions] =
(

n

2

)
· c

n
= O(n)

⇒ After expected O(1) trials, we find a function h′ that produces O(n) collisions (total time is
O(n)).

FKS: Use h′ to hash into n buckets, then use hi’s to hash a bucket of size ni to n2
i locations.

1

2

n1 = 0

n2 = 2

n3 =1

nm= 3

U

-

h2

-

hm

3

4

h’

1

2

1

2

3

4

5

6

7

8

9

2
mn

2
2n

Let ni = |{x ∈ S | h′(x) = i}|.

(I) The number of collisions is
∑

i∈[m]

(
ni
2

)
= O(n) because we choose h′ so. Thus,

∑

i∈[m]

n2
i = O


 ∑

i∈[m]

(
ni

2

)
 = O(n).

(II) We can hash ni elements into a table of size n2
i without any collisions in expected O(n2

i) time.
⇒
- The construction takes O(n) + O(n2

1) + . . . + O(n2
m) = O(n) time in expectation

- Worst-case O(n) space.
- Worst-case O(1) query time (two hashes).

Cuckoo - Dynamic Hashing (Pagh and Rodler 2001 [5])

On the nesting habits of the Cuckoo bird...

- O(1) expected time for insert
- O(1) worst-case time for queries/deletes.
- Requires two O(lg n)-independent hash functions, h1 and h2. (OPEN: same bound using only
O(1)-independent hash family)
- m > 2n (we will use m = 4n).
- Invariant: x is either at T [h1(x)] or at T [h2(x)] ⇒ query/delete takes worst-case two probes.

Insertion:

1. Compute h1(x),
2. If T [h1(x)] is empty, we put x there, and we are done.

Otherwise, if y ∈ T [h1(x)], we evict y and put x in T [h1(x)].
3. We find a new spot for y by looking at T [h1(y)] or T [h2(y)] (the one that is not occupy by x).

4. Repeat this process. After 6 lg n steps stop and rehash.

Let x1, x2, . . . , xt be the items that are evicted during the process.
- Cuckoo graph G = (V, E), where V = [m] and (h1(x), h2(x)) ∈ E for all x ∈ U . Insertion is one of
three possible walks on G:

x1

¹¹• x2 // • x3 // • x4 // • x5 // •

x1

¸¸

•
x8

²²

•x7oo

• x2 //

x1

¼¼

• x3 //

x2

^^
u_I

• x4 //

x3

^^
u_I

• x5 //

x4

^^
u_I

•
x6

OO

• x9 // • x10 // • x11 // • x12 // •

x1

¸¸

•
x8

²²

•x7oo

• x2 //

x1

¼¼

• x3 //

x2

^^
u_I

• x4 //

x3

^^
u_I

• x5 //

x4

^^
u_I

•
x6

OO

• x9 // • x10 // •
x11

²²•
x13

OO

•
x12

oo

Key observation: our functions are O(lg n)-independent so we can treat them as truly random
functions.

– No cycle: Pr[1st eviction] = Pr[T [h1(x1)] is occupied] ≤
∑

x∈S,x6=x1

(Pr[h1(x) = h1(x1)] + Pr[h2(x) = h1(x1)]) < 2n
1
m

=
2n

4n
=

1
2
.

By same reasoning, Pr[2nd eviction] ≤ 2−2, and Pr[tth eviction] ≤ 2−t ⇒ the expected running
time of this case is ≤ ∑∞

t=1 t · 2−t = O(1).

Also, Pr[rehash] ≤ 2−6 lg n ≤ 1
n2 (∗)

– One cycle: One of the path parts (solid, dashed or dotted) is at least t/3 long.
⇒ the expected running time of this case is ≤ ∑∞

t=1 t · 2−t/3 = O(1).

Also, Pr[rehash] ≤ 2−(6 lg n)/3 = 1
n2 (∗)

– Two cycles: Counting argument. How many two-cycle configurations are there?
• The first item in the sequence is x1.
• At most nt−1 choices of other items in the sequence.
• At most t choices for where the first loop occurs, t choices for where this loop returns, and

t choices for when the second loop occurs.
• We also have to pick t− 1 hash values to associate with the items.
⇒ At most t3nt−1(4n)t−1 configurations.

The probability that a specific configuration occurs is 2t(4n)−2t. Why?
⇒ The probability that some two-cycle configuration occurs is at most

t3nt−1(4n)t−12t

(4n)2t
=

t3

4n22t
.

⇒ The probability that a two-cycle occurs at all is at most

∞∑

t=2

t3

4n22t
=

1
4n2

∞∑

t=2

t3

2t
=

1
2n2

·O(1) = O

(
1
n2

)
.(∗)

By (∗)’s, Pr[insertion causes rehash] ≤ O(1/n2).
⇒ Pr[n insertions cause rehash] ≤ O(1/n).
⇒ Rehashing (n insertions) succeeds with prob. 1−O(1/n), so after constant number of trials.

- A trial takes n ·O(1) + O(lg n) = O(n) time in expectation.
⇒ Rehashing takes O(n) time in expectation.
⇒ The expected running time of an insertion is O(1) + O(1/n2) ·O(n) = O(1) + O(1/n) = O(1).

References

1. M. Fredman, J. Komlós, E. Szemerédi, Storing a Sparse Table with O(1) Worst Case Access Time, Journal of the
ACM, 31(3):538-544, 1984.

2. G. Gonnet, Expected Length of the Longest Probe Sequence in Hash Code Searching, Journal of the ACM, 28(2):289-
304, 1981.

3. M. Mitzenmacher, The Power of Two Choices in Randomized Load Balancing, Ph.D. Thesis 1996.
4. A. Ostlin, R. Pagh, Uniform hashing in constant time and linear space, 35th STOC, p. 622-628, 2003.
5. R. Pagh, F. Rodler, Cuckoo Hashing, Journal of Algorithms, 51(2004), p. 122-144.
6. A. Siegel, On universal classes of fast hash functions, their time-space tradeoff, and their applications, 30th FOCS,

p. 20-25, Oct. 1989.

