Lecture 11

Hashing: static perfect hashing via FKS, dynamic cuckoo hashing

The Problem: Membership/Dictionary: maintain a set S of n items from a universe U under:
- query(x): € S? (4 information associated with x)

- insert(z) (dynamic)

- delete(x) (dynamic)

The Solution: A hash function h : U — [m] for some positive integer m < |U].

— maintain a table T'[1...m] of linked lists (chains)

— insert(z): add z to T'[h(z)].

— query(z): scan T'[h(x)].

— Vh there exist # y s.t h(z) = h(y) = our goal is short chains.

Theorem 1. If m > n and h is selected uniformly from all hash functions then insert/delete/query
take O(1) expected time.

However, a random hash function requires |U|lgm bits to represent = infeasible.

Universal Hashing:

weak universal hashing is enough to obtain O(1) expected time per operation.

Definition 1. A set H of hash functions is a weak universal family if for all x,y € U, x # y,

o(1)
Pr [h(z) =h = —.
Pt [h(z) = h(y)
- Sometimes called d-universal for probability= %.

- Why is weak universal enough?
Pick m so that - = O(1), and randomly pick h € H. Let I, = 1 iff h(x) = h(y).

Elchain length] = E |} "I,| =Y E[I,] =14 Y Pr[h(z) =h(y)] <14+n - ——= =0(1)
yes yes YF£x

- Dictionary construction: randomly choose h € H and hash all elements. If there’s a chain that is
“too long”, pick a new h and rehash (rebuild the table from scratch, we will use this idea a lot).

- An example weak universal family: Hy, . = {hap | @ € {1,2,...,p},b € {0,1,2,...,p}}, for some
prime p > |U|, where hq(z) = ((az + b) mod p) mod m. Proof in CLRS.

Definition 2. H is a strong universal family if for all distinct x,y € U, and for all a,b € [m],

O(1)
P h/ = h = b prd .
P [h(z) =anh(y) =b = —5
Definition 3. H is k-independent if for all k distinct items x1,...,x € U, and for all ay,...,a €
[m], o)
hlil;{[h(:rl) =a; ANh(xz) =as A... Nh(zy) = ai] = g

- An example k-independent family: again, pick some prime p > |U].
H={h|h(z) = (co+c12 + -+ cr_12"1) mod m, for some cg,c1,...,cx_1 € [p]}.

Theorem 2 (Siegel, 1989). Ve >0, 3 a n?M) _independent family of hash functions, each repre-
sented in n° space, and evaluated in O(1) time.

Theorem 3 (Pagh, Ostlin, 2003). 3 a n-independent family of hash functions, each represented
in O(n) words, and evaluated in O(1) time.

Worst-case Guarantees in Static Hashing:

-Universal hashing gives good performance only in expectation = vulnerable to an adversary.

Theorem 4 (Gonnet, 1981). Let H be an n-independent family of hash functions. The expected

length of the longest chain is © (lglglgnn)'

= We can construct a static hash table with © (lglglgnn> worst-case query time:

— pick a random h € H, hash every x € S (in O(n) time).
— if longest-chain < 2-expected-length then stop.
— otherwise, pick a new h and start over.

Pr(bad hash function) < 2 = O(1) trials, O(n) expected construction time.

- Mitzenmacher 1996 [3]: By using two hash functions (insert to the shorter list, search is in both
lists) we can get ©(lglgn) worst-case query time.

FKS - Static Hashing (Fredman, Komlés, Szemerédi [1])

- Construct static hash table with no collisions in expected O(n) time, O(n) worst-case space, and
O(1) worst-case query time.

- Requires only a weak universal family H

- Easy to implement.

First attempt: If m = 2(n?) and we randomly pick h € H then
E[number of collisions] = Z Pr[h(z) = h(y)] = <n> . C < 1
2) m ™ 2
T,YyE€S, T#Y

= After expected O(1) trials, we get a collision-free hash function (total time is O(m) = O(n?)).

Second attempt: If m = n, the same calculation yields

E[number of collisions| = <Z> -—=0(n)

C
n

= After expected O(1) trials, we find a function A’ that produces O(n) collisions (total time is
O(n)).

FKS: Use I/ to hash into n buckets, then use h;’s to hash a bucket of size n; to nf locations.

U b
— h n2
1 \ n=0 - 2
2 P n2=2 | h2 T
—><: = 2
I 3
¥ Nm=3 | hm ‘\’ 4
2
_— 5 nm
6
o L
. 7
o -
8
I 9

Let n; = |{zx € S | b (z) = i}|.

(I) The number of collisions is 3 _;cp,,; (") = O(n) because we choose k' so. Thus,

Y n2=0 Z(Z) = O(n).

1€[m] 1€[m]

(IT) We can hash n; elements into a table of size n? without any collisions in expected O(n?) time.
=

- The construction takes O(n) + O(n?) + ...+ O(n2,) = O(n) time in expectation

- Worst-case O(n) space.

- Worst-case O(1) query time (two hashes).

Cuckoo - Dynamic Hashing (Pagh and Rodler 2001 [5])

On the nesting habits of the Cuckoo bird...

- O(1) expected time for insert

- O(1) worst-case time for queries/deletes.

- Requires two O(lgn)-independent hash functions, hy and hy. (OPEN: same bound using only
O(1)-independent hash family)

- m > 2n (we will use m = 4n).

- Invariant: x is either at T'[hi(z)] or at T'[ha(x)] = query/delete takes worst-case two probes.

Insertion:

1. Compute hy(z),
2. If Thi(x)] is empty, we put = there, and we are done.
Otherwise, if y € T'[h1(z)], we evict y and put = in T'[hy(z)].
3. We find a new spot for y by looking at T'[h;(y)] or T[ha(y)] (the one that is not occupy by x).

4. Repeat this process. After 61gn steps stop and rehash.

Let x1,x9,..., 2 be the items that are evicted during the process.
- Cuckoo graph G = (V, E), where V' = [m] and (h1(z), ho(x)) € E for all x € U. Insertion is one of
three possible walks on G:

ze

e ——> 0

\\ \
x2 @3 N x5 \
. o2 o "3 o "™ 5
CN_ - YN_ - N_ -
xo T3 xq
T -
N zg z10 =11 z12
° > e e > e > e
x7
o< o
31
zg zg
N oy x3 x4 @5
° ° ° ° °
N _ - YN_ - N_ -
xo z3 T4
x1
N T9 z10
o . >e- > e
A
r13 : T11
\
° < -

Key observation: our functions are O(lgn)-independent so we can treat them as truly random
functions.

— No cycle: Pr[1% eviction] = Pr[T'[h;(z1)] is occupied | <

> (Prlhn(x) = hi(z)] + Priho(z) = hi(z1)]) < 2n— = = = .
€S, x#x1
By same reasoning, Pr[2"¢ eviction] < 272 and Pr[t!" eviction] < 27! = the expected running
time of this case is < > o, t-27¢ = O(1).

Also, Prrehash] < 276187 < L (x)

— One cycle: One of the path parts (solid, dashed or dotted) is at least ¢/3 long.
= the expected running time of this case is < > 7%, ¢- 2743 = O(1).

Also, Pr[rehash] < 2-(618m)/3 — n% (%)

— Two cycles: Counting argument. How many two-cycle configurations are there?
e The first item in the sequence is x7.
e At most n'~! choices of other items in the sequence.
e At most ¢ choices for where the first loop occurs, t choices for where this loop returns, and
t choices for when the second loop occurs.
e We also have to pick ¢ — 1 hash values to associate with the items.
= At most t3n'~1(4n)!~! configurations.

The probability that a specific configuration occurs is 2¢(4n)~2!. Why?
= The probability that some two-cycle configuration occurs is at most
t3nt71(4n)t712t _ t3
(4n)? © 4p22t

= The probability that a two-cycle occurs at all is at most

=B 1 =t3 1 1
; n?2t an? ; 3 =52 O =0 <n2) ()

By (x)’s, Pr[insertion causes rehash] < O(1/n?).
= Pr[n insertions cause rehash] < O(1/n).
= Rehashing (n insertions) succeeds with prob. 1 — O(1/n), so after constant number of trials.
- A trial takes n - O(1) + O(lgn) = O(n) time in expectation.
= Rehashing takes O(n) time in expectation.
= The expected running time of an insertion is O(1) + O(1/n?) - O(n) = O(1) + O(1/n) = O(1).

References

1. M. Fredman, J. Komlés, E. Szemerédi, Storing a Sparse Table with O(1) Worst Case Access Time, Journal of the
ACM, 31(3):538-544, 1984.

G. Gonnet, Expected Length of the Longest Probe Sequence in Hash Code Searching, Journal of the ACM, 28(2):289-
304, 1981.

M. Mitzenmacher, The Power of Two Choices in Randomized Load Balancing, Ph.D. Thesis 1996.

A. Ostlin, R. Pagh, Uniform hashing in constant time and linear space, 35" STOC, p. 622-628, 2003.

. R. Pagh, F. Rodler, Cuckoo Hashing, Journal of Algorithms, 51(2004), p. 122-144.

A. Siegel, On universal classes of fast hash functions, their time-space tradeoff, and their applications, 30'" FOCS,
p. 20-25, Oct. 1989.

N

o Uk

