
6.851: Advanced Data Structures Spring 2012

Lecture 6 — March 6, 2012

Prof. Erik Demaine Scribes: Steven Hao (2017), Kevin Lu (2017),

Aakanksha Sarda (2012), David Field (2012),

Leonardo Urbina (2012), Prasant Gopal (2010),

Hui Tang (2007), Mike Ebersol (2005)

1 Overview

In the last lecture we discussed representing executions of binary search trees as point sets. A
BST execution is represented as the point set of all nodes touched during the execution of the
algorithm. A point set represents a valid BST execution if and only if it is arborally satistified. A
point set is arborally satisfied iff any rectange spanned by two points not on a horizonal or vertical
line contains another point. This point set representation of binary searches suggested an offline
greedy algorithm for generating valid point sets from a set of queries, by adding the points required
to make the point set arborally satisfied row by row. This greedy algorithm is conjectured to be
O(optimal). The offline greedy algorithm can be simulated online.

In this lecture we are going to focus on lower bounds. We will be using the method of independent
rectangles to establish lower bounds. We will discuss three applications of the method of inde-
pendent rectanges: Wilber 1, Wilber 2, and signed greedy. The signed greedy algorithm is almost
the same as greedy, but it is a lower bound. It is conjectured, but not proven, that these two
algorithms are within a constant factor of each other. We will also discuss tango trees which are
O(lg lg n)-competitive.

2 Independent Rectangle Bounds

Now we establish lower bounds on the performance of binary search trees using the method of inde-
pendent rectangles. A pair of rectangles are called independent if the rectangles are not arborally
satisfied and no corner of either rectangle is strictly inside the other rectangle. The Independent
Rectangle Bounds state that the number of additional points required to make a point set arborally
satisfied is greater than or equal to the maximum number of independent rectangles in that point
set. Due to the equivalence between arborally satisfied point sets and binary search trees, this puts
a lower bound on the performance of binary search trees.

Given any two points a and b, there is a unique rectangle with a as one of its vertices, and b as
the opposite vertex. Let us refer to this rectangle as rectangle ab. If the line ab has positive slope,
let us call this rectangle a plus-rectangle. S stands for the slash, ’/’, formed by the line. If the line
ab has negative slope, let us call this rectangle a minus-rectangle. B stands for the backslash, ’\’,
formed by the line.

Definition 1. A pair of rectangles ab and cd are called independent if the rectangles are not
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arborally satisfied and no corner of either rectangle is strictly inside of the other rectangle.

Definition 2. Given a point set P , let OPT be the smallest arborally satisfied superset of P . (OPT
may also be used to refer to the minimal superset)

Definition 3. Given a point set P , let MAXIND� be the largest set of independent rectangles
that is a subset of the rectangles defined by P . Let MAXIND� and MAXIND� be defined in the
same way but for independent plus-rectangles and independent minus-rectangles, respectively.

Theorem 4. Given a point set S, OPT ≥ |input|+ 1/2MAXIND�

From now on, all lemmas, definitions, and theorems will be stated using plus-rectangles, but they
can symmetrically applied to minus-rectangles as well.

Definition 5 (plus-satisfied). We call a point set plus-satisfied if all S-rectangles in it have another
point in them.

Definition 6 (OPT�). Given a point set P , OPT�=the smallest plus-satisfied superset of P .

Lemma 7. OPT� ≥ |input|+MAXIND�

2.1 Proof of Lemma

Proof. Assume the points in the input point set P have distinct x and y. If this is not the case, the
input can be skewed so that the input x and y are all distinct. Consider the largest (or one of the
largest sets if it is not unique) set of independent S-rectangles that is a subset of the S-rectangles
defined by P . We will show by a charging argument that OPT� ≥ |input|+MAXIND�.

Existence of vertical segment: Consider the widest rectangle in the independent set, shown
in the figure below. Call the point at its lower left vertex a and the point at its upper right vertex
b. We claim that there must exist a vertical segment going from the bottom edge to the top edge
of the widest rectangle which has no points in other rectangles.

We classify each rectangle that intersects the widest rectangle according to whether they share
vertex a, vertex b, neither. The sharing-a rectangles must be left of the sharing-b rectangles be-
cause they are independent and have distinct x coordinates. The sharing-neither rectangles cannot
intersect the sharing-a and sharing-b rectangles without containing a vertex, so by independence,
the sharing-neither rectangles must lie between the sharing-a and sharing-b rectangles. Therefore,
there will be room for a vertical segment v (e.g. take the segment along the rightmost edge of all
sharing-a rectangles).
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Selection of p and q: Take p to be the topmost, rightmost point in OPT� in S-rectangle ab to
the left of the vertical line segment. Let q be the bottommost leftmost point in OPT� in S-rectangle
ab to the right of the line segment not below p. Note that if there are no other points left of the
vertical line, we can take p to be a, and likewise for q and b. We will show that p and q are on the
same horizontal line.

Assume these points are not horizontal. Then pq is a S-rectangle and must have another point from
OPT� in it. Then, that point would either to the left of the vertical segment and farther right and
up than p or to the right of the vertical segment and father down and right than q, which cannot be
the case by the definition of p and q. Then S-rectangle pq is not satisfied, which is a contradiction.
Thus, segment pq is horizontal.

Charging: Remove the S-rectangle ab from the set of independent S-rectangles and charge it
to the horizontal line containing p and q. (Note that a and b are not being removed, just the
S-rectange ab). The pair of points p and q will not be charged together again since the vertical
segment that intersects the horizontal line between them in not intersected or contained by any
other rectangles, so no other rectangle contains segment pq. Any set of n charges to a horizonal
line must charge n + 1 distinct points, since no pair of points can be charged twice, and all pairs
of points charged must be consequtive points on the line. At most 1 of these points can be from
the input. Thus the number of added points on a horizontal line is greater than or equal to the
number of charges to that line. Thus OPT� ≥ |input|+MAXIND� as desired.
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2.2 Proof of Theorem

Proof. Using the lemma:

OPT ≥ max(OPT�, OPT�) (1)

≥ 1/2(OPT� +OPT�) (2)

≥ |input|+ 1/2MAXIND� + 1/2MAXIND� (3)

≥ input|+ 1/2MAXIND� (4)

3 Lower Bounds

3.1 Wilber’s second lower bound [1]:

Wilber’s second bound can be introduced as follows. Given the input (access) point set:

1. For each point p:

(a) Look at all of the orthogonally visible points below p. A point q below p is orthogonally
visible if the rectangle pq contains no other points.

(b) Sort all the orthogonally visible points by height. Count the number of alternations
between left/right of p.

2. Sum up the counts over all p

Proof: Add an independent rectangle of different sign for each alternation.

OPEN: OPT = Θ(Wilber2)

3.2 Key-independent Optimality [2]:

Suppose now that that the key values are “meaningless”. In this case we could just permute them
randomly. With this mind we can make the following claim:

E[OPT] = working-set bound

Hence, splay trees are key-independent optimal.

Sketch of Proof: The expected number of changes to to max in random permutation is

E[Wilber2(xi)] = Θ(log ti)
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Wilber’s First Lower Bound [1]: We can arrive at Wilber’s first lower bound as follows. Fix
a lower-bound tree P having the input as its keys. Then:

1. For each node y of P : Count the number of alternations in the access sequence x1, x2, . . . , xn
between accesses in left and right subtrees of y (ignoring accesses to y or outside of y’s subtree.

2. Sum over all y

Proof: Add an independent rectangle for each alternation.

Example: bit-reversal sequence Consider the sequence of numbers that results from the list
of all non-negative integers, and reading their binary representations backwards. Namely, start
with

0, 1, 2, 3, 4, 5, 6, 7, . . .

Which written in binary is,

0001, 0012, 0102, 0112, 1002, 1012, 1102, 1112

Reversing these yields:
0001, 1002, 0102, 1102, 0012, 1012, 0112, 1112

In other words
0, 4, 2, 6, 1, 5, 3, 7

If we use this as the access sequence in a perfect binary tree we see that the number of alternations
at y equals the size of the subtree rooted at y. From this it follows that:

Wilber1 = Θ(n log n)

⇒ OPT = Θ(n log n)

OPEN: Is it true that for every access sequence there exist a tree P such that

OPT = Θ(Wilber1)

4 Tango Trees

Tango trees [DHIP04] are an O(lg lg n)-competitive BST. They represent an important step forward
from the previous competitive ratio of O(lg n), which is achieved by standard balanced trees. The
running time of Tango trees is O(lg lg n) higher than Wilber’s first bound, so we also obtain a
bound on how close Wilber is to OPT . It is easy to see that if the lower bound tree is fixed without
knowing the sequence (as any online algorithm must do), Wilber’s first bound can be Ω(lg lg n)
away from OPT , so one cannot achieve a better bound using this technique.

To achieve this improved performance, we divide a BST up into smaller auxiliary trees, which are
balanced trees of size O(lg n). If we must operate on k auxiliary trees, we can achieve O(k lg lg n)
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time. We will achieve k = (1+ the increase in the Wilber bound given by the current access), from
which the competitiveness follows.

Let us again take a perfect binary tree P and select a node y in P . We define the preferred child
of y to be the root of the subtree with the most recent access i.e. the preferred child is the left one
iff the last access under y was to the left subtree. As in the figure below, each node has at most
one preferred child, and ”preferred paths” through the tree are formed.

If y has no children or its children have not been accessed, it has no preferred child. An interleave
is equivalent to changing the preferred child of a node, which means that the Wilber bound is the
total number of times a preferred child was changed.

Now we define a preferred path as a chain of preferred child pointers. We store each preferred path
from P in a balanced auxiliary tree that is conceptually separate from T , such that the leaves link
to the roots of the auxiliary trees of “children” paths.

Because the height of P is lg n, each auxiliary tree will store ≤ lg n nodes. A search on an auxiliary
tree will therefore take O(lg lg n) time, so the search cost for k auxiliary trees = O(k lg lg n).

A preferred path is not stored by depth (that would be impossible in the BST model), but in the
sorted order of the keys.
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4.1 Searching Tango trees

To search this data structure for node x, we start at the root node of the topmost auxiliary tree
(which contains the root of P ). We then traverse the tree looking for x. It is likely that we will jump
between several auxiliary trees – say we visit k trees. We search each auxiliary tree in O(lg lg n)
time, meaning our entire search takes place in O(k lg lg n) time. This assumes that we can update
our data structure as fast as we can search, because we will be forced to change k − 1 preferred
children (except for startup costs if a node has no preferred children).

4.2 Balancing Auxiliary Trees

The auxiliary trees must be updated whenever preferred paths change. When a preferred path
changes, we must cut the path from a certain point down, and insert another preferred path there.

We note that cutting and joining resemble the split and concatenate operations in balanced BST’s.
However, because auxiliary trees are ordered by key rather than depth, the operations are slightly
more complex than the typical split and concatenate.

Luckily, we note that a depth > d corresponds to an interval of keys - from min(path below depth
d) to max (path below depth d). Thus, cutting from a point down becomes equivalent to cutting
a segment in the sorted order of the keys. In this way, we can change preferred paths by cutting a

7



subtree out of an auxiliary tree using two split operations and adding a subtree using a concatenate
operation. To perform these cut and join operations, we label the roots of the path subtrees with
a special color and pretend it’s not there. This means we only need to worry about doing the split
and concatenate on a subtree of height lg n rather than trying to figure out what to do with all the
auxiliary subtrees hanging off the path subtree we are interested in. We know that balanced BSTs
can support split and concatenate in O(lg size) time, meaning they all operate in O(lg lg n) time.
Thus, we remain O(lg lg n)-competitive.

5 Signed greedy algorithm

This section will build on the Greedy algorithm from last lecture, to present a modified ”Signed
Greedy” algorithm whose run-time serves as a lower bound.

5.1 Algorithm

Conduct the greedy-algorithm sweep as before, considering one point row at a time. However,
for signed-greedy, we consider only unsatisfied �-rectangles (or only �-rectangles) when deciding
whether to add points.

Thus, only the �-rectangles (or only the �-rectangles) will be satisfied. Also, similarly to the
original greedy algorithm, every added point will correspond to an independent �-rectangle.

Definition 8. Define OPT� to be the smallest union of the �-satisfying and �-satisfying supersets
of the points.

5.2 Signed Greedy provides a lower bound

Theorem 9. max{�-greedy,�-greedy} = θ(biggest independent-rectangle LB)

Proof.

OPT� ≥ |input|+
1

2
max(number of independent rectangles) (5)

≥ 1

2
max(�-greedy,�-greedy) (6)

≥ 1

2
max(OPT�,OPT�) (7)

≥ 1

4
(OPT� + OPT�) (8)

≥ 1

4
OPT� (9)

Thus, a constant factor ’sandwich’ is created, and all the expressions (1) to (5) must be within a
constant factor of each other. In particular, (1) - which is the independent rectangle lower bound
- and (2) must be within a constant factor of each other, and the theorem follows.
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5.3 Greedy vs. �-greedy

Greedy corresponds to a valid BST, and provides and upper bound on the run-time of OPT. Signed-
greedy (OPT�) is not a valid BST, but it provides a lower bound on the run-time of every valid
BST. The key difference between the point-sets obtained from Greedy and from Signed-Greedy is
that Signed-Greedy fails to take into account the interactions between the �-rectangles and the �-
rectangles, i.e. the points added to satisfy �-rectangles may introduce new unsatisfied �-rectangles
or vice versa.

Project idea: Compare upper-bound and lower-bound for many point sets.
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