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1 Overview

In the last lecture we introduced the concept of implicit, succinct, and compact data structures, and
gave examples for succinct binary tries, as well as showing the equivalence of binary tries, rooted
ordered trees, and balanced parentheses expressions. Succinct data structures were introduced
which solve the rank and select problems.

In this lecture, we introduce compact data structures for suffix arrays and suffix trees. Recall the
problem that we are trying to solve. Given a text T over the alphabet Σ, we wish to preprocess
T to create a data structure. We then want to be able to use this data structure to search for a
pattern P , also over Σ.

A suffix array is an array containing all of the suffixes of T in lexicographic order. In the interest
of space, each entry in the suffix array stores an index in T , the start of the suffix in question. To
find a pattern P in the suffix array, we perform binary search on all suffixes, which gives us all of
the positions of P in T .

2 Survey

In this section, we give a brief survey of results for compact suffix arrays. Recall that a compact
data structure uses O(OPT ) bits, where OPT is the information-theoretic optimum. For a suffix
array, we need |T | lg |Σ| bits just to store the text T .

2.1 Compact suffix arrays and trees

Grossi and Vitter 2000 [3] Suffix array in(
1

ε
+ O(1)

)
|T | lg |Σ|

bits, with query time

O

(
|P |

logε|Σ| |T |
+ |output| · logε|Σ| |T |

)
We will follow this paper fairly closely in our discussion today. Note how one can trade better
query time for higher space usage.
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Ferragina and Manzini 2000 [1] The space required is

5Hk(T ) · |T |+ O

(
|T | · |Σ|+ lg |T |

lg lg |T |
+ |T |ε · |Σ||Σ|+1

)
bits, for all fixed values of k. Hk(T ) is the kth-order empirical entropy, or the regular entropy
conditioned on knowing the previous k characters. More formally:

Hk(T ) =
∑
|w|=k

Pr{w occurs} ·H0(characters following an occurrence of w in T ).

Note that because we are calculating this in the empirical case,

Pr{w occurs} =
# of occurrences of w

|T |
.

For this data structure, query time is

O(|P |+ |output| · lgε |T |).

Sadakane 2003 [5] Space in bits is

1 + ε′

ε
H0(T )|T |+ O(|T | lg lg |Σ|+ |Σ| lg |Σ|),

and query time is
O(|P | lg |T |+ |output| lgε |T |).

where 0 < ε < 1 and ε′ > 0 are arbitrary constants. Note that this bound is more like a suffix
array, due to the multiplicative log factor. This bound is good for large alphabets.

2.2 Succint suffix arrays and trees

Grossi, Gupta, Vitter 2003 [2] Space in bits is

Hk(T ) · |T |+ O

(
|T | lg |Σ| · lg lg |T |

lg |T |

)
,

and query time is

O(|P | lg |Σ|+ lg2 |T |
lg lg |T |

).

Ferragina, Manzini, Mäkinen, Navarro [6] Space in bits is

Hk(T ) · |T |+ O

(
|T |

lgε n

)
,

and query time is
O(|P |+ |output| · lg1+ε |T |).

Also exhibits O(|P |) running time for counting queries.

2



2.3 Extras

Hon, Sadakane, Sung 2003 [8] and Hon, Lam, Sadakane, Sung, Yiu 2007 [7] details low-
space construction with O(|T | · lg |Σ|) working space.

Hon, Sadakane 2002 [9] and Sadakane 2007 [10] detail suffix-tree operations like maximal
common substrings.

Sadakane 2007 [11] solves the document retrieval problem on those structures.

Chan, Hon, Lam, Sadakane 2007 [12] describes the dynamic version of the problem.

3 Compressed suffix arrays

For the rest of these notes, we will assume that the alphabet is binary (in other words, that |Σ| = 2).
In this section, we will cover a simplified (and less space-efficient) data structure, which we will
adapt in the next section for the compact data structure. Overall, we will cover a simplified version
of Grossi’s and Vitter’s paper [3]. We will achieve the same space bound, but slightly worse query
time.

The problem we are solving with suffix arrays is to find SA[k], i.e. where does the k-th suffix
start, assuming suffixes are sorted in lexicographic order. Essentially, we must compactly store
a permutation of {1, 2, . . . , n}. The data structure we will be using is similar to the one seen in
Lecture 16. We are still using the same divide-and-conquer approach, except that it is 2-way instead
of 3-way.

3.1 Top-Down

Let us introduce some notation we will use throughout the notes.

start: The initial text is T0 = T , the initial size n0 = n, and the initial suffix array SA0 = SA
where SA is the suffix array of T .

step: In every successive iteration, we are combining two adjacent letters:

Tk+1 =
〈
(Tk[2i], Tk[2i + 1]) for i = 0, 1, . . . , n2

〉
.

This means the size is halved in each step:

nk+1 = nk
2 = n

2k
.

We define a recursive suffix tree as

SAk+1 = 1
2 · (extract even entries of SAk)

where “even entries” are defined to be suffixes whose index in Tk are even.

See the following diagram for an example. The empty boxes are for visualization purposes only;
for example, SA1 = [1, 3, 2, 4].
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SA0 1 2 6 5 7 4 3 8

SA1 1 3 2 4

SA2 1 2

SA3 1

Clearly, it is fairly easy to calculate SAk+1 from SAk, and since SA0 is known, this means that we
can go top-down without much difficulty. However, in order to make this data structure work, we
need to go bottom-up.

3.2 Bottom-Up

We need a way to represent SAk using SAk+1. The strategy is summarized in the following diagram.
In this example, to compute SA0[2], we’d follow the sequence of alternating blue/red arrows. Then
we’d backtrack along the arrows, filling in numbers as we go.

To accomplish this, we define the following functions:

is-even-suffixk(i) This tells us whether SAk[i] is an even suffix. More formally:

is-even-suffixk(i) =

{
1 if SAk[i] is even
0 otherwise

even-succk(i) Returns j-th suffix such that j ≥ i and SAk[j] is even. More compact:

even-succk(i) =

{
i if SAk[i] is even
j if SAk[i] = SAk[j]− 1 is odd

even-rankk(i) The “even rank” of i is the number of even suffixes preceding the ith suffix.

Using this functions, we can write:

SAk[i] = 2 · SAk+1[even-rankk(even-succk(i))]− (1− is-even-suffixk(i))

In the above diagram, blue arrows correspond to i 7→ even-succk(i). Red arrows correspond to
j 7→ SAk+1[even-rankk(j)]. By following blue and red arrows alternately, we work our way down
from the first array SA0 to the last one.

Why is this the right formula? Well, first of all, the factor of 2 is decompressing the size of the
array. If the predicate is-even-suffixk(i) is true, then even-succk(i) = i, so this is equivalent to
saying

SAk[i] = 2 · SAk+1[even-rankk(i)].
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This basically means that we are looking up the correct value in the array SAk+1. If is-even-suffixk(i)
is false, then this is equivalent to performing the same action on i’s “even successor” — which is the
index into SAk of the suffix starting one position after SAk[i] — and then subtracting 1 to get the
correct starting position in the text Tk. We use (1 − is-even-suffixk(i)) instead of is-odd-suffixk(i)
because we can use it to calculate even-rankk(i) as even-rankk(i) = rank1(is-even-suffixk(i)).

If we can perform the above operations in constant time and a small amount of space, then we can
reduce a query on SAk to a query on SAk+1 in constant time. Hence, a query on SA0 will take
O(`) time if our maximum recursion depth is `. If we set ` = lg lg n, we will reduce the size of the
text to n` = n/ lg n. We can then use a normal suffix array, which will use O(n` lg n`) = O(n) bits
of space, and thus be compressed. If we want to, we can further improve by setting l = 2 lg lg n
and get nl = n/ lg2 n.

3.3 Construction

We can store is-even-suffixk(i) as a bit vector of size nk. Because nk decreases by a factor of
two with each level (geometric series), this takes a total of O(n) space. Then we can implement
even-rankk(i) with the rank from last lecture on our bit vector, requiring o(nk) space per level, for
a total of O(n) space.

Notice that even-rankk(i) is rank1(i) on the array where a[i] = is-even-suffixk(i). We saw in lecture
17 how to do that in O(nk

lg lgnk
lgnk

). Again, this decreases geometrically, so overall it takes o(n) space.

Doing even-succk(i) is trivial in the case that SAk[i] is even because it is an identity function. This
leaves nk/2 odd values, but we cannot store them explicitly because each takes lg nk bits.

Whatever data structure we use, let’s order the values of j by i; that is, if the answers are stored
in array called odd answers, then we would have even-succk(i) = odd answers[i− even-rankk(i)],
because i − even-rankk(i) is the index of i among odd suffixes. This ordering is equivalent to
ordering by the suffix in the suffix array, or Tk[SAk[i] :]. Furthermore, this is equivalent to ordering
by (Tk[SAk[i]], Tk[SAk[i] + 1 :]) = (Tk[SAk[i]], Tk[SAk[even-succk(i)] :]). Finally, this is equivalent
to ordering by (Tk[SAk[i]], even-succk(i)).

So to store even-succk(i), we store items of the form (Tk[SAk[i]], even-succk(i)). Each such item
requires (2k+lg nk) bits, because the characters in Tk are of length 2k and even-succk(i) takes lg nk
bits. This means that the first lg nk bits won’t change very often, so we can store the leading lg nk
bits of each value vi using unary differential encoding:

0lead(v1)10lead(v2)−lead(v1)10lead(v3)−lead(v2)1 . . .

Where lead(vi) is the value of the leading lg nk bits of vi. There will then be nk/2 ones (one 1
per value) and at most 2lgnk = nk zeros (the maximal value we can store with lg nk bits is nk
which is the maximal number of incrementations), and hence at most (3/2)nk bits total used for
this encoding. Again by the geometric nature of successive values of nk, this will require O(n) bits
total, so the overall data structure is still compressed. We can store the remaining 2k bits explicitly.
This will take

2k · nk
2

= 2k
n

2k+1
=

n

2
bits.
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Note that if we maintain rank and select data structures, we can efficiently compute

lead(vi) = rank0(select1(i)).

Therefore, the requirement for even-succk() is

1

2
n +

3

2
nk + O(

nk
log log nk

).

The total requirement for the entire structure is summing this expression plus nk (for is-even-suffixk())
over all ks:

log logn∑
k=0

(
1

2
n +

3

2
nk + O

(
nk

log lognk

)
+ nk

)
=

1

2
n log logn + 5n + O

(
nk

log log nk

)
.

Unfortunately, the factor n log logn makes this not compact, so we need to improve further.

4 Compact suffix arrays

To reduce the space requirements of the data structure, we want to store fewer levels of recursion.
We choose to store (1 + 1/ε) levels of recursion, one for the following values of k:

0, ε`, 2ε`, ..., ` = lg lg n.

In other words, instead of pairing two letters together with each recursive step, we are now clustering
2ε` letters in a single step. We now need to be able to jump ε` levels at once.

4.1 Level jumping

In order to find a formula for SAkε` in terms of SA(k+1)ε`, we proceed similarly as when our con-
struction for compressed suffix arrays, but we redefine the word “even” as follows. A suffix SAkε`[i]
is now “even” if its index in Tkε` is divisible by 2ε`. This changes the definition of even-rankkε`(i)
in the obvious way. However, we will not change the definition of even-succkε`(i): it should still
return the value j such that SAkε`[i] = SAkε`[j] − 1. It should do this for all “even” values of
SAkε`[i].

With these modified definitions, we can compute SAkε`[i] as follows:

• Calculate the even successor repeatedly until index j is at the next level down — in other
words, so that SAkε`[j] is divisible by 2ε`.

• Recursively compute SA(k+1)ε`[even-rankkε`(j)].

• Multiply by 2ε` (the number of letters we clustered together) and then subtract the number
of calls to successor in the first step.

This process works for much the same reason that it does in the compressed suffix array. We first
calculate the j such that SAkε`[j] is divisible by 2ε` and SAkε`[j]−m = SAkε`[i], where 0 ≤ m < 2ε`.
The recursive computation gives us the index in T(k+1)ε` of the suffix corresponding to SAkε`[j].
We can compute the true value of SAkε`[j] if we multiply the result of the recursive computation
by 2ε`. We then subtract the value m to get SAkε`[i].
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4.2 Analysis

We may have to look up the even successor of an index 2ε` times before getting the value we can
recur on. Therefore, the total search time is O(2ε` lg lg n) = O(lgε n lg lgn) = O(lgε

′
n) for any

ε′ > ε.

We use the same unary differential encoding for successor as in the compressed construction, for a
total of 2nkε` + n + o(n) bits per level in total. We also must store the is-even-suffixkε`(·) vectors
and the rank data structure, for a total of nkε` + o(n) per level. There are 1 + 1/ε levels in total.
Hence, the total space is something like (6 + 1/ε)n + o(n) bits, which is compact.

There are some optimizations we can perform to improve the space. We don’t have to store the
data for even-succ0(·), because it’s the top level, which means that the total space required storing
even successor information is:

O
( n

2ε`

)
= O

(
n

lgε n

)
= o(n).

If we store the is-even-suffixkε`(·) vectors as succinct dictionaries (because they are, after all, fairly
sparse), then the space required is:

lg

(
nkε`

n(k+1)ε`

)
≈ n(k+1)ε` lg

nkε`
n(k+1)ε`

= n(k+1)ε` lg 2ε` =
nkε` · ε`

2ε`
=

nkε` · ε lg lgn

lgε n
= o(nkε`)

Hence, the total space is o(n). This gives us a total space of (1 + 1/ε)n + o(n) bits.

OPEN: Is it possible to achieve o(lgε n) in O(n) space?

5 Suffix trees [4]

5.1 Construction

In the previous lecture, we saw how to store a binary trie with 2n+ 1 nodes on 4n+ o(n) bits using
balanced parens. We can use this to store the structure of the compressed suffix tree. Unfortunately,
we don’t have enough space to store the edge lengths or the letter depth, which would allow us to
traverse the tree with no further effort.

To search for a pattern P in the tree, we must calculate the letter depth as we go along. Say that
we know the letter depth of the current node x. To descend to its child y, we need to compute the
difference in letter depths, or the length in letters of the edge between them.

The letter depth of y is equivalent to the length of the substring shared by the leftmost descendant
of y and the rightmost descendant of y. Let ` be the leftmost descendant, and let r be the rightmost
descendant. If we know the index in the suffix array of both ` and r, then we can use the suffix
array to find their indices in the text. Because ` and r are both descendants of x, we know that
they both match for letter-depth(x) characters. So we can skip the first letter-depth(x) characters
of both, and start comparing the characters of `, r, and P . If P differs from ` and r before they
differ from each other, we know that there are no suffixes matching P in the tree, and we can stop
the whole process. Otherwise, ` and r will differ from each other at some point, which will give us
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the letter depth of y. Note that the total number of letter comparisons we perform is O(|P |), for
the entire process of searching the tree.

5.2 Necessary binary trie operations

To find `, r, and their indices into the suffix array, note that in the balanced parentheses represen-
tation of the trie, each leaf is the string “())”.

leaf-rank(here) The number of leaves to the left of the node which is at the given position in the
string of balanced parentheses. Can be computed by getting rank())(()n)

leaf-select(i) The position in the balanced parentheses string of the ith leaf. Can be computed
by calculating select())(i).

leaf-count(here) The number of leaves in the subtree of the node at the given position in the
string of balanced parens. Can be computed using the formula:

rank())(matching ) of parent)− rank())(here).

leftmost-leaf(here) The position in the string of the leftmost leaf of the node at the given position.
Given by the formula:

leaf-select(leaf-rank(here) + 1).

rightmost-leaf(here) The position in the string of the rightmost leaf of the node at the given
position. Given by the formula:

leaf-select(leaf-rank(matching ) of parent− 1)).

Hence, we can use a rank and select data structure on the string of balanced parentheses to find
the first and last leaves in the part of the string representing the subtree rooted at y. We can
then calculate the rank of those leaves to determine the index into the suffix array. Hence, we can
perform the search described in the previous paragraph at a cost of O(1) operations per node.

5.3 Analysis

The total time required to search for the pattern P is

O(|P |+ |output|) ·O(cost of suffix array lookup).

Grossi and Vitter [3] improved upon this to achieve a search time of

O

(
P

logΣ T
+ |output| · logεΣ T

)
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Figure 1:

5.4 Succinct Suffix Trees

It is also possible to improve this, creating a succinct suffix tree given a suffix array [4]. When we
have |P | < b, for every possible P ( b−bit string) we store the answer in a lookup table. The lookup
table has 2b entries and each entry is of size O(log n), so we need O(2b log n) = O(

√
n) bits when

b <
1

3
log n.

Now, consider the case when |P | ≥ b. We divide the suffix array into blocks of size b and build a
suffix tree for every suffix starting at the first position in each block. So the suffix tree contains the
suffixes SA[0], SA[b], SA[2b], SA[3b], ..., where SA is the suffix array. This takes O(n/b) bits. We
search for P in the suffix array as before. When the search ends, it will narrow us down to blocks of
size b in the Suffix Array(as we considered only the bth suffixes in the tree. The actual leftmost and
rightmost indices of the suffix array lies somewhere in between the size b leftmost and rightmost
blocks respectively (as shown in Figure 1). We use another lookup table to find the actual leftmost
and rightmost indices in the Suffix Array.

Given an array of b strings, each of length b, in sorted order, and a pattern string of length b, the
lookup table stores the beginning and ending positions of the occurrences of the pattern in the
array. There are atmost 2b

2
such strings and 2b such queries, so the lookup table contains 2b

2+b

entries each of size O(log b), hence the table tables O(2b
2+b log b) = O(

√
(n)) bits if b <

1

5

√
log n.

We search in the following way: Read the first b bits of each of the suffixes in the b-size block
and the first b bits of the pattern P and index it into the lookup table to find the first and last
occurrences of the pattern in the block. If the above gives a nonempty range, then read the next
b bits of each of the suffixes in this range and the next b bits of the pattern P and find the sub
range of suffixes that match the first 2b bits of the pattern. Continue the previous step repeatedly
until either the pattern is exhausted or the range has become empty or a single suffix. The number
of table lookups is atmost |P |/b, and each lookup takes O(b) time. Hence, this step takes atmost
O(|P |) time. The total time taken taken is given by O(|P |) +O( cost of suffix array lookup ) (from
the previous section). The total size is O(n/b) bits in addition to the size of the suffix array.

References

[1] P. Ferragina and G. Manzini, Indexing Compressed Text, Journal of the ACM, Vol. 52 (2005),
552-581.

9



[2] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text indexes, SODA 2003:
841-850.

[3] R. Grossi and J. S. Vitter, Compressed suffix arrays and suffix trees with applications to text
indexing and string matching, Thirty-Second Annual ACM Symposium on Theory of Comput-
ing, pp. 397-406 (2000).

[4] J. I. Munro, V. Raman, and S. S. Rao, Space Efficient Suffix Trees, Journal of Algorithms,
39(2):205-222.

[5] K. Sadakane, New text indexing functionalities of the compressed suffix arrays, Journal of
Algorithms, 48(2): 294-313 (2003).
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