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The Complexity of Flat Origami

Marshall Bern *

Abstract

We study a basic problem in mathematical origami: deter-
mine if a given crease pattern can be folded to a flat origami.
We show that assigning mountain and valley folds is NP-
hard. We also show that determining a suitable overlap or-
der for flaps is NP-hard, even assuming & valid mountain
and valley assignment.

1 Introduction

Origami, the centuries-old art of folding paper into
sculpture, is currently enjoying a renaissance. Con-
temporary origami artists invent new models of great
beauty and intricacy. To achieve these stunning results,
artists such as Engel, Fuse, Lang, and Maekawa have
taken a geometric approach to origami design. One
useful technique, incorporated into Lang’s TreeMaker
program, uses the centers of non-overlapping disks to
determine the tips of “flaps” [10, 11]. Another tech-
nique [1, 12] builds complicated crease patterns out of
repeating blocks called “molecules”.

Alongside this “technical” approach to origami
design, some mathematicians have started to study
origami. Huffman [5) gives relations between face an-
gles in polyhedral models, using an approach related to
network flow. A number of authors [4, 6, 7, 9] have dis-

covered angle conditions for an origami to fold flat in |/

the neighborhood of a single vertex. In this paper, we
avtand thia eti1idywr +a Y“alabal at faldakilis«r? Aldbhaniab
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“mountain” and “valley” orientations and determines
an overlap order for flaps. If we require that the origami
fold flat everywhere, it turns out to be NP-hard [3] to
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Flat Folding of Box-Pleated Crease
Pattern is NP-complete
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