Architectural Origami

Architectural Form Design Systems based on Computational Origami

Tomohiro Tachi
Graduate School of Arts and Sciences, The University of Tokyo
JST PRESTO
tachi@idea.c.u-tokyo.ac.jp
Introduction
Background 1: Origami

Origami Teapot 2007
Tomohiro Tachi

Running Hare 2008
Tomohiro Tachi

Tetrapod 2009
Tomohiro Tachi
Background 2: Applied Origami

- Static:
 - Manufacturing
 - Forming a sheet
 - No Cut / No Stretch
 - No assembly
 - Structural Stiffness

- Dynamic:
 - Deployable structure
 - Mechanism
 - Packaging
 - Elastic Plastic Property
 - Textured Material
 - Energy Absorption

- Continuous surface

Potentially useful for
- Adaptive Environment
- Context Customized Design
- Personal Design
- Fabrication Oriented Design
Architectural Origami

- Origami Architecture
 Direct application of Origami for Design
 - Design is highly restricted by the symmetry of the original pattern
 - Freeform design results in losing important property (origami-inspired design)

- Architectural Origami
 Origami theory for Design
 - Extract characteristics of origami
 - Obtain solution space of forms from the required condition and design context
1. Origamizer
 - tucking molecules
 - layout algorithm

2. Freeform Origami
 - constraints of origami
 - perturbation based calculation
 - mesh modification

3. Rigid Origami
 - simulation
 - design by triangular mesh
 - design by quad mesh
 - non-disk?
1

Origamizer

Related Papers:

Existing Origami Design Method by Circle Packing

Circle River Method [Meguro 1992]
Tree Method [Lang 1994]

CP: Parent and Children Crabs by Toshiyuki Meguro

Scutigera by Brian Chan
1D vs. 3D

- Circle River Method / Tree Method
 - Works fine for tree-like objects
 - Does not fit to 3D objects

- Origamizer / Freeform Origami
 - 3D Polyhedron, surface approximation
 - What You See Is What You Fold
3D Origami

Laptop PC 2003
by Tomohiro Tachi
not completed
3D Origami

Human 2004
Everything seems to be possible!
Problem: realize arbitrary polyhedral surface with a developable surface

- **Geometric Constraints**
 - Developable Surf
 - Piecewise Linear
 - Forget about Continuous Folding Motion

- **Potential Application**
 - Fabrication by folding and bending

Input: Arbitrary Polyhedron

Output: Crease Pattern

Folded Polyhedron
Approach: Make “Tuck”

- Tuck develops into
 - a plane
- Tuck folds into
 - a flat state hidden behind polyhedral surface

→ Important Advantage:
We can make Negative Curvature Vertex
Basic Idea

Origamize Problem
↓
Lay-outing Surface
Polygons Properly
↓
Tessellating Surface
Polygons and "Tucking Molecules"
↓
Parameter everything by Tucking Molecule:
 \[\theta (i, j) \]
 \[w(i, j) \]
\[\theta (j, i) = -\theta (i, j) \]
\[w(j, i) = w(i, j) + 2\lambda (i, j) \sin (0.5 \theta (i, j)) \]
Geometric Constraints (Equations)

\[\sum_{n=0}^{N-1} \theta(i,j_n) = 2\pi - \sum_{n=0}^{N-1} \alpha(i,j_n) \quad \ldots (1) \]

\[\sum_{n=0}^{N-1} w(i,j_n) \left[\begin{array}{c} \cos \left(\sum_{m=1}^{n} \Theta_m \right) \\ \sin \left(\sum_{m=1}^{n} \Theta_m \right) \end{array} \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \ldots (2) \]

where \(\Theta_m = \frac{1}{2} \theta(i,j_{m-1}) + \alpha(i,j_m) + \frac{1}{2} \theta(i,j_m) \)

Two-Step Linear Mapping

1. Mapping based on (1) (linear)
 \[C_w w = b \]

2. Mapping based on (2) (linear)
 \[w = C_w^+ b + \left(I_{N_{\text{edge}}} - C_w^+ C_w \right) w_0 \]
 where \(C_w^+ \) is the generalized inverse of \(C_w \)

 If the matrix is full-rank, \(C_w^+ = C_w^T (C_w C_w^T)^{-1} \)

gives \((N_{\text{edge}} - 2N_{\text{vert}}) \) dimensional solution space

(within the space, we solve the inequalities)
Geometric Constraints (Inequalities)

- **2D Cond.**
 - Convex Paper
 \[\theta(i,o) \geq \pi \]
 \[w(i,o) \geq 0 \]
 - Non-intersection
 \[-\pi < \theta(i,j) < \pi \]
 \[\min(w(i,j), w(j,i)) \geq 0 \]
 \[0 \leq \Theta_m < \pi \]
 - Crease pattern non-intersection
 \[\phi(i,j) \leq \arctan\left(\frac{2\ell(i,j)\cos\frac{1}{2}\theta(i,j)}{w(i,j)+w(j,i)}\right) + 0.5\pi \]

- **3D Cond.**
 for tuck proxy angle and depth
 - Tuck angle condition
 \[\phi(i,j) - \frac{1}{2}\theta(i,j) \leq \pi - \tau'(i,j) \]
 - Tuck depth condition
 \[w(i,j) \leq 2\sin\left(\tau'(i,j) - \frac{1}{2}\alpha(i,j)\right)d'(i) \]
Design System: Origamizer

- Auto Generation of Crease Pattern
- Interactive Editing (Search within the solution space)
 - Dragging Developed Facets
 - Edge
 - Boundary Editing

Developed in the project “3D Origami Design Tool” of IPA ESPer Project
0. Get a crease pattern using Origamizer
1. Fold Along the Crease Pattern
2. Done!
Proof?

Ongoing joint work with Erik Demaine
Freeform Origami

Related Papers:

Objective of the Study

1. freeform
 - Controlled 3D form
 - Fit function, design context, preference, ...

2. origami
 utilize the properties
 - Developability
 → Manufacturing from a sheet material based on Folding, Bending
 - Flat-foldability
 → Folding into a compact configuration or Deployment from 2D to 3D
 - Rigid-foldability
 → Transformable Structure
 - Elastic Properties
 ...
Proposing Approach

- Initial State: existing origami models (e.g. Miura-ori, Ron Resch Pattern, …) + Perturbation consistent with the origami conditions.
- Straightforward user interface.
Model

- Triangular Mesh (triangulate quads)
- Vertex coordinates represent the configuration
 - 3\(N_v\) variables, where \(N_v\) is the # of vertices

\[
X = \begin{bmatrix}
x_1 \\
y_1 \\
z_1 \\
\vdots \\
x_{N_v} \\
y_{N_v} \\
z_{N_v}
\end{bmatrix}
\]

- The configuration is constrained by developability, flat-foldability, …
Developability

Engineering Interpretation
→ Manufacturing from a sheet material based on Folding, Bending

• Global condition
 – There exists an isometric map to a plane.
⇔(if topological disk)

• Local condition
 – Every point satisfies
 • Gauss curvature = 0
Developable Surface

• Smooth Developable Surface
 – G^2 surface (curvature continuous)
 • "Developable Surface" (in a narrow sense)
 • Plane, Cylinder, Cone, Tangent surface
 – G^1 Surface (smooth, tangent continuous)
 • "Uncreased flat surface"
 • piecewise Plane, Cylinder, Cone, Tangent surface

• Origami
 – G^0 Surface
 – piecewise G^1 Developable G^0 Surface
Developability condition to be used

- **Constraints**
 - For every interior vertex v (k_v-degree), gauss area equals 0.

\[
G_v = 2\pi - \sum_{i=0}^{k_v} \theta_i = 0
\]
Flat-foldability

Engineering Interpretation

→ Folding into a compact configuration or Deployment from 2D to 3D

• Isometry condition
 • isometric mapping with mirror reflection

• Layering condition
 • valid overlapping ordering
 • globally: NP Complete [Bern and Hayes 1996]
Flat-foldability condition to be used

- Isometry
 \[\Leftrightarrow \text{Alternating sum of angles is 0 [Kawasaki 1989]} \]
 \[F_v = \sum_{i=0}^{kv} \text{sgn}(i)\theta_i = 0 \]

- Layering
 \[\Rightarrow \text{[Kawasaki 1989]} \]
 - If \(\theta_i \) is between foldlines assigned with MM or VV,
 \[\theta_i \geq \min(\theta_{i-1}, \theta_{i+1}) \]
 + empirical condition [Tachi 2007]
 - If \(\theta_i \) and \(\theta_{i+1} \) are composed by foldlines assigned with MMV or VVM then, \(\theta_i \geq \theta_{i+1} \)
Other Conditions

- Conditions for fold angles
 - Fold angles \(\rho \)
 - V fold: \(0 < \rho < \pi \)
 - M fold: \(-\pi < \rho < 0 \)
 - crease: \(-\alpha \pi < \rho < \alpha \pi \) \((\alpha = 0: \text{planar polygon}) \)

- Optional Conditions
 - Fixed Boundary
 - Folded from a specific shape of paper
 - Rigid bars
 - Pinning
Settings

- Initial Figure:
 - Symmetric Pattern
- Freeform Deformation
 - Variables \((3N_v)\)
 - Coordinates \(\mathbf{X}\)
 - Constraints \((2N_{v_{in}}+N_c)\)
 - Developability
 - Flat-foldability
 - Other Constraints

\[
\mathbf{X} = \begin{bmatrix}
x_1 \\
y_1 \\
z_1 \\
\vdots \\
x_{N_v} \\
y_{N_v} \\
z_{N_v}
\end{bmatrix}
\]

Under-determined System

→ Multi-dimensional Solution Space
Solve Non-linear Equation

The infinitesimal motion satisfies:

\[
\frac{\partial G}{\partial X} \frac{\partial F}{\partial X} \frac{\partial H}{\partial X} \begin{bmatrix}
\frac{\partial \theta}{\partial \theta} \\
\frac{\partial \rho}{\partial \rho} \\
\frac{\partial \theta}{\partial \rho} \\
\frac{\partial \rho}{\partial \theta}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial X}{\partial \theta} \\
\frac{\partial F}{\partial \rho} \\
\frac{\partial H}{\partial \theta} \\
\frac{\partial X}{\partial \rho}
\end{bmatrix}
\dot{X} = 0
\]

For an arbitrarily given (through GUI)
Infinitesimal Deformation \(\Delta X_0 \)

\[
\Delta X = -C^+ r + \left(I_{3N_v} - C^+ C \right) \Delta X_0
\]

\(G_v = 2\pi - \sum_{i=0}^{kv} \theta_i = 0 \)

\(F_v = \sum_{i=0}^{kv} \text{sgn}(i) \theta_i = 0 \)

\[
\frac{\partial \theta_{ijk}}{\partial x_i} = -\frac{1}{\ell_{ij}} \mathbf{b}_{ij}^T
\]

\[
\frac{\partial \theta_{ijk}}{\partial x_j} = \frac{1}{\ell_{ij}} \mathbf{b}_{ij}^T + \frac{1}{\ell_{jk}} \mathbf{b}_{jk}^T
\]

\[
\frac{\partial \theta_{ijk}}{\partial x_k} = -\frac{1}{\ell_{jk}} \mathbf{b}_{jk}^T
\]
Freeform Origami

Get A Valid Value
- Iterative method to calculate the conditions
- Form finding through User Interface

Implementation
- Lang
 - C++, STL
- Library
 - BLAS (intel MKL)
- Interface
 - wxWidgets, OpenGL

To be available on web
Mesh Modification

Edge Collapse

• Edge Collapse [Hoppe et al 1993]

• Maekawa’s Theorem [1983] for flat foldable pattern
 \[M - V = \pm 2 \]
Mesh Modification
Miura-Ori

- **Original**
 - [Miura 1970]

- **Application**
 - bidirectionally expansible (one-DOF)
 - compact packaging
 - sandwich panel

- **Conditions**
 - Developable
 - Flat-foldable
 - op: (Planar quads) → Rigid Foldable

ISAS Space Flyer Unit
zeta core
[Koryo Miura 1972]
Miura-ori Generalized

- Freeform Miura-ori
Miura-ori Generalized
Ron Resch Pattern

• Original
 – Resch [1970]

• Characteristics
 – Flexible (multiDOF)
 – Forms a smooth flat surface
 + scaffold

• Conditions
 – Developable
 – 3-vertex coincide
Ron Resch Pattern
Generalized
Generalized Ron Resch Pattern
Crumpled Paper

- Origami
 = crumpled paper
 = buckled sheet

- Conditions
 - Developable
 - Fixed Perimeter
crumpled paper example
Waterbomb Pattern

- “Namako” (by Shuzo Fujimoto)
- Characteristics
 - Flat-foldable
 - Flexible (multi DOF)
 - Complicated motion
- Application
 - packaging
 - textured material
 - cloth folding...

S. Mabona “Fugu”

Kuribayashi & You 2006
Waterbomb Pattern Generalized
Rigid Origami

Rigid Origami?

- **Rigid Origami** is
 - Plates and Hinges model for origami

- **Characteristics**
 - Panels do not deform
 - Do not use Elasticity
 - synchronized motion
 - Especially nice if One-DOF
 - watertight cover for a space

- **Applicable for**
 - self deployable micro mechanism
 - large scale objects under gravity using thick panels
Study Objectives

1. Generalize rigid foldable structures to freeform
 1. Generic triangular-mesh based design
 • multi-DOF
 • statically determinate
 2. Singular quadrilateral-mesh based design
 • one-DOF
 • redundant constraints

2. Generalize rigid foldable structures to cylinders and more
Examples of Rigid Origami
Basics of Rigid Origami
Angular Representation

• Constraints
 – [Kawasaki 87]
 [belcastro and Hull 02]
 \[\chi_1 \cdots \chi_{n-1} \chi_n = I \]
 – 3 equations per interior vertex

• \(V_{in} \) interior vert + \(E_{in} \) foldline model:
 – constraints:
 \[\begin{bmatrix} C \end{bmatrix} \dot{\rho} = 0 \]
 \(3V_{in} \times E_{in} \) matrix

Generic case:
DOF = \(E_{in} - 3V_{in} \)

\[\dot{\rho} = \left[I_N - C^+ C \right] \dot{\rho}_0 \]
\[\text{where } C^+ \text{ is the pseudo-inverse of } C \]
DOF in Generic Triangular Mesh

Euler’s: \((V_{in} + E_{out}) - (E_{out} + E_{in}) + F = 1\)

Triangle: \(3F = 2E_{out} + E_{in}\)

Mechanism: \(\text{DOF} = E_{in} - 3V_{in}\)

Disk with \(E_{out}\) outer edges

\(\text{DOF} = E_{out} - 3\)

with \(H\) generic holes

\(\text{DOF} = E_{out} - 3 - 3H\)

\((V_{in} + E_{out}) - (E_{out} + E_{in}) + F = 1 - H\)

\(\text{DOF} = E_{in} - 3V_{in} - 6H\)
Hexagonal Tripod Shell

Hexagonal boundary:

\[E_{\text{out}} = 6 \]

\[\therefore \text{DOF} = 6 - 3 = 3 \]

+ rigid DOF = 6

3 pin joints \((x,y,z)\):

\[\therefore 3 \times 3 = 9 \text{ constraints} \]
Generalize Rigid-Foldable Planar Quad-Mesh

• One-DOF
 – Every vertex transforms in the same way
 – **Controllable with single actuator**

• Redundant
 – Rigid Origami in General
 • \(\text{DOF} = N - 3M \)
 • \(N: \) num of foldlines
 • \(M: \) num of inner verts
 – \(n \times n \) array \(N=2n(n-1), M=(n-1)^2 \)
 -> \(\text{DOF}=-(n-2)^2+1 \)
 -> \(n>2 \), then overconstrained if not singular
 – Rank of Constraint Matrix is \(N-1 \)
 • Singular Constraints
 – **Robust structure**
 – **Improved Designability**
Idea: Generalize Regular pattern

- Original
 - Miura-ori
 - Eggbox pattern

- Generalization
 To:
 Non Symmetric forms

(Do not break rigid foldability)
Flat-Foldable Quadrivalent Origami

MiuraOri Vertex

- one-DOF structure
 - x,y in the same direction

- Miura-ori

- Variation of Miura-ori
Flat-Foldable Quadrivalent Origami

MiuraOri Vertex

• Intrinsic Measure:

\[\theta_0 = \pi - \theta_2 \]
\[\theta_1 = \pi - \theta_3 \]

• Folding Motion
 – Opposite fold angles are equal
 – Two pairs of folding motions are linearly related.

\[\rho_1 = -\rho_3 \]
\[\rho_0 = \rho_2 \]

\[\tan \frac{\rho_0}{2} = \frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)} \tan \frac{\rho_1}{2} \]
Flat-Foldable Quadrivalent Origami

MiuraOri Vertex

$$\begin{bmatrix}
\tan \frac{\rho_1(t)}{2} \\
\tan \frac{\rho_2(t)}{2} \\
\vdots \\
\tan \frac{\rho_N(t)}{2}
\end{bmatrix} = \lambda(t) \begin{bmatrix}
\tan \frac{\rho_1(t_0)}{2} \\
\tan \frac{\rho_2(t_0)}{2} \\
\vdots \\
\tan \frac{\rho_N(t_0)}{2}
\end{bmatrix}$$

$$\rho_1 = -\rho_3$$
$$\rho_0 = \rho_2$$

$$\tan \frac{\rho_0}{2} = \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)}} \tan \frac{\rho_1}{2}$$
Get One State and Get Continuous Transformation

Finite Foldability: Existence of Folding Motion ⇔

There is one static state with

- Developability
- Flat-foldability
- Planarity of Panels

\[
\begin{bmatrix}
\tan \frac{\rho_1(t)}{2} \\
\tan \frac{\rho_2(t)}{2} \\
\vdots \\
\tan \frac{\rho_N(t)}{2}
\end{bmatrix} = \lambda(t)
\begin{bmatrix}
\tan \frac{\rho_1(t_0)}{2} \\
\tan \frac{\rho_2(t_0)}{2} \\
\vdots \\
\tan \frac{\rho_N(t_0)}{2}
\end{bmatrix}
\]
Built Design

- **Material**
 - 10mm Structural Cardboard (double wall)
 - Cloth
- **Size**
 - 2.5m x 2.5m
- exhibited at NTT ICC
Rigid Foldable Curved Folding

- Curved folding is rationalized by Planar Quad Mesh
- Rigid Foldable Curved Folding = Curved folding without ruling sliding
Discrete Voss Surface
Eggbox-Vertex

- one-DOF structure
 - Bidirectionally Flat-Foldable

- Eggbox-Pattern
- Variation of Eggbox Pattern
Discrete Voss Surface
Eggbox-Vertex

• Intrinsic Measure:

\[\theta_0 = \theta_2 \]
\[\theta_1 = \theta_3 \]

• Folding Motion
 – Opposite fold angles are equal
 – Two pairs of folding motions are linearly related.
 [SCHIEF et.al. 2007]

\[\rho_1 = \rho_3 \]
\[\rho_0 = \rho_2 \]

\[
\tan \frac{\rho_0}{2} = \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)}} \cdot \cot \frac{\rho_1}{2}
\]
\[= \frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)} \cdot \tan \frac{\rho_1}{2} \]
Eggbox: Discrete Voss Surface

- Use Complementary Folding Angle for “Complementary Foldline”

\[
\begin{bmatrix}
\tan \frac{\rho_0(t)}{2} \\
\tan \frac{\rho_1(t)}{2} \\
\vdots \\
\tan \frac{\rho_N(t)}{2}
\end{bmatrix} = \lambda(t) \begin{bmatrix}
\tan \frac{\rho_0(t_0)}{2} \\
\tan \frac{\rho_1(t_0)}{2} \\
\vdots \\
\tan \frac{\rho_N(t_0)}{2}
\end{bmatrix}
\]

Complementary Folding Angle

\[
\rho_1 = \rho_3 = \pi - \rho'_1 = \pi - \rho'_3
\]

\[
\rho_0 = \rho_2
\]

\[
\tan \frac{\rho_0}{2} = \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)}} \cot \frac{\rho_1}{2}
\]

\[
= \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)}} \tan \frac{\rho'_1}{2}
\]
Hybrid Surface: BiDirectionally Flat-Foldable PQ Mesh

- use 4 types of foldlines
 - mountain fold
 - $0^\circ \rightarrow -180^\circ$
 - valley fold
 - $0^\circ \rightarrow 180^\circ$
 - complementary mountain fold
 - $-180^\circ \rightarrow 0^\circ$
 - complementary valley fold
 - $180^\circ \rightarrow 0^\circ$

“developed” state flat-folded state

3D

DeveToped

Flat-folded
Developability and Flat-Foldability

- **Developed State:**
 - Every edge has fold angle complementary fold angle to be 0°

\[
\sum_{i=0}^{3} \sigma^{\text{dev}}(i)\theta_i = 0 \quad \cdots 4CF \quad \text{or} \quad 2F + 2CF
\]

\[
2\pi - \sum_{i=0}^{3} \theta_i = 0 \quad \cdots \quad 4F
\]

- **Flat-folded State:**
 - Every edge has fold angle complementary fold angle to be $\pm 180^\circ$

\[
\sum_{i=0}^{3} \sigma^{\text{ff}}(i)\theta_i = 0 \quad \cdots 4F \quad \text{or} \quad 2F + 2CF
\]

\[
2\pi - \sum_{i=0}^{3} \theta_i = 0 \quad \cdots \quad 4CF
\]
Hybrid Surface:
BiDirectionally Flat-Foldable PQ Mesh
Rigid-foldable Cylindrical Structure
Topologically Extend Rigid Origami

• Generalize to the **cylindrical**, or higher genus rigid-foldable polyhedron.

• But it is not trivial!
Rigid-Foldable Tube Basics

Miura-Ori Reflection

(Partial Structure of Thoki Yenn’s “Flip Flop”)

\[
\begin{align*}
\phi & \quad \xi \\
\frac{\ell_0}{2} & \quad \ell
\end{align*}
\]
Symmetric Structure Variations
Parametric design of cylinders and composite structures
Cylinder -> Cellular Structure
[Miura & Tachi 2010]
Isotropic Rigid Foldable Tube Generalization

- Rigid Foldable Tube based on symmetry

- Based on
 - “Fold”
 - “Elbow”

= special case of BDFFPQ Mesh
Generalized Rigid Folding Constraints

• For any closed loop in Mesh

\[T_{0,1} \cdots T_{k-2,k-1} T_{k-1,0} = I \]

where \(T_{i,j} \) is a 4x4 transformation matrix to translate facets coordinate \(i \) to \(j \)

• When it is around a vertex: \(T \) is a rotation matrix.
Generalized Rigid Folding Constraints

• If the loop surrounds no hole:
 – constraints around each vertex
• If there is a hole,
 – constraints around each vertex
+ 1 Loop Condition
Loop Condition: Sufficient Condition

Loop condition for finite rigid foldability

→ Sufficient Condition: start from symmetric cylinder and fix 1 loop
Manufactured From Two Sheets of Paper
Thickening

- Rigid origami is ideal surface (no thickness)
- Reality:
 - There is thickness
 - To make “rigid” panels, thickness must be solved geometrically
- Modified Model:
 - Thick plates
 - Rotating hinges at the edges
Hinge Shift Approach

• Main Problem
 – non-concurrent edges $\rightarrow 6$ constraints (overconstrained)

• Symmetric Vertex:
 – [Hoberman 88]
 – use two levels of thickness
 – works only if the vertex is symmetric ($a = b$, $c = d = \pi - a$)

• Slidable Hinges
 – [Trautz and Kunstler 09]
 – Add extra freedom by allowing „slide“
 – Problem: global accumulation of slide (not locally designable)
Our Approach

Hinge Shift

Volume Trim

Non-concurrent edges

Concurrent edges
Trimming Volume

• folds up to \(\pi - \delta \)

• offsetting edges by \(t \cot \left(\frac{\delta}{2} \right) \)

→ Different speed for each edge: Weighed Straight Skeleton
Variations

- Use constant thickness panels
 - if both layers overlap sufficiently
- use angle limitation
 - useful for defining the "deployed 3D state"
Example

• **Constant Thickness Model**
 - the shape is locally defined
 - cf: Slidable Hinge →
厚板のカッティングパターン生成

- 実装
 - Grasshopper + C# components (Rhinoceros Plugin)

- 二次元パターン
 - 2軸 CNC マシンで構築可能

- カッティングプロッタ
- レーザーカッター
- ユッードルータ

組み立ての合理化の可能性
Example: Construct a foldable structure that temporarily connects existing buildings.

- **Space: Flexible**
 - Connects when opened
 - Openings: different position and orientation
 - Connected gallery space
 - Compactly folded
 - to fit the facade

- **Structure: Rigid**
 - Rigid panels and hinges
Panel Layout