
Massachusetts Institute of Technology Course Notes 13
6.844, Spring ’05: Computability Theory of and with Scheme May 4
Prof. Albert R. Meyer revised May 4, 2005, 788 minutes

A Special Case of Observational Equivalence

Theorem 0.1. There is a Scheme expression, Obseq, such that

[M ≡ N]←→ [(Obseq ’M ’N) ≡ (lambda (v) #t)].

Proof. Let’s say that an S-expression consisting of a context, C, and a natural number, l, does not
distinguish between Scheme expressions M and N , iff

1. neither C[M] nor C[N] converges within l steps, or else

2. both C[M] and C[N] converge to nonprintable values, or else

3. print(C[M]) = print(C[N]).

Notice that M and N are observationally distinguishable iff there is some list, (C l) , that distin-
guishes them.

We will define a Scheme procedure Obseq such that (Obseq ’M ’N) diverges when applied to
S-expressions of the form (C l) that distinguish M and N , and it returns #t when applied to all
other values. So

M ≡ N ←→ no (C l) distinguishes M and N

←→ print(((Obseq ’M ’N) V)) = #t for all values, V ,
←→ (Obseq ’M ’N) ≡ (lambda (v) #t) .

To define Obseq, let Not-ok? be a Scheme procedure that returns #t when applied to a value that
does not print in the form (C l) , and returns #f on all other values. The definition of Not-ok? is
routine given the procedure, Prnbl?, from Handout 17 that detects S-expressions.

Also, let Insert be a procedure that inserts an expression in the hole in a context, viz.,

print((Insert ’E ’M)) = E[M].

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

2 Course Notes 13: A Special Case of Observational Equivalence

Then Obseq ::=

(lambda (m n)
(lambda (v)

;diverge if v describes a distinguishing context for M and N, and
;otherwise return #t.

(or
(Not-ok? v) ;return #t if v doesn’t describe anything
(let* ((C (car v)) ;C is a context

(l (cadr v)) ;l is a natural number
(CM (Insert C m)) ;CM is C[M]
(CN (Insert C n))) ;CN is C[N]

(or
(and ;return #t if neither context has halted in l steps

(not (Step CM l)) (not (Step CN l)))
;if one of them has halted in l steps,

(let ((V1 (Meval CM)) (V2 (Meval CN))) ;diverge if the other one doesn’t halt,
(or ;return #t if:

(not (or (Prnbl? V1) (Prnbl? V2))) ;neither has a printable value, or
(equal? V1 V2) ;they have the same printable value
Omega_0))))))) ;the context distinguishes M and N

Theorem 0.1 would not be true if (lambda (v) #t) was replaced for example, by either of Ω0

or (lambda (v) Ω0) . This follows from the fact that the valid equations, E , are “more undecid-
able1,” than the valid equations, E0, of the form (M = Ω0) , though we shall not elaborate on these
remarks here.

1Technically, E is Π0
2-complete, while E0 is Π0

1-complete. This implies that E is not half-decidable relative to E0.
So even allowing proof systems that take all the equations in E0 as axioms, the Incompleteness Theorem for Scheme
Equivalence still holds.

