Term Models & Equational Completeness

We showed in [Notes 1](http://theory.csail.mit.edu/classes/6.844/spring05-6844/handouts/aeqn.pdf) that the equational proof system based on the Ring axioms was *complete*. That is, provability (\vdash) and validity (\models) coincide for arithmetic equations (aeq's) over the reals or integers.

This connection between provability and validity actually works out just as well, and in a simple way, not only for the Ring axioms, but for the theory of *any* set of equational axioms, as we now show.

We begin by generalizing the definition of arithmetic expressions (ae's) to expressions involving operations on other algebraic structures.

1 First-order Terms

A *signature*, Σ, specifies the names of operations and the number of arguments (*arity*) of each operation. For example, the signature of arithmetic expressions is the set of names $\{0, 1, +, \cdot, -\}$ with + and \cdot each of arity two, and $-$ of arity one. The constants 0 and 1 by convention are considered to be operations of arity zero.

As a running example, we will consider a signature, Σ_0 , with three names: F of arity two, G of arity one, and a constant, c.

The *First-order Terms over* Σ are defined in essentially the same way as arithmetic expressions. We'll omit the adjective "first-order" in the rest of these notes.

Definition 1.1. The set, \mathcal{T}_{Σ} , of *Terms* over Σ are defined inductively as follows:

- Any variable, x, is a term over Σ .^{[1](#page-0-0)}
- Any constant, $c \in \Sigma$, is a term over Σ .
- If $f \in \Sigma$ has arity $n > 0$, and $M_1, \ldots, M_n \in \mathcal{T}_{\Sigma}$, then the *application* of f to M_1, \ldots, M_n is in \mathcal{T}_{Σ} . We use the usual notation " $f(M_1, \ldots, M_n)$ " for this application term.

For example,

$$
c, x, F(c, x), G(G(F(y, G(c))))
$$

are examples of terms over Σ_0 .

Copyright © 2005, [Prof. Albert R. Meyer.](http://theory.csail.mit.edu/~meyer/) All rights reserved.

 1 We needn't specify exactly what variables are. All that matters is that variables are distinct from other kinds of terms and from operation names in the signature.

2 Substitution

A *substitution* over signature, Σ , is a mapping, σ , from the set of variables to the expressions in \mathcal{T}_{Σ} . The notation

$$
[x_1,\ldots,x_n:=M_1,\ldots,M_n]
$$

describes the substitution that maps variables x_1, \ldots, x_n respectively to M_1, \ldots, M_n , and maps all other variables to themselves.

Definition 2.1. Every substitution, σ , defines a mapping, $[\sigma]$, from \mathcal{T}_{Σ} to \mathcal{T}_{Σ} defined inductively as follows:

$$
x[\sigma] ::= \sigma(x)
$$
 for each variable, x,
\n
$$
c[\sigma] ::= c
$$
 for each constant, c,
\n
$$
f(M_1, ..., M_n)[\sigma] ::= f(M_1[\sigma], ..., M_n[\sigma])
$$
 for each $f \in \Sigma$ of arity $n > 0$.

For example,

$$
F(G(x), y)[x, y := F(c, y), G(x)] = F(G(F(c, y)), G(x)).
$$

3 Models

A *model* assigns meaning to terms by specifying a domain of values and the meaning of the operations in a signature. Models are also called "first-order structures" or "algebras."

Definition 3.1. A *model, M*, for signature, Σ , consists a nonempty set, \mathcal{D}_M , called the *domain*^{[2](#page-1-0)} of M , and a mapping that assigns an *n*-ary operation on the domain to each symbol of arity *n* in Σ . That is, letting $[f]_0$ be the meaning of $f \in \Sigma$, we have for each f of arity $n > 0$,

$$
[\![f]\!]_0 : (\mathcal{D}_\mathcal{M})^n \to \mathcal{D}_\mathcal{M},
$$

and for each $c \in \Sigma$ of arity 0,

$$
[\![c]\!]_0\in \mathcal{D}_\mathcal{M}.
$$

For example, a model for Σ_0 might have domain equal to the set of binary strings, with F meaning the concatenation operation, G meaning reversal, and c meaning the string 001.

Definition 3.2. An *M*-*valuation, V*, is a mapping from variables into the domain, $\mathcal{D}_{\mathcal{M}}$.

Once we have a model and valuation, we can evaluate any term to arrive at its value in the domain. The meaning, $[M]_M$, of the term itself is defined to be the function from valuations to the term's value under a valuation. We'll usually omit the subscript when it's clear which model, M , is being referenced.

Definition 3.3. The meaning, $[M]$, of term, M, in model, M, is defined by structural induction on the definition of M:

$$
\begin{aligned}\n[\![x]\!] V &::= V(x) &\text{for each variable, } x, \\
[\![c]\!] V &::= [\![c]\!]_0 &\text{for each constant, } c \in \Sigma, \\
[\![f(M_1, \ldots, M_n)]\!] V &::= [\![f]\!]_0([\![M_1]\!] V, \ldots, [\![M_n]\!] V) &\text{for each } f \in \Sigma \text{ of arity } n > 0.\n\end{aligned}
$$

²The domain is also called the *carrier* of M

There is a fundamental relationship between substitution and meaning given by:

Lemma 3.4 (General Substitution). Let σ be a substitution and V a valuation. Define V_{σ} to be the *valuation in which*

$$
V_{\sigma}(x) ::= [\![\sigma(x)]\!] V
$$

for all variables, x*. Then for every term,* M*,*

$$
[\![M[\sigma]]\!]V=[\![M]\!]V_\sigma,
$$

The proof of Lemma [3.4](#page-2-0) follows by structural induction on M as in the Substitution Lemma in [Notes 4.](http://theory.csail.mit.edu/classes/6.844/spring05-6844/handouts/subst.pdf)

Problem 1. Prove the General Substitution Lemma [3.4.](#page-2-0)

Definition 3.5. An *equation* consists of two terms called its *lefthand side* and its *righthand side*. The usual notation " $M = N$ " is used to denote the equation with lefthand side M and righthand side N. The equation is *valid* in M, written,

$$
\mathcal{M}\models M=N,
$$

iff $[M]_{\mathcal{M}} = [N]_{\mathcal{M}}$. If $\mathcal E$ is a set of equations, we say that $\mathcal E$ is valid in $\mathcal M$, written,

$$
\mathcal{M} \models \mathcal{E},
$$

when $M \models M = N$ for each equation $(M = N) \in \mathcal{E}$. Finally, we say that \mathcal{E} *logically (or semantically) implies* another set, \mathcal{E}' , of equations, written,

$$
\mathcal{E} \models \mathcal{E}',
$$

when \mathcal{E}' is valid for any model in which $\mathcal E$ is valid. That is, for every model, M,

$$
\mathcal{M} \models \mathcal{E} \quad \text{implies} \quad \mathcal{M} \models \mathcal{E}'.
$$

4 A Proof System for Equations

There are some standard rules for proving equations over a given signature from any set, \mathcal{E} , of equations. The equations in $\mathcal E$ are called the *axioms*. We write $\mathcal E \vdash M = N$ to indicate that equation $(M = N)$ is provable from the axioms. The proof rules are given in Table [1.](#page-3-0)

We naturally expect of any proof system that what it proves is valid. This property is called *soundness*.

Theorem 4.1 (Soundness). *If* $\mathcal{E} \vdash M = N$ *, then* $\mathcal{E} \models M = N$ *.*

Proof. The Theorem follows by induction on the (tree) structure of the formal proof that $M = N$. The only case that is not completely routine is when $M = N$ is a substitution instance of an axiom. That is, M is $M'[\sigma]$ and N is $N'[\sigma]$ for some axiom $(M'=N')\in \mathcal{E}$ and substitution, $\sigma.$ But this case

Table 1: Standard Equational Inference Rules.

follows directly from the Substitution Lemma [3.4.](#page-2-0) Namely, if $\mathcal{M} \models \mathcal{E}$, then since $(M' = N') \in \mathcal{E}$, we have in particular that $\mathcal{M} \models M' = N'$, that is,

$$
\llbracket M' \rrbracket_{\mathcal{M}} = \llbracket N' \rrbracket_{\mathcal{M}}.\tag{1}
$$

But then,

$$
\begin{aligned}\n[M]V &= [M'[\sigma]]V \\
&= [M']V_{\sigma} \\
&= [N']V_{\sigma} \\
&= [N'[\sigma]]V\n\end{aligned}\n\qquad \qquad \text{(by Subst. Lemma 3.4)}
$$
\n
$$
= [N'[\sigma]]V\n\qquad \qquad \text{(by Subst. Lemma 3.4)}
$$
\n
$$
= [N]V,
$$

which shows that $[M] = [N]$, that is, $M \models M = N$. So we have shown that if $M \models \mathcal{E}$, then $M \models M = N$. That is, $\mathcal{E} \models M = N$, as required.

 \Box

5 Derived Rules

The proof system of Table [1](#page-3-0) only allows substitution into the given axioms, \mathcal{E} . It would be reasonable have an inference rule allowing substitution into *any* provable equation. But there is no need to add this as an inference rule because the current set of rules already justifies such substitutions.

Lemma 5.1 (Provable Substitution). *For any substitution,* σ *, if* $\mathcal{E} \vdash M = N$ *, then* $\mathcal{E} \vdash M[\sigma] = N[\sigma]$ *.*

The proof of Lemma [5.1](#page-3-2) follows by induction on the (tree) structure of the proof that $M = N$, as in the proof of Lemma 3.3 in [Notes 4.](http://theory.csail.mit.edu/classes/6.844/spring05-6844/handouts/subst.pdf)

Problem 2. Prove the Provable Substitution Lemma.

We can also derive a more general congruence rule. Namely, let σ_1 and σ_2 be substitutions and define

$$
\mathcal{E}\vdash \sigma_1=\sigma_2
$$

to mean that $\mathcal{E} \vdash \sigma_1(x) = \sigma_2(x)$ for all variables, x.

Lemma 5.2 (Provable Congruence). *If* $\mathcal{E} \vdash \sigma_1 = \sigma_2$, then $\mathcal{E} \vdash M[\sigma_1] = M[\sigma_2]$.

A proof by structural induction on M is routine.

Problem 3. (a) Suppose that the (congruence) rule was replaced by the (Provable Congruence) rule of Lemma [5.2.](#page-4-0) Show that (congruence) would then be a derived rule in this new proof system.

(b) Prove the (Provable Congruence) rule.

6 Completeness

We are now ready to prove

Theorem 6.1 (Completeness). $\mathcal{E} \models M = N$ *iff* $\mathcal{E} \models M = N$.

The right-to-left implication of Theorem [6.1](#page-4-1) is just the Soundness Theorem [4.1.](#page-2-1)

To prove the left-to-right implication, we must show that if an equation $(M = N)$ is not provable, then it is not true in some model that satisfies all the equations in \mathcal{E} . We will actually by construct a single model, $M_{\mathcal{E}}$, which satisfies $\mathcal E$ but in which *every* unprovable equation is actually false.

In particular, we will show that

Proposition 6.2.

$$
\mathcal{E} \vdash M = N \quad \text{iff} \quad \mathcal{M}_{\mathcal{E}} \models M = N.
$$

Completeness follows directly from Proposition [6.2:](#page-4-2) since every equation in $\mathcal E$ is provable using the (axiom substitution) rule — because an equation is a substitution instance of itself — the leftto-right direction of Proposition [6.2](#page-4-2) implies that

$$
\mathcal{M}_{\mathcal{E}} \models \mathcal{E}.
$$

And if $(M = N)$ is not provable from \mathcal{E} , then the right-to-left direction of Proposition [6.2](#page-4-2) implies that $(M = N)$ is not valid in $M_{\mathcal{E}}$.

So all we need to do is construct the model, $M_{\mathcal{E}}$, and prove Proposition [6.2.](#page-4-2)

We begin by observing that the proof rules of (reflexivity), (symmetry) and (transitivity) imply that for any fixed \mathcal{E} , provable equality between terms M and N is an equivalence relation. We let $\langle M \rangle_{\mathcal{E}}$ be the equivalence class of M under provable equality, that is,

$$
\langle M \rangle_{\mathcal{E}} ::= \{ N \mid \mathcal{E} \vdash M = N \}.
$$

So we have by definition

$$
\mathcal{E} \vdash M = N \qquad \text{iff} \qquad \langle M \rangle_{\mathcal{E}} = \langle N \rangle_{\mathcal{E}} \,.
$$

The domain of $\mathcal{M}_{\mathcal{E}}$ will be defined to be the set of $\langle M\rangle_{\mathcal{E}}$ for $M\in\mathcal{T}_{\Sigma}.$ So each element of the domain is a set of terms in T_{Σ} . That's why the model we construct is called a *term model*.

The meaning of constants, $c \in \Sigma$, will be

$$
[\![c]\!]_0 ::= \langle c \rangle_{\mathcal{E}}.
$$

The meaning of operations $f \in \Sigma$ of arity $n > 0$ will be determined by the condition

$$
[[f]]_0(\langle M_1\rangle_{\mathcal{E}},\ldots\langle M_n\rangle_{\mathcal{E}}):=\langle f(M_1,\ldots,M_n\rangle_{\mathcal{E}}.
$$

Notice that $[\![f]\!]_0$ applied to the equivalence classes $\langle M_1\rangle_{\cal E}$, $\ldots\langle M_n\rangle_{\cal E}$ is defined in terms of the designated terms M_1, \ldots, M_n in these classes. To be sure that $[[f]]_0$ is well-defined, we must check that the value of $\llbracket f \rrbracket_0$ would not change if we chose other designated terms in these classes. That is, we must verify that

if
$$
\langle M_1 \rangle_{\mathcal{E}} = \langle N_1 \rangle_{\mathcal{E}}, \dots, \langle M_n \rangle_{\mathcal{E}} = \langle N_n \rangle_{\mathcal{E}}
$$
, then $\langle f(M_1, \dots, M_n) \rangle_{\mathcal{E}} = \langle f(N_1, \dots, N_n) \rangle_{\mathcal{E}}$.

But this is an immediate consequence of the (congruence) rule. So $M_{\mathcal{E}}$ is well-defined.

Now for any substitution, σ , let W_{σ} be the M-valuation given by

$$
W_{\sigma}(x) ::= \langle \sigma(x) \rangle_{\mathcal{E}}
$$

for all variables, x . The following key property of the term model now follows by essentially the same structural induction on M used to prove the General Substitution Lemma [3.4.](#page-2-0)

Lemma 6.3.

$$
\llbracket M \rrbracket W_{\sigma} = \langle M[\sigma] \rangle_{\mathcal{E}}.
$$
\n(3)

Problem 4. Prove Lemma [6.3.](#page-5-0)

Now let *ι* be the identity substitution $\iota(x) := x$ for all variables, x. For any term, M, the substitution instance $M[\iota]$ is simply identical to M , so Lemma [6.3](#page-5-0) immediately implies

$$
[\![M]\!] W_{\iota} = \langle M \rangle_{\mathcal{E}}.
$$

In particular, if $\llbracket M \rrbracket = \llbracket N \rrbracket$, then $\langle M \rangle_{\mathcal{E}} = \langle N \rangle_{\mathcal{E}}$, so from equivalence [\(2\)](#page-5-1), we conclude Proposition [6.2](#page-4-2) in the right-to-left direction:

Lemma 6.4. *If* $[M]_{\mathcal{M}_{\mathcal{E}}} = [N]_{\mathcal{M}_{\mathcal{E}}}$, then $\mathcal{E} \vdash M = N$.

Finally, for the left-to-right direction of Proposition [6.2,](#page-4-2) we prove

Lemma 6.5. *If* $\mathcal{E} \vdash M = N$ *, then* $\llbracket M \rrbracket_{\mathcal{M}_{\mathcal{E}}} = \llbracket N \rrbracket_{\mathcal{M}_{\mathcal{E}}}$ *.*

Proof. If $\mathcal{E} \vdash M = N$, then by (provable substitution), $\mathcal{E} \vdash M[\sigma] = N[\sigma]$ for any substitution, σ . So

$$
\langle M[\sigma] \rangle_{\mathcal{E}} = \langle N[\sigma] \rangle_{\mathcal{E}} \tag{4}
$$

by [\(2\)](#page-5-1). Now let *V* be any *M*-valuation, and let σ be any substitution such that $\sigma(x) \in V(x)$ for all variables, x . This ensures that

$$
V = W_{\sigma},\tag{5}
$$

and we have

$$
\begin{aligned}\n[M]V &= \langle M[\sigma] \rangle_{\mathcal{E}} \\
&= \langle N[\sigma] \rangle_{\mathcal{E}} \\
&= [N]V\n\end{aligned}
$$
\n(by (5) & Lemma 6.3)\n(by (4))\n
\n(by (5) & Lemma 6.3).\n

Since *V* was an arbitrary valuation, we conclude that $\llbracket M \rrbracket = \llbracket N \rrbracket$, as required.

 \Box