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Term Models & Equational Completeness

We showed in Notes 1 that the equational proof system based on the Ring axioms was complete.
That is, provability (`) and validity (|=) coincide for arithmetic equations (aeq’s) over the reals or
integers.

This connection between provability and validity actually works out just as well, and in a simple
way, not only for the Ring axioms, but for the theory of any set of equational axioms, as we now
show.

We begin by generalizing the definition of arithmetic expressions (ae’s) to expressions involving
operations on other algebraic structures.

1 First-order Terms

A signature, Σ, specifies the names of operations and the number of arguments (arity) of each
operation. For example, the signature of arithmetic expressions is the set of names {0, 1,+, ·,−}
with + and · each of arity two, and − of arity one. The constants 0 and 1 by convention are
considered to be operations of arity zero.

As a running example, we will consider a signature, Σ0, with three names: F of arity two, G of
arity one, and a constant, c.

The First-order Terms over Σ are defined in essentially the same way as arithmetic expressions.
We’ll omit the adjective “first-order” in the rest of these notes.

Definition 1.1. The set, TΣ, of Terms over Σ are defined inductively as follows:

• Any variable, x, is a term over Σ.1

• Any constant, c ∈ Σ, is a term over Σ.

• If f ∈ Σ has arity n > 0, and M1, . . . ,Mn ∈ TΣ, then the application of f to M1, . . . ,Mn is in
TΣ. We use the usual notation “f(M1, . . . ,Mn)” for this application term.

For example,
c, x, F (c, x), G(G(F (y, G(c))))

are examples of terms over Σ0.

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.
1We needn’t specify exactly what variables are. All that matters is that variables are distinct from other kinds of

terms and from operation names in the signature.
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2 Substitution

A substitution over signature, Σ, is a mapping, σ, from the set of variables to the expressions in TΣ.
The notation

[x1, . . . , xn := M1, . . . ,Mn]

describes the substitution that maps variables x1, . . . , xn respectively to M1, . . . ,Mn, and maps all
other variables to themselves.

Definition 2.1. Every substitution, σ, defines a mapping, [σ], from TΣ to TΣ defined inductively as
follows:

x[σ]::=σ(x) for each variable, x,
c[σ]::=c for each constant, c,

f(M1, . . . ,Mn)[σ]::=f(M1[σ], . . . ,Mn[σ]) for each f ∈ Σ of arity n > 0.

For example,
F (G(x), y)[x, y := F (c, y), G(x)] = F (G(F (c, y)), G(x)).

3 Models

A model assigns meaning to terms by specifying a domain of values and the meaning of the oper-
ations in a signature. Models are also called “first-order structures” or “algebras.”

Definition 3.1. A model, M, for signature, Σ, consists a nonempty set, DM, called the domain2 of
M, and a mapping that assigns an n-ary operation on the domain to each symbol of arity n in Σ.
That is, letting [[f ]]0 be the meaning of f ∈ Σ, we have for each f of arity n > 0,

[[f ]]0 : (DM)n → DM,

and for each c ∈ Σ of arity 0,
[[c]]0 ∈ DM.

For example, a model for Σ0 might have domain equal to the set of binary strings, with F meaning
the concatenation operation, G meaning reversal, and c meaning the string 001.

Definition 3.2. An M-valuation, V , is a mapping from variables into the domain, DM.

Once we have a model and valuation, we can evaluate any term to arrive at its value in the domain.
The meaning, [[M ]]M, of the term itself is defined to be the function from valuations to the term’s
value under a valuation. We’ll usually omit the subscript when it’s clear which model, M, is being
referenced.

Definition 3.3. The meaning, [[M ]], of term, M , in model, M, is defined by structural induction on
the definition of M :

[[x]]V ::= V (x) for each variable, x,.
[[c]]V ::= [[c]]0 for each constant, c ∈ Σ,

[[f(M1, . . . ,Mn)]]V ::= [[f ]]0([[M1]]V, . . . , [[Mn]]V ) for each f ∈ Σ of arity n > 0.

2The domain is also called the carrier ofM
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There is a fundamental relationship between substitution and meaning given by:

Lemma 3.4 (General Substitution). Let σ be a substitution and V a valuation. Define Vσ to be the
valuation in which

Vσ(x) ::= [[σ(x)]]V

for all variables, x. Then for every term, M ,

[[M [σ]]]V = [[M ]]Vσ,

The proof of Lemma 3.4 follows by structural induction on M as in the Substitution Lemma in
Notes 4.

Problem 1. Prove the General Substitution Lemma 3.4.

Definition 3.5. An equation consists of two terms called its lefthand side and its righthand side. The
usual notation “M = N” is used to denote the equation with lefthand side M and righthand side
N . The equation is valid in M, written,

M |= M = N,

iff [[M ]]M = [[N ]]M. If E is a set of equations, we say that E is valid in M, written,

M |= E ,

whenM |= M = N for each equation (M = N) ∈ E . Finally, we say that E logically (or semantically)
implies another set, E ′, of equations, written,

E |= E ′,

when E ′ is valid for any model in which E is valid. That is, for every model, M,

M |= E implies M |= E ′.

4 A Proof System for Equations

There are some standard rules for proving equations over a given signature from any set, E , of
equations. The equations in E are called the axioms. We write E ` M = N to indicate that equation
(M = N) is provable from the axioms. The proof rules are given in Table 1.

We naturally expect of any proof system that what it proves is valid. This property is called
soundness.

Theorem 4.1 (Soundness). If E ` M = N , then E |= M = N .

Proof. The Theorem follows by induction on the (tree) structure of the formal proof that M = N .
The only case that is not completely routine is when M = N is a substitution instance of an axiom.
That is, M is M ′[σ] and N is N ′[σ] for some axiom (M ′ = N ′) ∈ E and substitution, σ. But this case

http://theory.csail.mit.edu/classes/6.844/spring05-6844/handouts/subst.pdf


4 Course Notes 5: Term Models & Equational Completeness

Table 1: Standard Equational Inference Rules.

=⇒ M [σ] = N [σ] (axiom substitution)
for (M = N) ∈ E

=⇒ M = M (reflexivity)
M = N =⇒ N = M (symmetry)

L = M,M = N =⇒ L = N (transitivity)
M1 = N1, . . . ,Mn = Nn =⇒ f(M1, . . . ,Mn) = f(N1, . . . , Nn) (congruence)

when arity(f) = n > 0

follows directly from the Substitution Lemma 3.4. Namely, if M |= E , then since (M ′ = N ′) ∈ E ,
we have in particular that M |= M ′ = N ′, that is,

[[M ′]]M = [[N ′]]M. (1)

But then,

[[M ]]V =[[M ′[σ]]]V
=[[M ′]]Vσ (by Subst. Lemma 3.4)
=[[N ′]]Vσ (by (1))
=[[N ′[σ]]]V (by Subst. Lemma 3.4)
=[[N ]]V,

which shows that [[M ]] = [[N ]], that is, M |= M = N .

So we have shown that if M |= E , then M |= M = N . That is, E |= M = N , as required.

5 Derived Rules

The proof system of Table 1 only allows substitution into the given axioms, E . It would be reason-
able have an inference rule allowing substitution into any provable equation. But there is no need
to add this as an inference rule because the current set of rules already justifies such substitutions.

Lemma 5.1 (Provable Substitution). For any substitution, σ, if E ` M = N , then E ` M [σ] = N [σ].

The proof of Lemma 5.1 follows by induction on the (tree) structure of the proof that M = N , as
in the proof of Lemma 3.3 in Notes 4.

Problem 2. Prove the Provable Substitution Lemma.

http://theory.csail.mit.edu/classes/6.844/spring05-6844/handouts/subst.pdf
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We can also derive a more general congruence rule. Namely, let σ1 and σ2 be substitutions and
define

E ` σ1 = σ2

to mean that E ` σ1(x) = σ2(x) for all variables, x.

Lemma 5.2 (Provable Congruence). If E ` σ1 = σ2, then E ` M [σ1] = M [σ2].

A proof by structural induction on M is routine.

Problem 3. (a) Suppose that the (congruence) rule was replaced by the (Provable Congruence)
rule of Lemma 5.2. Show that (congruence) would then be a derived rule in this new proof system.

(b) Prove the (Provable Congruence) rule.

6 Completeness

We are now ready to prove

Theorem 6.1 (Completeness). E |= M = N iff E ` M = N .

The right-to-left implication of Theorem 6.1 is just the Soundness Theorem 4.1.

To prove the left-to-right implication, we must show that if an equation (M = N) is not provable,
then it is not true in some model that satisfies all the equations in E . We will actually by construct
a single model, ME , which satisfies E but in which every unprovable equation is actually false.

In particular, we will show that

Proposition 6.2.
E ` M = N iff ME |= M = N.

Completeness follows directly from Proposition 6.2: since every equation in E is provable using
the (axiom substitution) rule — because an equation is a substitution instance of itself — the left-
to-right direction of Proposition 6.2 implies that

ME |= E .

And if (M = N) is not provable from E , then the right-to-left direction of Proposition 6.2 implies
that (M = N) is not valid in ME .

So all we need to do is construct the model, ME , and prove Proposition 6.2.

We begin by observing that the proof rules of (reflexivity), (symmetry) and (transitivity) imply
that for any fixed E , provable equality between terms M and N is an equivalence relation. We let
〈M〉E be the equivalence class of M under provable equality, that is,

〈M〉E ::= {N | E ` M = N} .
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So we have by definition

E ` M = N iff 〈M〉E = 〈N〉E . (2)

The domain of ME will be defined to be the set of 〈M〉E for M ∈ TΣ. So each element of the
domain is a set of terms in TΣ. That’s why the model we construct is called a term model.

The meaning of constants, c ∈ Σ, will be

[[c]]0 ::= 〈c〉E .

The meaning of operations f ∈ Σ of arity n > 0 will be determined by the condition

[[f ]]0(〈M1〉E , . . . 〈Mn〉E) ::= 〈f(M1, . . . ,Mn〉E .

Notice that [[f ]]0 applied to the equivalence classes 〈M1〉E , . . . 〈Mn〉E is defined in terms of the
designated terms M1, . . . ,Mn in these classes. To be sure that [[f ]]0 is well-defined, we must check
that the value of [[f ]]0 would not change if we chose other designated terms in these classes. That
is, we must verify that

if 〈M1〉E = 〈N1〉E , . . . , 〈Mn〉E = 〈Nn〉E , then 〈f(M1, . . . ,Mn)〉E = 〈f(N1, . . . , Nn)〉E .

But this is an immediate consequence of the (congruence) rule. So ME is well-defined.

Now for any substitution, σ, let Wσ be the M-valuation given by

Wσ(x) ::= 〈σ(x)〉E

for all variables, x. The following key property of the term model now follows by essentially the
same structural induction on M used to prove the General Substitution Lemma 3.4.

Lemma 6.3.
[[M ]]Wσ = 〈M [σ]〉E . (3)

Problem 4. Prove Lemma 6.3.

Now let ι be the identity substitution ι(x)::=x for all variables, x. For any term, M , the substitution
instance M [ι] is simply identical to M , so Lemma 6.3 immediately implies

[[M ]]Wι = 〈M〉E .

In particular, if [[M ]] = [[N ]], then 〈M〉E = 〈N〉E , so from equivalence (2), we conclude Proposi-
tion 6.2 in the right-to-left direction:

Lemma 6.4. If [[M ]]ME = [[N ]]ME , then E ` M = N .

Finally, for the left-to-right direction of Proposition 6.2, we prove

Lemma 6.5. If E ` M = N , then [[M ]]ME = [[N ]]ME .
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Proof. If E ` M = N , then by (provable substitution), E ` M [σ] = N [σ] for any substitution, σ. So

〈M [σ]〉E = 〈N [σ]〉E (4)

by (2). Now let V be any M-valuation, and let σ be any substitution such that σ(x) ∈ V (x) for all
variables, x. This ensures that

V = Wσ, (5)

and we have

[[M ]]V = 〈M [σ]〉E (by (5) & Lemma 6.3)
= 〈N [σ]〉E (by (4))
=[[N ]]V (by (5) & Lemma 6.3).

Since V was an arbitrary valuation, we conclude that [[M ]] = [[N ]], as required.
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