
Massachusetts Institute of Technology Course Notes 4
6.844, Spring ’05: Computability Theory of and with Scheme February 22
Prof. Albert R. Meyer revised March 7, 2005, 1014 minutes

Substitution into Arithmetic Equations

1 Proof of the Substitution Lemma

The Substitution Lemma concisely states the connection between the meanings of an expression
before and after substitution.

Lemma (Substitution).
[[e[x := f]]]V = [[e]](V [x← [[f]]V]), (1)

where for any function, F , and elements a, b, we define F [a← b] to be the function G such that

G(u) =

{
b if u = a.

F (u) otherwise.

Using the informal terminology of Scheme evaluation, the righthand side of (1) describes evalu-
ating the application of λ(x)e to f using an environment model, while the lefthand side describes
evaluating the application using a substitution model.

A standard technique for proving things about inductively defined objects like arithmetic expres-
sions is to use structural induction. This is an inductive proof in which the base cases are those of the
definition – for ae’s this means base cases considering expressions that are constants and expres-
sions that are variables. The induction cases correspond to the clauses of the induction definition
where new objects are defined from prior ones—for ae’s this means cases for sums, products, and
negations1 In proving the induction cases, the hypothesis to be proved may be assumed—by in-
duction – to hold for the constituents of an object. For example, to prove the hypothesis holds in
the case of a sum of ae’s, we may assume by induction that the hypothesis holds for each of the
two summands.

Structural induction could be justified as a special case of induction on the size of ae’s, but when
a proof is organized in this way, it’s clearer to describe it as proof by structural induction.

For this problem there are two ae’s, e and f on which structural induction could conceivably be
based, but structural induction on e is the one that works nicely:

Proof. Letting V ′ be the valuation V [x ← [[f]]V] and e′ be the expression e[x := f], we prove that
[[e′]]V = [[e]]V ′ by structural induction on the arithmetic expression e.

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.
1After handling the sum and product cases, the negation case is invariably routine, and we usually skip it. This can

be justified rigorously by regarding −e as an abbreviation for the ae (−1) · e.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

2 Course Notes 4: Substitution into Arithmetic Equations

Base case (e is a constant) Namely, e is the numeral n̂ for some integer, n. So by the definition
of valuation, the value of e is n in all valuations. Also, by the definition of substitution,
e′ is the same numeral, n̂. So, the value of e′ is also n in all valuations, and in particular,
[[e′]]V = n = [[e]]V ′.

Base case (e is a variable) Namely, e is a variable, y.

There are two subcases, depending on whether y is distinct from x.

If y 6= x, then by the definition of substitution, e′ is also the variable y. So, the value of e′ in V
is V (y) and the value of e in V ′ is V ′(y). But since x is distinct from y, we have V ′(y) = V (y)
by definition of V ′. So [[e′]]V = V (y) = V ′(y) = [[e]]V ′.

If y is the variable x, then by the definition of substitution, e′ is the expression f . Also,
[[f]]V = V ′(x) by definition of V ′. So,

[[e′]]V = [[f]]V = V ′(x) = [[x]]V ′ = [[e]]V ′.

Structural induction case (e is a sum) So e is of the form e1 + e2 for some ae’s e1, e2. By induction
we may assume [[e′i]]V = [[ei]]V ′ for i = 1, 2. Now,

e′ =e′1 + e′2, so def. of substitution
[[e′]]V =[[e′1 + e′2]]V

= [[e′1]]V + [[e′2]]V (def. of [[+]])
= [[e1]]V ′ + [[e2]]V ′ (ind. hypoth.)
= [[e1 + e2]]V ′ (def. of [[+]])
= [[e]]V ′,

as required.

Structural induction case (e is a product) Similar to the sum case.

Structural induction case (e is a negation) Similar to the sum case.

2 Soundness of Substitution

“Substituting equals for equals” is a basic rule of algebra: if f1 = f2, we can replace occurrences
of f1 by f2. The Substitution Lemma provides a quick and precise justification for this rule.

Proposition 2.1. If |= e1 ≤ e2 and |= f1 = f2, then |= e1[x := f1] ≤ e2[x := f2].

Proof. Suppose |= e1 ≤ e2 and |= f1 = f2. So by definition of |=, we have

[[e1]] ≤ [[e2]] (2)

and
[[f1]] = [[f2]]. (3)

Course Notes 4: Substitution into Arithmetic Equations 3

Now for any valuation, V ,

[[e1[x := f1]]]V =[[e1]](V [x← [[f1]]V]) (by Subst. Lemma)
≤[[e2]](V [x← [[f1]]V]) (by (2))
=[[e2]](V [x← [[f2]]V]) (by (3))
=[[e2[x := f2]]]V (by Subst. Lemma))

Since V was arbitrary, we conclude that [[e1[x := f1]]]V ≤ [[e2[x := f2]]]V for all valuations V , that
is, |= e1[x := f1] ≤ e2[x := f2].

Since, |= e1 = e2 iff [|= e1 ≤ e2 and |= e2 ≤ e1], we can immediately conclude that Proposition 2.1
holds for substituting into equalities as well as inequalities:

Corollary 2.2. If |= e1 = e2 and |= f1 = f2, then |= e1[x := f1] = e2[x := f2].

On the other hand, substituting unequals is another story, because

|= f1 ≤ f2 does not imply |= e[x := f1] ≤ e[x := f2].

Just consider the case when e is −x, f1 is 0, and f2 is 1.

3 Substitution as a Derived Rule

Proposition 2.1 shows that substituting equals into inequalities is a sound rule for proving new
inequalities. So this is an inference rule we might add to strengthen our formal system, `≤, for
proving inequalities. But this is not necessary, because it turns out that any inequality that could
be proved using the proposed new rule could actually have been proved without adding the rule.
So we can use substitution into inequalities as a derived rule: even though substitution is not one
of the given inference rules of the proof system, we can use it in showing that an inequality is
provable:

Proposition 3.1. If ` e1 ≤ e2 and ` f1 = f2, then ` (e1[x := f1] ≤ e2[x := f2]).

The proof of Proposition 3.1 will follow from two special cases.

Lemma 3.2. If ` f = g, then ` (e[x := f] = e[x := g]).

By completeness we have that |= (f = g) iff `= (f = g), so Lemma 3.2 about ` follows immediately
from the corresponding property of |= given in Corollary 2.2.

Nevertheless we give a different proof of Lemma 3.2. This proof in instructive because it depends
only on the proof rules for equality, unlike completeness, which depends on the Ring properties
of real numbers and integers.

Proof. By structural induction on e.

Base case (e is a constant) So e is c, where c is a numeral. Then by the definition of substitution,
e[x := f] is actually c. Likewise, e[x := g] is actually c. So (e[x := f] = e[x := g]) is actually
the equation c = c, which is immediately provable by reflexivity.

4 Course Notes 4: Substitution into Arithmetic Equations

We were careful to say above that “e[x := f] is actually the arithmetic expression c” instead of
“c = e[x := f].” We don’t want to confuse an argument that two different arithmetic expressions are
provably equal, with an argument showing that two different mathematical expressions describe
the same arithmetic expression. This confusion sometimes traps students: they assert that since

• c = e[x := f] and

• c = e[x := g], it follows that

• e[x := f] = e[x := g]) is provable by transitivity and symmetry. (NO!)

But we proved mathematically that “e[x := f]” and “e[x := g]” describe the same constant ex-
pression, c. Our mathematical argument implicitly used the transitivity and symmetry properties of
“sameness.” On the other hand, the formal proof of the equation c = c follows from reflexivity, not
symmetry or transitivity.

Note also that in this base case, we did not need to use the hypothesis ` f = g.

Base case (e is a variable) Namely, e is a variable, y.

There are two subcases, depending on whether y is distinct from x. If y is distinct from x,
then both e[x := f] and e[x := g] are the same as y, and ` y = y follows from reflexivity as in
the constant case.

If e is x, then by the definition of substitution, e[x := f] is the expression f . Likewise e[x := g]
is g. That is, this base case requires that we show that ` f = g. But this is exactly the given
hypothesis, so we are done.

Structural induction case (e is a sum) So e is of the form e1 + e2. Assume ` f = g. Now by
structural induction, we may assume that

` (e1[x := f] = e1[x := g]),
` (e2[x := f] = e2[x := g]).

It follows by (+-congruence) that

` (e1[x := f] + e2[x := f] = e1[x := g] + e2[x := g]) (4)

But by the definition of substitution, the lefthand side of equation (4) is actually e[x := f],
and the righthand side is actually e[x := g], so (4) actually says that ` (e[x := f] = e[x := g]),
as required.

Structural induction cases (product and negation) Essentially the same as the sum case.

Lemma 3.3.

` f = g implies ` (f [x := e] = g[x := e]),
` f ≤ g implies ` (f [x := e] ≤ g[x := e]).

Course Notes 4: Substitution into Arithmetic Equations 5

Proof. Structural induction on formulas is not always the way to go. This time to prove Lemma 3.3
we use induction on the length of the formal proof in `≤ of the given provable equation or inequality.

Base case The proof of f = g (or f ≤ g) is of length 1. This means that it is an axiom. Now we
claim that f [x := e] = g[x := e] is another instance of the same axiom, and so also has a proof
of length 1.

We illustrate why the claim holds for the +-commutativity axiom, f + g = g + f . Namely,
we claim that the equation

(f + g)[x := e] = (g + f)[x := e] (5)

is also an instance of +-commutativity. To see this, let h1 be the expression f [x := e] and
h2 be g[x := e]. But by the definition of substitution, the expression on the lefthand side of
equation (5) describes the term h1 + h2 and the righthand side describes h2 + h1, confirming
the claim for this axiom.

The proofs of the claim for the other axioms follow similarly.

Induction The proof of f = g (or of f ≤ g) is of length n + 1 for some n ≥ 1.

In this case we use the fact that all the formal inference rules of Notes 3, Tables 1 & 3, have a
property similar to that claimed for the axioms. Namely, if we perform the same substitution
on all the antecedents and the consequent of a rule, we obtain another instance of the same
rule. The argument proving this is similar to the argument above for the commutativity
axiom. We leave it to the reader to check this fact.

Now, if f = g is an axiom, the proof for the base case shows that f [x := e] = g[x := e].

Otherwise, f = g must follow from an instance of an inference rule whose antecedents
appear earlier in the formal proof. The antecedents must have proofs of length at most n,
so by induction, we may assume that the result of substituting e for x in any antecedent
equation or inequality is also provable.

Now we just observed that substituting e for x into the antecedents and consequent of the
final inference rule used to prove f = g yields another instance of the rule. But since the sub-
stituted antecedents are provable, we can conclude that the substituted consequent, namely
f [x := e] = g[x := e], is also provable, as required.

Now suppose e1 ≤ e2 and f1 = f2 are both provable. Then

e1[x := f1] ≤ e2[x := f1]

is provable by Lemma 3.3, and
e2[x := f1] = e2[x := f2]

is provable by Lemma 3.2. So by (transitivity),

` e1[x := f1] ≤ e2[x := f2]

which completes the proof Proposition 3.1.

http://theory.csail.mit.edu/classes/6.844/spring05-6844/handouts/aineq.pdf

	Proof of the Substitution Lemma
	Soundness of Substitution
	Substitution as a Derived Rule

