
Massachusetts Institute of Technology Course Notes 6
6.844, Spring ’05: Computability Theory of and with Scheme March 14
Prof. Albert R. Meyer revised March 14, 2005, 1362 minutes

A Substitution Model for Scheme, I: Rewrite Rules

1 Introduction

These notes describe a Scheme Substitution Model: an accurate, simple mathematical model of
Scheme evaluation based on rules for rewriting one Scheme expression into another. The model
captures a significant portion of Scheme, including asssignment (set!) and control abstraction
(call/cc).

We assume the reader already has an understanding of Scheme at the level taught in an intro-
ductory Scheme programming course. In particular, we assume the concepts of free and bound
variables, and the scoping rules for lambda and letrec , are understood.

The rules of the game in a Substitution Model are that the only objects manipulated in the Model
are Scheme expressions: no separate data structures for environments, cons -cells, or continu-
ations. Evaluation of an expression, M , is modelled by successive application of rewrite rules
starting with M . Each rule transforms an expression into a new Scheme expression. Rewriting
continues until an expression is reached for which no rule is applicable. This final expression, if
any, gives a direct representation either of the value returned by the expression, or of the kind of
dynamic error that first occurs in the evaluation.

At most one rule is applicable to each expression, reflecting the deterministic character of Scheme
evaluation. The way an expression rewrites is determined solely by the expression, not the se-
quence of prior rewrites that may have led to it. If M ′ is an expression reached at any point by
rewriting starting at M , then evaluating M ′ in Scheme’s initial environment will result in the same
final value, the same kind of error, or the same “runaway” behavior (divergence) as evaluation of
M .

The environment in which an expression is to be evaluated will be represented by surrounding
an expression with an outermost letrec that binds variables in the environment to the expres-
sions representing their values. Immutable lists and pairs are represented as combinations with
operators list or cons .

Mutable lists do not fit well into a Substitution Model. They could be shoe-horned in, but we
haven’t found a tasteful way to do it. The problem is that we haven’t found a reasonable class
of Scheme expressions that evaluate directly to circular list structures and that could serve as
canonical forms for these structures. So we have omitted mutable lists from this Substitution
Model; vectors are omitted for similar reasons. We have omitted characters altogether, ensuring
that strings are immutable.

Side-effects involving input/output also don’t fit and have been omitted. So procedures such as
set-car! , string-set! , display , or read are not included in the Model.

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

2 Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules

2 Control Syntax for the Substitution Model

A simplified Backus-Naur Form (BNF) grammar for Scheme is given in an Appendix. According
to the official Scheme specification, the standard builtin operators such as +, symbol? , cons ,
apply are variables that can be reassigned. This is a regrettable design decision, because with few
exceptions, it is a really bad idea for a programmer to redefine the builtins. In this Substitution
Model, these identifiers are treated as constants rather than variables.

The Substitution Model requires some additional syntactic concepts, namely, syntactic values and
control contexts.

2.1 Syntactic Values

Scheme’s values are numbers, Booleans, symbols, and similar atomic types; procedures; and lists
and pairs of values. Each value will be represented by a canonical expression called a syntactic
value. In particular, compound procedures are represented as lambda -expressions. Here is the
grammar1:

〈syntactic-value〉 ::= 〈immediate-value〉 | 〈list-value〉 | 〈nonlist-pair-value〉
〈immediate-value〉 ::= 〈self-evaluating〉 | 〈symbol〉 | 〈procedure〉

〈list-value〉 ::= (list 〈syntactic-value〉∗)
〈nonlist-pair-value〉 ::= (cons 〈syntactic-value〉 〈immediate-value〉)

| (cons 〈syntactic-value〉 〈nonlist-pair-value〉)

Note that syntactic values may contain letrec ’s only within procedure bodies.

Problem 1. (a) Verify that an expression, M , is a 〈nonlist-pair-value〉 iff M is a 〈syntactic-value〉
not of the form (list 〈syntactic-value〉∗) .

(b) Verify that an expression, M , is a 〈syntactic-value〉 that is not of the form (list 〈syntactic-value〉∗)
or (cons ...) iff M is an 〈immediate-value〉.

2.2 Control Contexts for Kernel Scheme

An important technical property of the Substitution Model is that the rewrite rule to apply at any
evaluation step wiil be uniquely determined. The order in which subexpressions are evaluated
is formalized in terms of control contexts. A control context is an expression with a “hole,” [],
indicating the subexpression that an evaluator would begin working on. We’ll illustrate with an
example before giving the formal definitions.

1In these grammars, superscript “∗” indicates zero or more occurrences of a grammatical phrase, and superscript
“+” indicates one or more occurrences.

Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules 3

Definition 2.1. If R is an expression with a hole, and M is an expression, we write R[M] to denote
the result of replacing the hole in R by M without any renaming of bound variables.

Example 2.2. Let

M = (+ 1 (if (pair? (list (list) ’a)) 2 3) (* 4 5)) .

M is a combination, and not all the operands are values, so Scheme would start to evaluate one of
the operands. Using left-to-right evaluation, the operand

(if (pair? (list (list) ’a)) 2 3)

would be the one to start evaluating, since + and 1 represent final values. This corresponds to
parsing M as

R1[(if (pair? (list (list) ’a)) 2 3)]

where R1 is the control context

R1 ::= (+ 1 [] (* 4 5)) .

The test of this if expression is a combination

P ::= (pair? (list (list) ’a))

whose operator and operand are values, so next, Scheme would actually apply the operator pair?
to the operand (list (list) ’a) . This corresponds parsing M as R[P] where

R ::= (+ 1 (if [] 2 3) (* 4 5)) .

The fact that Scheme will apply the operator pair? is captured by the fact that P is an immediate
redex.

The fact that the rewrite rule to apply at any evaluation step is uniquely determined follows from
the fact that every nonvalue Scheme expression parses in a unique way as a control context with
an immediate redex in its hole.

Formally, we specify control contexts and immediate redexes by the following grammars:

〈control-context〉 ::= 〈hole〉
| (if 〈control-context〉 〈expression〉 〈expression〉)
| (begin 〈control-context〉 〈expression〉+)

| (set! 〈variable〉 〈control-context〉)
| (〈let-keyword〉

(〈value-binding〉∗ (〈variable〉 〈control-context〉) 〈binding〉∗)
〈expression〉)

| (〈syntactic-value〉∗ 〈control-context〉 〈expression〉∗)
〈hole〉 ::= []

〈value-binding〉 ::= (〈variable〉 〈syntactic-value〉)

Note that letrec ’s all of whose 〈init〉’s are syntactic values may only appear in control contexts
when they are within procedure bodies.

4 Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules

Problem 2. Verify that if R1 and R2 are control contexts, then so is R1[R2].

〈immediate-redex〉 ::= 〈variable〉
| (if 〈syntactic-value〉 〈expression〉 〈expression〉)
| (〈let-keyword〉 (〈value-binding〉∗) 〈expression〉)
| (〈nonpairing-procedure〉 〈syntactic-value〉∗)
| (begin 〈expression〉)
| (begin 〈syntactic-value〉 〈expression〉∗)
| (set! 〈variable〉 〈syntactic-value〉)

Definition 2.3. An outermost letrec binding variables to values—used to model a Scheme
environment—is called the environment letrec . An expression is said to be in environment form
when it has an environment letrec , namely, it is of the form

(letrec (〈value-binding〉∗) N)

for some 〈expression〉, N . We use Env(N) as an abbreviation for this form.

Definition 2.4. Let M be a Scheme expression, R be a control context, and P be an immediate
redex. Then M is said to control-parse into R and P iff either

1. M is of the form Env(R[P]), or

2. M = R[P] for R 6= 〈hole〉, or

3. M = P , R = 〈hole〉, and P is not in environment form .

Definition 2.4.3 reflects that fact that a non-outermost letrec binding of variables to values will
be the redex of a rule to incorporate the bindings into the outermost environment letrec . On the
other hand, we do not want to parse the environment letrec in this way. For example, consider
the expression

(letrec ((x 1)) (letrec ((y 2)) (+ x y))) . (1)

Expression (1) control parses into

R =(letrec ((x 1)) []) ,

P =(letrec ((y 2)) (+ x y)) .

On the other hand, (1) is itself is an 〈immediate-redex〉 according to the grammatical rules, so it
could also be parsed as R′[P ′], where R′ = 〈hole〉, and P ′ is (1) itself. However, Definition 2.4.3
disallows this second parse as a control parse because P ′ is in environment form.

Lemma 2.5. (Unique Control Parsing) If a Scheme expression, M , is not a syntactic value, then there is
a unique control context, R, and immediate redex, P , such that M = R[P]. If M is a syntactic value, then
it is not control-parsable.

Proof. By structural induction on M . If M is:

Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules 5

• [〈self-evaluating〉, 〈symbol〉, or 〈procedure〉] In this case M is a 〈syntactic-value〉, and we
must show that it cannot be parsed as R[P]. But it follows immediately from the definitions
of 〈syntactic-value〉 and 〈control-context〉, that the only control context R such that M =
R[N] for some N , is R = [], in which case N = M . But since N = M is an 〈syntactic-value〉,
it is not an 〈immediate-redex〉, proving that M is not control-parsable.

• [a variable] In this case R = 〈hole〉 and P = M .

• [a combination] Then if:

– [the operator or some operand is not a 〈syntactic-value〉] Then M is of the form

(V0 . . . N M0 . . .)

where V0 . . . is a (possibly empty) sequence of syntactic values, N is not a syntactic
value, and M0 . . . is a (possibly empty) sequence of expressions. In this case, M is
neither a syntactic value nor an immediate redex. Now it follows immediately from the
definitions of 〈syntactic-value〉 and 〈control-context〉, that any control context R such
that M = R[M ′] for some M ′, must be of the form R = (V0 . . . R′ M0 . . .) for some
〈control-context〉, R′ such that R′[M ′] = N . But by induction, N = R′[P] for a unique
〈control-context〉, R′, and 〈immediate-redex〉, P . Hence, M = R[P] for these uniquely
determined R and P .

– [the operator and all operands are 〈syntactic-value〉’s] Then M is of the form (op V0 . . .)
where V0 . . . is a (possibly empty) sequence of syntactic values and op is a syntactic
value. By induction, there is no 〈control-context〉, R′ such that R′[P] = op or R′[P] = Vi

for some immediate redex P and operand Vi. Now it follows immediately from the def-
initions of 〈syntactic-value〉 and 〈control-context〉, that the only control context, R, such
that M = R[P] for some immediate redex, P , must be with R = 〈hole〉 and P = M .
If op is not a 〈pairing-operator〉, then M = P is an immediate redex, and R and P are
uniquely determined as required. On the other hand, if op is a 〈pairing-operator〉, then
M is a value, not an immediate redex, so M is not control-parsable, as required in this
case.

• [etc.] The remaining cases are similar.

3 Scheme Rewrite Rules

This section contains all the rewrite rules necessary to specify the evaluation of kernel Scheme
expressions.

We will not consider rewrite rules for the derived expressions. The Revised5 Scheme Manual de-
scribes how to translate (“desugar”) expressions using derived syntax into Kernel Scheme. These
translations can easily be described with rewrite rules, and these desugaring rules could be in-
corporated directly into a Substitution Model. The desugaring rules raise no new issues beyond
those we consider for the kernel rules, so we have omitted them.

In the following sections, R denotes a control context, B denotes a sequence of zero or more
〈value-binding〉’s of distinct variables, V denotes a syntactic value, V1 . . . a sequence of one or
more syntactic values, and x denotes a variable.

6 Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules

3.1 Simple Control Rules

Definition 3.1. A simple control rule is a rewrite rule of the form

R[P]→R[T]

or
(letrec (B) R[P]) → (letrec (B) R[T]) .

Such a pair of simple control rules may be abbreviated as P →T , showing only the subexpressions
that are changed by the rule. In this case, P will be an immediate redex and is called the immediate
redex of the rule, and T is called the immediate contractum.

3.1.1 Rules for Kernel Scheme

The redexes and contracta for the kernel Scheme simple control rules are:

• if :

(if #f M N) →N

(if V M N) →M, for V 6= #f

• lambda no args:
((lambda () M)) → M

• begin :

(begin M) →M

(begin V 〈expression〉+) →(begin 〈expression〉+)

• procedure? :

(procedure? V) →#t , for V a 〈procedure〉,
(procedure? V) →#f , for other V .

• builtin operations:

(+ 2 3) → 5

(string-append "ab" "cde") → "abcde"

(boolean? "ab") → #f
...

• symbols:

(symbol? (quote S)) → #t

(symbol? V) → #f , if V is not (quote S)

(eq? (quote S) (quote S)) → #t

(eq? (quote S1) (quote S2)) → #f , if S1 6= S2,

where S is an 〈identifier〉.

Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules 7

• lists:

(cons V 〈nil〉) → (list V)

(cons V (list V1 . . .)) → (list V V1 . . .)

(car (list V1 . . .)) → V1

(cdr (list V1 V2 . . .)) → (list V2 . . .)

(null? 〈nil〉) → #t

(null? V) → #f , if V 6= 〈nil〉
(pair? (list 〈syntactic-value〉+)) → #t

(pair? (list)) → #f

(pair? 〈immediate-value〉) → #f

(apply V 〈nil〉) → (V)

(apply V (list V1 . . .)) → (V V1 . . .)

• pairs:

(pair? (cons V1 K)) →#t

(car (cons V1 K)) →V1

(cdr (cons V1 K)) →K

where K is a 〈nonlist-pair-value〉.

This condition that K be a 〈nonlist-pair-value〉 instead of simply a 〈syntactic-value〉 is in-
cluded for technical reasons, namely, to ensure that at most one rewrite rule applies to any
expression2 (cf., Corollary 3.3 below).

3.2 Environment Rules

The following rules for Kernel Scheme update the environment letrec .

2For example, by the given rules, the expression (pair? (cons V1 (list))) rewrites to (pair? (list V1))
which then rewrites to #t . Relaxing the condition that K be a 〈nonlist-pair-value〉 to be only that K be a
〈syntactic-value〉 would allow (pair? (cons V1 (list))) also to rewrite directly #t . While this would still cor-
rectly model Scheme evaluation, it would violate the technically convenient property that at most one rewrite rule
applies to any expression.

8 Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules

• lambda bind an arg:

(letrec (B) R[((lambda (x1 . . .) M) V1 · · ·)])
→ (letrec (B (x1 V1)) R[((lambda (. . .) M) · · ·)]) ,

R[((lambda (x1 . . .) M) V1 · · ·)]
→ (letrec ((x1 V1)) R[((lambda (. . .) M) · · ·)]) .

(letrec (B) R[((lambda x M) V1 . . .)])
→ (letrec (B (x (list V1 . . .))) R[M]) ,

R[((lambda x M) V1 . . .)]
→ (letrec ((x (list V1 . . .))) R[M]) .

• nested letrec :

R[(letrec (B2) M)] → (letrec (B2) R[M]) for R 6= 〈hole〉,
(letrec (B1) R[(letrec (B2) M)]) → (letrec (B1 B2) R[M]) .

• instantiation:

(letrec (B1 (x V) B2) R[x]) → (letrec (B1 (x V) B2) R[V])

• assignment:

(letrec (B1 (x V1) B2) R[(set! x V2)])
→ (letrec (B1 (x V2) B2) R[(quote set!-done)])

3.3 Unique Rewriting

Definition 3.2. For Scheme expressions M,N , we write M →N to indicate that M rewrites to N
by one application of a Scheme Substitution Model rewrite rule. M 6→ means that no rewrite rule
applies to M .

From the form of the Substitution Model rewrite rules and the Unique Control Parsing Lemma 2.5,
we can straightforwardly conclude:

Corollary 3.3. (Unique Rewriting) There is at most one Scheme Substitution Model rewrite rule whose
pattern matches an expression M , and if there is such a rewrite rule, its match is unique. Hence, for every
Scheme expression, M , there is at most one N such that M →N .

Scheme’s evaluation behavior is “sequential.” Namely, if in the process of evaluation, a subex-
pression starts to be evaluated, then evaluation continues “at that subexpression” until a value for
the subexpression is returned. This happens regardless of how evaluation would proceed once
a value is returned. In particular, no Scheme evaluation would switch back and forth between
disjoint subexpressions to evaluate them in parallel. The Control-context Independence Corollary
makes this precise.

Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules 9

Corollary 3.4. (Control-context Independence)

1. If M2 is not in environment form then

M1→M2 implies R[M1]→R[M2].

2. If
(letrec (B1) M1) → (letrec (B2) M2)

then
(letrec (B1) R[M1]) → (letrec (B2) R[M2]) .

3. If M1 is not in environment form and

M1→ (letrec (B) M2) ,

then
R[M1]

≤2−→ (letrec (B) R[M2])

where ≤2−→ indicates successive application of at most two rewriting rules.

An example of Corollary 3.4.3 where two rule applications are needed is when

M1 =(letrec ((x 1)) (+ x x)) ,

R =(- []) .

In this case, for

B = (x 1) ,

M2 = (+ 1 x) ,

we have M1→ (letrec (B) M2) , but it takes 2 steps to rewrite R[M1] to the desired form:

R[M1] =(- (letrec ((x 1)) (+ x x)))

→(letrec ((x 1)) (- (+ x x))) (by the nested letrec rule)
→(letrec ((x 1)) (- (+ 1 x)))

=(letrec (B) R[M2]) .

Problem 3. Prove Corollary 3.4. Hint: Use Problem 2 and Unique Control Parsing.

A Scheme Syntax in BNF

The following Backus-Naur Form (BNF) grammars describe the main constructs of Scheme3. In
these grammars, superscript “∗” indicates zero or more occurrences of a grammatical phrase, and
superscript “+” indicates one or more occurrences.

3For the official, full Scheme grammar, see the Revised5 Scheme Manual available on the web at:

http://www.schemers.org/Documents/Standards/R5RS

10 Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules

A.1 The Functional Kernel

〈expression〉 ::= 〈self-evaluating〉 | 〈symbol〉 | 〈variable〉
| 〈procedure〉 | 〈let-form〉 | 〈if〉 | 〈combination〉

〈self-evaluating〉 ::= 〈numeral〉 | 〈boolean〉 | 〈string〉 | . . .

〈numeral〉 ::= 0 | -1 | 314159 | . . .

〈boolean〉 ::= #t | #f

〈string〉 ::= "hello there" | . . .

〈symbol〉 ::= (quote 〈identifier〉)
〈identifier〉 ::= identifiers that are not 〈self-evaluating〉
〈variable〉 ::= identifiers that are neither 〈self-evaluating〉, 〈keyword〉

〈procedure-constant〉, nor 〈pairing-operator〉

〈keyword〉 ::= quote | lambda | 〈let-keyword〉 | if

〈procedure〉 ::= 〈nonpairing-procedure〉
〈nonpairing-procedure〉 ::= 〈lambda-expression〉 | 〈procedure-constant〉

〈lambda-expression〉 ::= (lambda (〈formals〉) 〈expression〉)
〈formals〉 ::= 〈variable〉∗ (Note: all 〈variable〉’s must be distinct.)

〈procedure-constant〉 ::= + | - | * | / | = | < | atan | string=? | . . .

| number? | symbol? | procedure? | string? | boolean? | eq? | . . .

Note that no “side-effect” procedures such as display , set-car! , string-set! nor “pairing”
operators list , cons are included among the procedure constants. Also, as a further reflection
of our explanation why mutable lists have been omitted from the Substitution Model, we restrict
application of eq? to values that are 〈symbol〉’s.

Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules 11

〈let-form〉 ::= (〈let-keyword〉 (〈binding〉∗) 〈expression〉)
(Note: all variables bound by the 〈let-form〉 must be distinct.)

〈let-keyword〉 ::= letrec

〈binding〉 ::= (〈variable〉 〈init〉)
〈init〉 ::= 〈expression〉

〈if〉 ::= (if 〈test〉 〈consequent〉 〈alternative〉)
〈test〉 ::= 〈expression〉

〈consequent〉 ::= 〈expression〉
〈alternative〉 ::= 〈expression〉

〈combination〉 ::= (〈operator〉 〈operand〉∗)
〈operator〉 ::= 〈expression〉
〈operand〉 ::= 〈expression〉

A.2 Functional (Immutable) Lists

〈expression〉 ::= . . . | 〈nil〉
〈nil〉 ::= (list)

〈procedure〉 ::= . . . | 〈pairing-operator〉
〈pairing-operator〉 ::= cons | list

〈procedure-constant〉 ::= . . . | car | cdr | map | apply | null? | pair?

(Note: cons and list are not considered to be procedure constants.)
〈lambda-expression〉 ::= . . . | (lambda 〈variable〉 〈expression〉)

A.3 The Full Kernel

〈expression〉 ::= . . . | 〈begin〉 | 〈assignment〉
〈keyword〉 ::= . . . | begin | set!

〈begin〉 ::= (begin 〈expression〉+)

〈assignment〉 ::= (set! 〈variable〉 〈expression〉)

12 Course Notes 6: A Substitution Model for Scheme, I: Rewrite Rules

A.4 Derived Syntax

〈keyword〉 ::= . . . | define

〈body〉 ::= 〈internal-defines〉〈expression〉+

〈define〉 ::= . . . | (define 〈variable〉 〈expression〉)
| (define (〈variable〉 〈formals〉) 〈body〉)

〈internal-defines〉 ::= 〈define〉∗ (Note: all defined variables must be distinct.)
〈let-form〉 ::= . . . | (〈let-keyword〉 (〈binding〉∗) 〈body〉)

〈let-keyword〉 ::= . . . | let | let*

〈lambda-expression〉 ::= . . . | (lambda (〈formals〉) 〈body〉) | (lambda 〈variable〉 〈body〉)

〈expression〉 ::= . . . | 〈cond〉 | 〈and〉 | 〈or〉 |
〈keyword〉 ::= . . . | cond | else | and | or

〈cond〉 ::= (cond 〈clause〉〈clause〉∗)
〈clause〉 ::= (〈test〉 〈expression〉∗) | (else 〈expression〉+)

〈and〉 ::= (and 〈expression〉∗)
〈or〉 ::= (or 〈expression〉∗)

〈s-expression〉 ::= 〈identifier〉 | 〈self-evaluating〉 | (〈s-expression〉∗)

A.5 Continuations

〈procedure-constant〉 ::= . . . | call/cc | abort

	Introduction
	Control Syntax for the Substitution Model
	Syntactic Values
	Control Contexts for Kernel Scheme

	Scheme Rewrite Rules
	Simple Control Rules
	Rules for Kernel Scheme

	Environment Rules
	Unique Rewriting

	Scheme Syntax in BNF
	The Functional Kernel
	Functional (Immutable) Lists
	The Full Kernel
	Derived Syntax
	Continuations

