
Massachusetts Institute of Technology Course Notes 7
6.844, Spring ’05: Computability Theory of and with Scheme March 28
Prof. Albert R. Meyer revised April 8, 2005, 606 minutes

A Substitution Model for Scheme

1 Introduction

These notes describe a Scheme Substitution Model: an accurate, simple mathematical model of
Scheme evaluation based on rules for rewriting one Scheme expression into another. The model
captures a significant portion of Scheme, including asssignment (set!) and control abstraction
(call/cc).

We assume the reader already has an understanding of Scheme at the level taught in an intro-
ductory Scheme programming course. In particular, we assume the concepts of free and bound
variables, and the scoping rules for lambda and letrec , are understood.

The rules of the game in a Substitution Model are that the only objects manipulated in the Model
are Scheme expressions: no separate data structures for environments, cons -cells, or continu-
ations. Evaluation of an expression, M , is modelled by successive application of rewrite rules
starting with M . Each rule transforms an expression into a new Scheme expression. Rewriting
continues until an expression is reached for which no rule is applicable. This final expression, if
any, gives a direct representation either of the value returned by the expression, or of the kind of
dynamic error that first occurs in the evaluation.

At most one rule is applicable to each expression, reflecting the deterministic character of Scheme
evaluation. The way an expression rewrites is determined solely by the expression, not the se-
quence of prior rewrites that may have led to it. If M ′ is an expression reached at any point by
rewriting starting at M , then evaluating M ′ in Scheme’s initial environment will result in the same
final value, the same kind of error, or the same “runaway” behavior (divergence) as evaluation of
M .

The environment in which an expression is to be evaluated will be represented by surrounding
an expression with an outermost letrec that binds variables in the environment to the expres-
sions representing their values. Immutable lists and pairs are represented as combinations with
operators list or cons .

Mutable lists do not fit well into a Substitution Model. They could be shoe-horned in, but we
haven’t found a tasteful way to do it. The problem is that we haven’t found a reasonable class
of Scheme expressions that evaluate directly to circular list structures and that could serve as
canonical forms for these structures. So we have omitted mutable lists from this Substitution
Model; vectors are omitted for similar reasons. We have omitted characters altogether, ensuring
that strings are immutable.

Side-effects involving input/output also don’t fit and have been omitted. So procedures such as
set-car! , string-set! , display , or read are not included in the Model.

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

2 Course Notes 7: A Substitution Model for Scheme

Scheme consists of a kernel language and a variety of additional syntactic forms. The Revised5

Scheme Manual describes how to translate (“desugar”) these additional forms—referred to as
“derived syntax”—into Kernel Scheme. These translations can easily be described with rewrite
rules and could be incorporated directly into a Substitution Model. But since the desugaring rules
raise no new issues beyond those arising in the kernel rules, we will not consider them further.

2 Control Syntax for the Substitution Model

A simplified Backus-Naur Form (BNF) grammar for Scheme, including derived syntax, is given
in an Appendix. In these notes, the unmodified word “Scheme” will henceforth refer to Kernel
Scheme as given by this grammar.

According to the official Scheme specification, the standard builtin operators such as +, symbol? ,
cons , apply are variables that can be reassigned. This is a regrettable design decision, because
with few exceptions, it is a really bad idea for a programmer to redefine the builtins. In this
Substitution Model, these identifiers are treated as constants rather than variables.

The Substitution Model requires some additional syntactic concepts, namely, syntactic values and
control contexts.

2.1 Syntactic Values

Scheme’s values are numbers, Booleans, symbols, and similar atomic types; procedures; and lists
and pairs of values. Each value will be represented by a canonical expression called a syntactic
value. In particular, compound procedures are represented as lambda -expressions. Here is the
grammar1:

〈syntactic-value〉 ::= 〈immediate-value〉 | 〈list-value〉 | 〈nonlist-pair-value〉
〈immediate-value〉 ::= 〈self-evaluating〉 | 〈symbol〉 | 〈procedure〉

〈list-value〉 ::= 〈nil〉 | (list 〈syntactic-value〉+)

〈nonlist-pair-value〉 ::= (cons 〈syntactic-value〉 〈immediate-value〉)
| (cons 〈syntactic-value〉 〈nonlist-pair-value〉)

Note that syntactic values may contain letrec ’s only within procedure bodies.

2.2 Control Contexts for Scheme

An important technical property of the Substitution Model is that the rewrite rule to apply at any
evaluation step will be uniquely determined. The order in which subexpressions are evaluated is
formalized in terms of control contexts. A control context is an expression with a a single occurrence
of a variable, [], called the “hole,” indicating the subexpression that an evaluator would begin
working on. We’ll illustrate with an example before giving the formal definitions.

1In these grammars, superscript “∗” indicates zero or more occurrences of a grammatical phrase, and superscript
“+” indicates one or more occurrences.

Course Notes 7: A Substitution Model for Scheme 3

Definition 2.1. If R is an expression with a hole, and M is an expression, we write R[M] to denote
the result of replacing the hole in R by M without any renaming of bound variables.

Example 2.2. Let

M = (+ 1 (if (pair? (list (list) ’a)) 2 3) (* 4 5)) .

M is a combination, and not all the operands are values, so Scheme would start to evaluate one of
the operands. Using left-to-right evaluation, the operand

(if (pair? (list (list) ’a)) 2 3)

would be the one to start evaluating, since + and 1 represent final values. This corresponds to
parsing M as

R1[(if (pair? (list (list) ’a)) 2 3)]

where R1 is the control context

R1 ::= (+ 1 [] (* 4 5)) .

The test of this if expression is a combination

P ::= (pair? (list (list) ’a))

whose operator and operand are values, so next, Scheme would actually apply the operator pair?
to the operand (list (list) ’a) . This corresponds parsing M as R[P] where

R ::= (+ 1 (if [] 2 3) (* 4 5)) .

The fact that Scheme will apply the operator pair? is captured by the fact that P is an immedi-
ate redex consisting of a procedure constant, pair? , applied to a value, namely, the 〈list-value〉
(list (list) ’a) .

Formally, we specify control contexts and immediate redexes by the following grammars:

〈control-context〉 ::= 〈hole〉
| (if 〈control-context〉 〈expression〉 〈expression〉)
| (begin 〈control-context〉 〈expression〉+)

| (set! 〈variable〉 〈control-context〉)
| (〈let-keyword〉

(〈value-binding〉∗ (〈variable〉 〈control-context〉) 〈binding〉∗)

〈expression〉)
| (〈syntactic-value〉∗ 〈control-context〉 〈expression〉∗)

〈hole〉 ::= []
〈value-binding〉 ::= (〈variable〉 〈syntactic-value〉)

Note that the hole in a control context is never within the body of a lambda or letrec expression,
though it may appear within a nonvalue init of a letrec binding.

4 Course Notes 7: A Substitution Model for Scheme

Problem 1. Verify that if R1 and R2 are control contexts, then so is R1[R2].

〈immediate-redex〉 ::= 〈variable〉
| (if 〈syntactic-value〉 〈expression〉 〈expression〉)
| (〈let-keyword〉 (〈value-binding〉∗) 〈expression〉)
| (〈nonpairing-procedure〉 〈syntactic-value〉∗)

| (begin 〈expression〉)
| (begin 〈syntactic-value〉 〈expression〉∗)

| (set! 〈variable〉 〈syntactic-value〉)

Definition 2.3. An expression with an outermost letrec binding variables to values—used to
model a Scheme environment—is said to be in environment form, namely, it is of the form

(letrec (〈value-binding〉∗) N)

for some 〈expression〉, N . This outermost letrec of an environment form expression is called
the environment letrec of the expression. We sometimes use the notation Env(N) to indicate an
expression of the form above.

A final value is a 〈syntactic-value〉 or an environment form Env(〈syntactic-value〉).

Definition 2.4. Let M be a Scheme expression in environment form, R be a control context, and P
be an immediate redex. Then M is said to control-parse into R and P iff M is of the form Env(R[P]).

Lemma 2.5. (Unique Control Parsing) Let M be a Scheme expression in environment form. If M is a
final value, then it is not control-parsable. If M is not a final value, then there is a unique control context,
R, and immediate redex, P , such that M = Env(R[P]).

Proof. Suppose M = Env(N). We proceed by structural induction on N . If N is:

• [〈self-evaluating〉, 〈symbol〉, or 〈procedure〉], then N is a 〈syntactic-value〉, and M is a final
value. So we must show that M cannot be control-parsed. But it follows directly from the
definitions of 〈syntactic-value〉 and 〈control-context〉, that the only way a 〈syntactic-value〉
can be of the form R[K] for any control-context, R, is if R = 〈hole〉, which means K must be
N . But R, N is not a control-parse of M because N is a 〈syntactic-value〉, and 〈syntactic-value〉’s
are not 〈immediate-redex〉’s. So M is not control-parsable.

• [a variable] then the only possibility is R = 〈hole〉 and P = N .

• [a combination] then if,

– [the operator or some operand is not a 〈syntactic-value〉], then N is of the form

(V0 . . . K M0 . . .)

where V0 . . . is a (possibly empty) sequence of syntactic values, K is not a syntactic
value, and M0 . . . is a (possibly empty) sequence of expressions. So N is neither a

Course Notes 7: A Substitution Model for Scheme 5

syntactic value nor an immediate redex. Now it follows directly from the definitions of
〈syntactic-value〉 and 〈control-context〉, that any control context, R, such that N = R[L]
for some L, must be of the form R1[R′] where R1 = (V0 . . . 〈hole〉 M0 . . .) and R′ is
some control context such that R′[L] = K. But by induction, K = R2[P] for a unique
〈control-context〉, R2, and 〈immediate-redex〉, P . Hence, N uniquely control-parses
into R1[R2] and P .

– [the operator and all operands are 〈syntactic-value〉’s], then N is of the form (op V0 . . .)
where V0 . . . is a (possibly empty) sequence of syntactic values and op is a syntac-
tic value. By induction, there is no control-parse for op or any Vi. Now from the
definitions of 〈syntactic-value〉 and 〈control-context〉, we see that the only remaining
possible control-parse of M must be with R = 〈hole〉 and P = N . If op is not a
〈pairing-operator〉, then N is an immediate redex, and so 〈hole〉, N is the uniquely
determined control-parse, as required. On the other hand, if op is a 〈pairing-operator〉,
then N is a value, not an immediate redex, so M is a final value that is not control-
parsable, as required in this case.

• [etc.] The remaining cases are left to the reader.

Problem 2. Complete the proof of Lemma 2.5

3 Scheme Rewrite Rules

This section contains all the rewrite rules necessary to specify the evaluation of kernel Scheme
expressions.

We state only the rules that apply to expressions in environment form. These rules implicitly
specify the rules for expressions not in environment form by the following convention:

Definition 3.1. If M is not in environment form, then M→N is a Substitution Model rule iff

1. (letrec () M) → (letrec () N) is a Substitution Model rule, or

2. N is in environment form and (letrec () M) → N is a Substitution Model rule.

3.1 Simple Control Rules

In the rest of these notes, R will denote a control context, B a sequence of zero or more 〈value-binding〉’s
of distinct variables, V a syntactic value, V1 . . . a sequence of one or more syntactic values, and x
a variable.

6 Course Notes 7: A Substitution Model for Scheme

Definition 3.2. A simple control rule is a rewrite rule of the form

(letrec (B) R[P]) → (letrec (B) R[T]) .

where P an 〈immediate-redex〉 called the immediate redex of the rule, and T is called the immediate
contractum. A simple control rule with immediate redex, P , and immediate contractum, T , will be
referred to for short as “the simple control rule P→T .”

Note that by the convention of Definition 3.1, the simple control rule P→T also implicitly defines
a rule

R[P]→R[T]

when R[P] is not in environment form.

The immediate redexes and immediate contracta for the Scheme simple control rules are:

• if :

(if #f M N) →N

(if V M N) →M, for V 6= #f

• lambda no args:

((lambda () M)) →M

((lambda x M)) →(letrec ((x 〈nil〉)) M)

• lambda bind an arg:

((lambda (x1 . . .) M) V1 · · ·) →(letrec ((x1 V1)) ((lambda (. . .) M) · · ·))
((lambda x M) V1 . . .) →(letrec ((x (list V1 . . .))) M)

• begin :

(begin M) →M

(begin V 〈expression〉+) →(begin 〈expression〉+)

• procedure? :

(procedure? V) →#t for V a 〈procedure〉,
(procedure? V) →#f for other V .

• builtin operations:

(+ 2 3) → 5

(string-append "ab" "cde") → "abcde"

(boolean? "ab") → #f
...

Course Notes 7: A Substitution Model for Scheme 7

• symbols:

(symbol? (quote S)) → #t

(symbol? V) → #f , if V is not (quote S)

(eq? (quote S) (quote S)) → #t

(eq? (quote S1) (quote S2)) → #f , if S1 6= S2,

where S, S1, S2 are 〈identifier〉’s.

• lists:

(cons V 〈nil〉) → (list V)

(cons V (list V1 . . .)) → (list V V1 . . .)

(car (list V1 . . .)) → V1

(cdr (list V1 V2 . . .)) → (list V2 . . .)

(null? 〈nil〉) → #t

(null? V) → #f , if V 6= 〈nil〉
(pair? (list 〈syntactic-value〉+)) → #t

(pair? 〈nil〉) → #f

(pair? 〈immediate-value〉) → #f

(apply V (list V1 . . .)) → (V V1 . . .)

(apply V 〈nil〉) → (V)

• pairs:

(pair? (cons V1 V2)) →#t

(car (cons V1 V2)) →V1

(cdr (cons V1 V2)) →V2

where V2 is an 〈immediate-value〉 or 〈nonlist-pair-value〉.

3.2 Environment Rules

The following rules model lookups and updates of the environment.

• instantiation:

(letrec (B1 (x V) B2) R[x]) → (letrec (B1 (x V) B2) R[V])

• assignment:

(letrec (B1 (x V1) B2) R[(set! x V2)])
→ (letrec (B1 (x V2) B2) R[(quote set!-done)])

• nested letrec :

(letrec (B1) R[(letrec (B2) M)]) → (letrec (B1 B2) R[M]) .

8 Course Notes 7: A Substitution Model for Scheme

3.3 Rules for Continuations

Most programmimg languages include various escape and error-handling mechanisms that allow
processes to be interrupted with direct return of a value. Scheme provides a single, very general
feature of this kind, called call-with-current-continuation , or call/cc for short.

The process of applying call/cc involves creation of a new continuation procedure which de-
scribes how the evaluation would continue if a value was returned by the call/cc application. In
the Substitution Model, the control context surrounding an immediate redex specifies the further
evaluation to be performed once the value of the redex has been found. In particular, the continu-
ation procedure of an immediate redex (call/cc V) in an expression R[(call/cc V)] would
be

(lambda (x) (return-to-repl R[x])) .

So continuation procedures are represented as ordinary procedure expressions that can abort an
evaluation and return a value directly to the “top-level” read-eval-print loop.

This is the idea behind the following control rules for the procedure constants call/cc and
return-to-repl 2:

(letrec (B) R[(return-to-repl V)]) → (letrec (B) V) , (abort)

(letrec (B) R[(call/cc V)]) →
(letrec (B) R[(V (lambda (x) (return-to-repl R[x])))]) .

(call/cc)

where x is fresh.

3.4 Unique Rewriting

An examination of the Substitution Model rewrite rules reveals that an environment form expres-
sion, M , matches the redex of a rule only if M control-parses. Moreover, whether it matches the
redex of a rule is uniquely determined by the immediate redex of the control-parse of M . Com-
bining this observation with the Unique Control Parsing Lemma 2.5, we conclude:

Lemma 3.3. (Unique Matching) There is at most one Scheme Substitution Model rewrite rule whose
pattern matches an environment form expression M , and if there is such a rewrite rule, its match is unique.

Definition 3.4. For Scheme expressions M,N , we write M →N to indicate that M matches the
redex of a rule and N correspondingly matches the contractum of the rule. That is, M rewrites to
N by one application of a Scheme Substitution Model rewrite rule. We write M 6→ to mean that M
does not match the redex of any rule.

2For expressions with return-to-repl to have the same behavior in Scheme as in the Substitution Model, an
return-to-repl procedure has to be installed into Scheme. This can be accomplished by defining return-to-repl
to have some dummy value in the initial environment, (define return-to-repl ’dummy) , and then evaluating

(call-with-current-continuation (lambda (repl) (set! return-to-repl repl)))

in the top level read-eval-print-loop. Also, this Substitution Model uses the more succint name call/cc , so the defini-
tion

(define call/cc call-with-current-continuation)

should be evaluated.

Course Notes 7: A Substitution Model for Scheme 9

So the Unique Matching Lemma immediately implies

Theorem 3.5. (Unique Rewriting) For every Scheme expression, M , there is at most one N such that
M→N .

Definition 3.6. We write M 6→ when an expression, M , does not match the redex of any Substitu-
tion Model rewrite rule, that is, no rule applies to M .

A final value, F , does not control-parse, and therefore does not match the redex of any rule. Ex-
pressions which do control-parse, but nevertheless do not match the redex of any rule, correspond
to dynamic errors. We can characterize these expressions explicitly:

Definition 3.7. An error combination is

• an expression, M , of the form (〈procedure-constant〉 〈syntactic-value〉∗) such that M 6→, or
of the form (V 〈syntactic-value〉∗) where V is a 〈syntactic-value〉 but not a 〈procedure〉.

• 〈lambda-expression〉’s applied to the wrong number of arguments, in particular, expressions
of the form

((lambda () 〈expression〉) 〈syntactic-value〉+) ,

or
((lambda (〈variable〉+) 〈expression〉)) .

(Note that other cases of 〈lambda-expression〉’s applied to the wrong number of arguments
will rewrite to one of the forms above.)

• (cons 〈syntactic-value〉∗) if there are not exactly two values to which the cons is applied.

Clearly, error combinations cause immediate dynamic errors in Scheme, for example,

(/ 1 0)

(+ ’a 0)

(0 1)

(call/cc list +)

((lambda () (f 1)) 2)

(cons 1)

are error combinations.

Definition 3.8. An error letrec is an expression of the form

(letrec (〈value-binding〉∗ (〈variable〉 R[x]) 〈binding〉∗) 〈expression〉)

where the indicated occurrence of x is bound by one of the letrec bindings.

An arbitrary Scheme expression, M , is an immediate error if it control-parses with an immediate
redex that is an error combination or an error letrec .

An expression, M is a lookup error if it control-parses with an immediate redex that is of the form
x, or (set! x 〈syntactic-value〉) , where x is a free variable.

10 Course Notes 7: A Substitution Model for Scheme

We distinguish errors caused by lookup of an undefined variable because, in contrast to imme-
diate errors, an expression that causes a lookup error may do something useful in an extended
environment where the undefined variable is assigned a value.

Theorem 3.9. Let M be a Scheme expression. Then M 6→ if and only if

1. M is a final value, or

2. M is an immediate error or a lookup error.

3.5 Control-context Independence

If a Scheme subexpression starts to be evaluated, then evaluation of that subexpression continues
until a value for the subexpression is returned. This is called “sequential” evaluation, as opposed,
say, to “parallel” evaluation where evaluation steps may alternate between disjoint subexpres-
sions. A technical property that implies sequentiality is given in the following corollary.

Corollary 3.10. (Control-context Independence) Restrict the Scheme Substitution Model Rules to exclude
the (call/cc) and (abort) rules. If

(letrec (B1) M1) → (letrec (B2) M2) ,

then
(letrec (B1) R[M1]) → (letrec (B2) R[M2]) .

by the same rule.

Problem 3. Prove Corollary 3.10. Hint: Use Problem 1 and Unique Control Parsing.

The (call/cc) and (abort) rules are not control-context independent. To illustrate this, note that

(return-to-repl 1) →1.

If independence held, we could conclude that for R = (+ 1 〈hole〉) ,

R[(return-to-repl 1)]→R[1]→ 2.

But in fact, by the (abort) rule,

R[(return-to-repl 1)]→1.

This failure of control-context independence could repaired simply by treating (return-to-repl V)
as a value and modifying the (abort) rule so that return-to-repl does not get deleted. But even
with this repair, failures of independence arise from the (call/cc) rule. For example,

(call/cc (lambda (k) (k 0)))
∗→ (return-to-repl 0) .

Course Notes 7: A Substitution Model for Scheme 11

If control-context independence held, we could conclude that

R[(call/cc (lambda (k) (k 0)))] ∗→R[(return-to-repl 0)]→ (return-to-repl 0) ,

but in fact

R[(call/cc (lambda (k) (k 0)))] ∗→R[(return-to-repl R[0])]→∗ (return-to-repl 1) .

This kind of failure of independence is more complicated to repair, but it can be done. In the next
set of notes we’ll present revised rules (call/cc) and (abort) rules for which context independence
does hold. So in particular, even with call/cc , Scheme evaluation would switch back and forth
between disjoint subexpressions to evaluate them in parallel.

4 The Variable Convention

Definition 4.1. A Scheme expression satisfies the Variable Convention iff no variable identifier is
bound more than once, and no identifier has both bound and free occurrences.

Problem 4. A Substitution Model rewrite rule preserves the Variable Convention, if, when M satisfies
the Variable Convention and rewrites to N by an application of the rule, then N also satisfies the
Convention. Most of the rules preserve the Variable Convention; which do not?

Note that if M →N but M does not satisfy the Variable Convention, then N may not be a well-
formed Scheme expression because the same variable may wind up with two bindings in the
outermost, “environment,” letrec of N . For example,

Example 4.2.

(letrec ((x 1)) ((lambda (x) x) 2))

→ (letrec ((x 1)) (letrec ((x 2)) ((lambda () x))))

→ (letrec ((x 1) (x 2)) ((lambda () x)))

So we want to ensure that each expression satisfies the Variable Convention before application of
a rewriting rule.

It is possible to choose “fresh” names for the bound variables in any Scheme expression and
thereby obtain an expression satisfying the Variable Convention. The new expression is equiv-
alent to the original one up to renaming. (The Scheme Substitution Model implementation on the
course web page has a procedure enforce that performs such a renaming.) For historical rea-
sons, this equivalence up to renaming is called α-equivalence. So to ensure that the Substitution
Model rewriting rules correctly model Scheme behavior, we henceforth assume that the Variable
Convention will, if necessary, be enforced on Scheme expressions before they are rewritten by a
Substitution Model rule. A consequence of this assumption is that rewritten expressions are no
longer determined uniquely; instead, they are only determined up to α-equivalence.

12 Course Notes 7: A Substitution Model for Scheme

To give a precise definition of α-equivalence we first have to define the notion of substitution for
a variable in a Scheme expression. Because Scheme has binding constructs, simple substitution as
we defined it for arithmetic expressions will not do. First, when we substitute N for a variable
x in M , in symbols M [x := N], we want to replace by N only the “free”occurrences of x in M .
Second, we don’t want any free variables in N to be “accidentally” bound because they happen to
fall within the scope of a binding construct in M .

To avoid this, we may have to rename some bound variables of M to “fresh” variables that do not
occur in any of the expressions at hand. This then forces us to consider simultaneous substitution
of terms for several variables.

Definition 4.3. For functions, f, g, define the function f ← g to be the function, h, such that

h(u) ::=

{
g(u) if u ∈ domain (g) ,

f(u) otherwise.

Definition 4.4. A substitution is a mapping, σ, from a finite set of 〈variable〉’s to 〈expression〉’s.
The notation

[x1, . . . , xn := M1, . . . ,Mn]

describes the substitution, σ, with domain {x1, . . . , xn} such that σ(xi) = Mi for i = 1, . . . n.

Every substitution, σ, defines a mapping, [σ], from 〈expression〉’s to 〈expression〉’s defined by
structural induction on 〈expression〉’s:

• [〈self-evaluating〉, 〈procedure-constant〉, or 〈pairing-operator〉]

c[σ] ::= c.

• [〈symbol〉]
(quote name) [σ] ::= (quote name) .

• [〈variable〉]

x[σ] ::=

{
σ(x) if x ∈ domain (σ),
x otherwise.

• [〈if〉]
(if T C A) [σ] ::= (if T [σ] C[σ] A[σ]) .

• [〈combination〉]
(M1 . . . Mn) [σ] ::= (M1[σ] . . . Mn[σ])

• [〈lambda-expression〉]

(lambda (x1 . . . xn) N) [σ] ::= (lambda (x1 . . . xn) N [σ′])

where σ′ is the restriction of σ to the variables other than x1 . . . xn.

Course Notes 7: A Substitution Model for Scheme 13

• [〈let-form〉]

(letrec ((x1 M1)...(xn Mn)) N) [σ] ::=
(letrec ((z1 M1[σ ← ρ])...(zn Mn[σ ← ρ])) N [σ ← ρ])

where

ρ = [x1, . . . , xn := z1, . . . , zn] (1)

for distinct fresh variables z1, . . . , zn.

Definition 4.5. A context, C, is a Scheme expression except that the hole token, 〈hole〉, may serve
as a free variable; the hole may only occur once. We write C[M] to denote the result of replacing
the hole in C by M without any renaming of bound variables.

Problem 5. Write a BNF grammar for 〈context〉.

Definition 4.6. The binary relation α-equivalence is the smallest equivalence relation, =α, on 〈expression〉’s
such that

• for ρ from (1) above,

(lambda (x1 . . . xn) N) =α(lambda (z1 . . . zn) N [ρ]) ,

(letrec ((x1 M1) . . . (xm Mm)) N) =α(letrec ((z1 M1[ρ])...(zn Mn[ρ])) N [ρ]) .

• if M =α N , then C[M] =α C[N] for any context C.

Problem 6. (a) Prove that if M1 =α M2, then M1 is a 〈syntactic-value〉 iff M2 is also a 〈syntactic-value〉;
likewise M1 is an 〈immediate-redex〉 iff M2 is an 〈immediate-redex〉.

(b) Prove that if M1 =α M2 and M1→N1, then there is an N2 such that N2 =α N1 and M2→N2.

Problem 7. Write a two argument Scheme procedure alpha=? that determines whether its argu-
ments are α-equivalent Scheme expressions. That is, if M,N are α-equivalent Scheme expressions,
then (alpha=? ’ M ’ N) returns #t , otherwise it returns #f .

We observed that renaming bound variables to ensure expressions satisfy the Variable Convention
implies that expressions are determined only up to α-equivalence. To avoid constant reference to
α-equivalence in subsequent sections, we will implicitly identify α-equivalent expressions: from
now on, when we say two expressions are “equal”, we actually will mean only that they are α-
equivalent, and when we say an expression is “uniquely determined”, we mean it is determined
up to α-equivalence.

14 Course Notes 7: A Substitution Model for Scheme

5 Repeated Rewriting

Starting with a Scheme expression and successively applying Substitution Model rewrite rules
leads to a sequence of expressions that correspond to the steps that a standard interpreter would
perform in evaluating the starting expression. When the rules no longer apply, the evaluation
is complete—either successfully with the return of the value of the expression, or unsuccessfully
because of an error of some type.

Definition 5.1. The notation M
n−→N means that M rewrites to N by n successive applications of

Substitution Model rewrite rules; M
∗→N means that M

n−→N for some n ∈ N.

M converges to N when M
∗→ N and N is a final value, called the final value of M . The notation

M ↓ N indicates that M converges to N , and M↓ indicates that M converges to some final value.

M diverges when there is an immediate error, N , such that M
∗→ N , or there is no N such that

M
∗→N and N 6→. The notation M↑ indicates that M diverges.

M leads to a lookup error when M
∗→N for some lookup error N .

The Unique Rewriting Theorem 3.5 implies that if M
∗→ N and N 6→, then N is uniquely deter-

mined. So we have:

Lemma 5.2. For every expression, M , exactly one of the following holds: M↓, M↑, or M leads to a lookup
error.

Note that a closed expression, that is, one with no free variables, cannot lead to a lookup error, so
it diverges iff it does not converge.

Lemma 5.3. If M diverges, then so does (letrec (B) R[M]) .

Problem 8. Prove Lemma 5.3. Hint: Prove it for Scheme without call/cc , so you can use control-
context independence. Then see if you can modify your proof to cover the call/cc rules as well.

Problem 9. (a) Prove that

M ↓ (letrec (B1) V) implies (letrec (B2) M) ↓ (letrec (B2 B1) V) .

(b) Prove that

M ↓ (letrec (B) 3) implies (+ M M) ↓ (letrec (B′) 6) ,

for some value bindings, B′.

(c) Exhibit value bindings, B, and an expression, M , such that

(letrec (B) M) ↓ (letrec (B′) 3) ,

but
(letrec (B) (+ M M)) ↑ .

Hint: set! will have to appear in M .

Course Notes 7: A Substitution Model for Scheme 15

6 Garbage Collection

Garbage collection refers to the process whereby Lisp-like programming systems recapture inacces-
sible storage space. An attraction of Lisp-like languages is that garbage colection occurs behind
the scenes, freeing the programmer from responsibility for explicit allocation and deallocation of
storage blocks.

There are two rules of the Substitution Model corresponding to garbage collection. These garbage
collection rules are distinguished from the other rewrite rules because they can be applied at any
time—just as garbage collection can occur at any time during a computation. In particular, both
a garbage collection rule and a regular Substitution Model rewrite rule may be applicable to the
same expression, so the Unique Rewriting Theorem 3.5 will need to be qualified. We’ll explain
how to reformulate the Unique Rewriting property in Section 6.2 below.

6.1 Environment Garbage Collection

In our Substitution Model, garbage collectable storage in a Scheme computation corresponds to
unneeded bindings in the environment letrec of an expression. The environment garbage collec-
tion rule is

(letrec (B) N) → (letrec (B′) N) ,

where B′ is a subsequence of the value bindings B, and none of the free variables in the contractum
(letrec (B′) N) were bound by the omitted bindings, namely, the bindings in B that do not
appear in B′. For example,

(letrec ((a (lambda () b))
(b 3)
(c (lambda () (* b (f))))
(d (lambda () f))
(f 4))

(+ 1 (a) ((lambda (c) (c 5 6)) -)))

can rewrite by this garbage collection rule to

(letrec ((a (lambda () b))
(b 3)
(f 4))

(+ 1 (a) ((lambda (c) (c 5 6)) -)))

because there are no free occurrences of c or d in the rewritten expression. This second expression
could in turn be rewritten by the garbage collection rule to

(letrec ((a (lambda () b))
(b 3))

(+ 1 (a) ((lambda (c) (c 5 6)) -)))

16 Course Notes 7: A Substitution Model for Scheme

Of course, the garbage collection rule would also have allowed the first expression to rewrite
directly to this last.

An efficient way to apply the garbage collection rule is to identify all the variables which are
“needed” by the body of the letrec and erase the bindings for the rest of the variables. Here is a
recursive way to find these needed variables in an expression (letrec (B) N) :

• All free variables of N are needed.

• If x is a needed variable and (x V) is a binding in B, then the free variables of V are also
needed.

A rule that collects all the garbage in an environment can now be described as

(letrec (B) N) → (letrec (B′) N) ,

where B′ is the subsequence of B consisting of the bindings of the needed variables in (letrec (B) N) .

Finally, we can garbage-collect an empty environment:

(letrec () M) →M.

6.2 Equivalence up to Garbage Collection

The garbage collection rules allow an expression to be rewritten in different ways. For example,
we saw above that

(letrec ((a (lambda () b))
(b 3)
(c (lambda () (* b (f))))
(d (lambda () f))
(f 4))

(+ 1 (a) ((lambda (c) (c 5 6)) -)))

can be rewritten to

(letrec ((a (lambda () b))
(b 3))

(+ 1 (a) ((lambda (c) (c 5 6)) -)))

by the environment garbage collection rule, but it can also be rewritten in a completely different
way by instantiating a:

(letrec ((a (lambda () b))
(b 3)
(c (lambda () (* b (f))))
(d (lambda () f))
(f 4))

(+ 1 ((lambda () b)) ((lambda (c) (c 5 6)) -)))

Course Notes 7: A Substitution Model for Scheme 17

So Unique Rewriting Theorem 3.5 no longer holds, forcing us to consider the possibility that ex-
pressions may no longer rewrite to a unique final form. But they do:

Theorem 6.1. If M is a Scheme expression and M
∗→N for some N such that N 6→, then this N is uniquely

determined.

Problem 10. Prove Theorem 6.1. Hint: A simple way to prove this result is to observe that the full
set of Substitution Model rules—including both the regular and garbage collection rules—satisfies
the Diamond Lemma, also known as the Strong Confluence property (cf. Mitchell’s text, p. 224).

We can even recover a Unique Rewriting Corollary by changing uniqueness up to α-equivalence
into uniqueness up to garbage collection.

Definition 6.2. Garbage-collection equivalence, =gc, is the smallest equivalence relation on expres-
sions such that

• if M =α N , or if M rewrites to N by application of a garbage collection rule, then M =gc N ,

• if M =gc N , then C[M] =gc C[N] for any context C.

Now we can recover the Unique Rewriting Corollary above:

Corollary 6.3. (Unique Rewriting up to Garbage Collection) If M is a Scheme expression, and M→
N1 and M→N2 for some Scheme expressions N1, N2, then N1 =gc N2.

18 Course Notes 7: A Substitution Model for Scheme

A Scheme Syntax in BNF

The following Backus-Naur Form (BNF) grammars describe the main constructs of Scheme3. In
these grammars, superscript “∗” indicates zero or more occurrences of a grammatical phrase, and
superscript “+” indicates one or more occurrences.

A.1 The Functional Kernel

〈expression〉 ::= 〈self-evaluating〉 | 〈symbol〉 | 〈variable〉
| 〈if〉 | 〈combination〉 | 〈procedure〉 | 〈let-form〉

〈self-evaluating〉 ::= 〈numeral〉 | 〈boolean〉 | 〈string〉 | . . .

〈numeral〉 ::= 0 | -1 | 314159 | . . .
〈boolean〉 ::= #t | #f

〈string〉 ::= "hello there" | . . .

〈symbol〉 ::= (quote 〈identifier〉)
〈identifier〉 ::= identifiers that are not 〈self-evaluating〉
〈variable〉 ::= identifiers that are neither 〈self-evaluating〉,

〈procedure-constant〉, nor 〈pairing-operator〉

〈keyword〉 ::= quote | lambda | 〈let-keyword〉 | if

〈procedure〉 ::= 〈nonpairing-procedure〉
〈nonpairing-procedure〉 ::= 〈lambda-expression〉 | 〈procedure-constant〉
〈lambda-expression〉 ::= (lambda (〈formals〉) 〈expression〉)

〈formals〉 ::= 〈variable〉∗ (Note: all 〈variable〉’s must be distinct.)
〈procedure-constant〉 ::= + | - | * | / | = | < | atan | string=? | . . .

| number? | symbol? | procedure? | string? | boolean? | eq? | . . .

Note that no “side-effect” procedures such as display , set-car! , string-set! nor “pairing”
operators list , cons are included among the procedure constants. Also, as a further reflection
of our explanation why mutable lists have been omitted from the Substitution Model, we restrict
application of eq? to values that are 〈symbol〉’s.

3For the official, full Scheme grammar, see the Revised5 Scheme Manual available on the web at:

http://www.schemers.org/Documents/Standards/R5RS

Course Notes 7: A Substitution Model for Scheme 19

〈let-form〉 ::= (〈let-keyword〉 (〈binding〉∗) 〈expression〉)
(Note: all variables bound by the 〈let-form〉must be distinct.)

〈let-keyword〉 ::= letrec

〈binding〉 ::= (〈variable〉 〈init〉)
〈init〉 ::= 〈expression〉

〈if〉 ::= (if 〈test〉 〈consequent〉 〈alternative〉)
〈test〉 ::= 〈expression〉

〈consequent〉 ::= 〈expression〉
〈alternative〉 ::= 〈expression〉

〈combination〉 ::= (〈operator〉 〈operand〉∗)

〈operator〉 ::= 〈expression〉
〈operand〉 ::= 〈expression〉

A.2 Functional (Immutable) Lists

〈expression〉 ::= . . . | 〈nil〉
〈nil〉 ::= (list)

〈procedure〉 ::= . . . | 〈pairing-operator〉
〈pairing-operator〉 ::= cons | list

〈procedure-constant〉 ::= . . . | car | cdr | map | apply | null? | pair?

(Note: cons and list are not considered to be procedure constants.)
〈lambda-expression〉 ::= . . . | (lambda 〈variable〉 〈expression〉)

A.3 The Full Kernel

〈expression〉 ::= . . . | 〈begin〉 | 〈assignment〉
〈keyword〉 ::= . . . | begin | set!

〈begin〉 ::= (begin 〈expression〉+)

〈assignment〉 ::= (set! 〈variable〉 〈expression〉)

20 Course Notes 7: A Substitution Model for Scheme

A.4 Derived Syntax

〈keyword〉 ::= . . . | define

〈body〉 ::= 〈internal-defines〉〈expression〉+

〈define〉 ::= . . . | (define 〈variable〉 〈expression〉)
| (define (〈variable〉 〈formals〉) 〈body〉)

〈internal-defines〉 ::= 〈define〉∗ (Note: all defined variables must be distinct.)
〈let-form〉 ::= . . . | (〈let-keyword〉 (〈binding〉∗) 〈body〉)

〈let-keyword〉 ::= . . . | let | let*

〈lambda-expression〉 ::= . . . | (lambda (〈formals〉) 〈body〉) | (lambda 〈variable〉 〈body〉)

〈expression〉 ::= . . . | 〈cond〉 | 〈and〉 | 〈or〉 | 〈quoted〉
〈keyword〉 ::= . . . | cond | else | and | or

〈cond〉 ::= (cond 〈clause〉〈clause〉∗)

〈clause〉 ::= (〈test〉 〈expression〉∗) | (else 〈expression〉+)

〈and〉 ::= (and 〈expression〉∗)

〈or〉 ::= (or 〈expression〉∗)

〈quoted〉 ::= (quote 〈s-expression〉)
〈s-expression〉 ::= 〈identifier〉 | 〈self-evaluating〉 | (〈s-expression〉∗)

A.5 Continuations

〈procedure-constant〉 ::= . . . | call/cc | return-to-repl

	Introduction
	Control Syntax for the Substitution Model
	Syntactic Values
	Control Contexts for Scheme

	Scheme Rewrite Rules
	Simple Control Rules
	Environment Rules
	Rules for Continuations
	Unique Rewriting
	Control-context Independence

	The Variable Convention
	Repeated Rewriting
	Garbage Collection
	Environment Garbage Collection
	Equivalence up to Garbage Collection

	Scheme Syntax in BNF
	The Functional Kernel
	Functional (Immutable) Lists
	The Full Kernel
	Derived Syntax
	Continuations

