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The Word Problem for Semigroups

1 Semigroup Equations

In these notes we consider equations which hold for algebras with an associative binary opera-
tion. Such algebras are called semigroups. For example, the real numbers under the operation of
addition, or the operation of multiplication, are a semigroup. However, they are not a semigroup
under subtraction since subtraction is not associative, that is,

(i− j)− k = i− (j − k),

is not always true. Similarly, the integers, or for that matter, the n × n matrices over the integers,
under either addition or multiplication, form semigroups. Notice that the last example, the n× n
matrices over the integers under multiplication is an example of a noncommutative semigroup, that
is,

M ·N = N ·M

is not always true for square integer matrices M and N .

The most basic example of a semigroup is the set, Σ∗, of strings over an alphabet, Σ, where the
binary operation is concatenation. In fact, we take the associativity of concatenation so much for
granted that we typically write xyz for the concatenation of x, y, z ∈ Σ∗, without bothering to
indicate whether they were concatenated as (x ◦ y) ◦ z or as x ◦ (y ◦ z), since of course it doesn’t
make any difference. When Σ∗ is regarded as a semigroup under concatenation, it is traditional to
refer to the strings in Σ∗ as words.

To illustrate another situation where semigroups arise, consider the eight ways of moving a square
in place: the four rotations of the square by nπ/2 radians clockwise for n = 0, 1, 2, 3, and the four
reflections about its axes—horizontal, vertical, upper left to lower right diagonal, and lower left
to upper right diagonal. A natural binary operation applies to these motions, namely, “do the first
motion, then do the second.” It’s easy enough to check that these eight are the only possible ways
of moving the square in place, so the result of performing two consecutive motions is the same
as some single one of the eight motions. These eight motions of the square are the elements of a
semigroup, A, known as the Rigid Automorphisms of the Square.

For example, suppose c means rotating the square π/2 radians clockwise, and v represents re-
flecting it about its vertical axis. Then cv denotes first rotating π/2 radians clockwise and then
reflecting about the vertical. The net effect of doing the motions c followed by v is the same as
doing single the reflection, u, about the upper left to lower right diagonal. So we can say

cv = u.

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/


Course Notes 8: The Word Problem for Semigroups 2

Similarly, ((vc)c)c denotes reflecting about the vertical and then rotating clockwise three times.
Of course we would usually describe this sequence of motions simply with the word vccc. We
can omit the parentheses because the “do this, do that” operation, is obviously associative. As a
matter of fact, vccc also has the same effect as u, so we also have

vccc = cv. (1)

One of the automorphisms in A is, z, the “rotation” by 0π/2 = zero radians. That is, z has no
effect. So for any symbol, s ∈ {c, v, z}, the word equations

zs = s and sz = s (2)

are true for A.1 It is also true that 2

cccc = z and vv = z. (3)

We can use these equations to deduce many new ones. For example,

(cv)c = (vccc)c = v(cccc) = vz = v,

so we conclude that
cvc = v. (4)

In fact, it is not hard to show that the equations (1)–(3) are a complete set of axioms for proving
word equations over the semigroup A. Namely, every equation between words over the alpha-
bet {c, v, z} which is true in A follows by repeatedly substituting occurrences of one side of an
equation (1)–(3) by the other side.

More precisely, for any set, E , of word equations, we say a word w results from word v by a single
left-right E-substitution, in symbols,

v −→
E

w,

iff there are strings x, y and an equation of the form l = r in E such that

v = xly and w = xry.

We say w results from v by an undirected E-substitution, in symbols,

v ←→
E

w,

iff either v −→
E

w or w −→
E

v.

We say w results from v by left-right E-substitutions, in symbols,

v −→
E

∗ w,

1Of course the equations (2) also hold for any word x ∈ {c, v, z}∗ in place of the symbol s, but if we replaced s by x,
then (2) would describe an infinite number of word equations instead of just six.

2The equations (3) imply that A satisfies the additional property that every element has a two-sided inverse, so A is
in fact what is called a group.
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iff w can be obtained from v by a series of zero or more single left-right E-substitutions. Formally,
there is a sequence of n ≥ 0 words u0, u1, . . . , un such that v is identical to u0, w is identical to un,
and

u0 −→
E

u1 −→
E
· · · −→

E
un.

Finally, we say that v and w are provably equal from E , in symbols

v ←→
E

∗ w,

iff there is a sequence of words u0, u1, . . . , un such that v is identical to u0, w is identical to un, and

u0 ←→
E

u1 ←→
E
· · · ←→

E
un.

Problem 1. Let EA be the equations (1)–(3), and call the following eight words the canonical words
for A:

z, c, cc, ccc, v, vc, vcc, vccc.

(a) Show that for every word v ∈ {c, v, z}∗, there is a canonical word w such that v ←→
EA

∗ w.

(b) Using the fact that there are only eight rigid automorphisms of the square, conclude from part
(a) that two words over {c, v, z} denote the same automorphisms iff they are EA-provably equal
to the same canonical word.

(c) Prove that they are actually decidable.

2 The Word Problem

The example in the previous section illustrates a typical situation in semigroup theory: we are
given some finite set E of word equations, and we want to know whether two words can be
proved equal using these equations. This problem is called the Semigroup Word Problem. More
precisely, we define the Semigroup Word Problem, SWP , to be the set of triples (E , v, w) such that
v ←→

E
∗ w.

For example, our proof of equation (4) implies that

({cv = vccc, cccc = z, vz = v} , cvc, v) ∈ SWP .

But the equations used to prove cvc = v are not enough to prove the equation vv = z, even though
vv = z is true over A. That is,

Claim 2.1.
({cv = vccc, cccc = z, vz = v} , vv, z) 6∈ SWP .
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Problem 2. Prove Claim 2.1.

The main result we want to establish is:

Theorem 2.2. The Semigroup Word Problem is many-one reducible to the 2-CM Halting Problem

The proof will follow from showing how, given any 2-counter machine, C, to construct a set EC of
word equations and two words, wC and vC , such that

C halts iff (EC , vC , wC) ∈ SWP .

In other words, the proof will show that HALT 2CM ≤m SWP .

Actually, instead of the halting problem for 2-CM’s, it will be technically convenient to use the
clean-halting problem, CLNHALT 2CM. A 2-CM, C, is said to cleanly halt if, started at instruction
number zero with empty counters, it halts by transferring to the smallest possible halting line
number with its counters empty again. That is, after starting in configuration (0, 0, 0), it eventually
halts in configuration (n, 0, 0), where n is the number of instructions in the 2-CM.

Problem 3. Prove that HALT 2CM ≤m CLNHALT 2CM.

The idea behind the proof is to represent every configuration of a 2-CM, C, as a word over a certain
alphabet. Specifically, let n be the number of instructions in C. The alphabet will be the integers
from 0 to n, along with two additional symbols a and b. A configuration (k, l,m) of C will be
represented by the word

w(k,l,m) ::= b

l︷ ︸︸ ︷
aa . . . a k

m︷ ︸︸ ︷
a . . . a b.

We will also construct some word equations EC corresponding to the instructions of C. These
equations will have the following key property:

Lemma 2.3 (Left-right Simulation).

w(k,l,m) −→EC

w(k′,l′,m′) iff stepC(k, l,m) = (k′, l′,m′). (5)

From this Lemma we can immediately conclude that

C cleanly halts iff w(0,0,0) −→EC

∗ w(n,0,0),

where n is the length (number of instructions) of C.

The equations EC are obtained directly from the instructions in C. Namely, depending on the
instruction on line i, we include in EC one or two equations of the forms given in Figure 1.

For example, let Cdiv3 be the 2-CM in Figure 2. Then the resulting equations ECdiv3
would be the

ones in Figure 3.

It is easy to verify that for any C, at most one rule in EC applies to any configuration word. The
Left-right Simulation Lemma then follows directly from the definitions of EC and stepC .

Problem 4. Exhibit the first dozen configuration words obtained from w(0,7,0) by doing left-right
ECdiv3

-substitutions. Indicate exactly which substitution occurred at each step.
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inc1 i = a i+1
inc2 i = i+1 a
dec1 a i = i+1

b i = b i+1
dec2 i a = i+1

i b = i+1 b
ifr1 j k b i = b j

a i = a k
ifr2 j k i b = j b

i a = k a

Figure 1: From 2-CM Instructions to Equations

0: ifr1 8 1
1: dec1
2: ifr1 9 3
3: dec1
4: ifr1 10 5
5: dec1
6: inc2
7: ifr1 8 1

Figure 2: Cdiv3 sets Counter2 to b(Counter1)/3c

b0 = b8,

a0 = a1,

a1 = 2,

b1 = b2,

b2 = b9,

a2 = a3,

a3 = 4,

b3 = b4,

b4 = b10,

a4 = a5,

a5 = 6,

b5 = b6,

6 = 7a,
b7 = b8,

a7 = a1.

Figure 3: Simulating Equations for Cdiv3
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3 Undirected Substitutions

The Left-right Simulation Lemma reveals that substituting lefthand sides of equations in EC by
righthand sides corresponds exactly to steps performed by C. But EC-provability also allows
substituting righthand sides for lefthand sides, so we must examine whether there now could be
an unintended way to get from one configuration word to another.

Since C is deterministic, a given configuration of C has a unique next configuration. The prob-
lem is that it may not have a unique preceding configuration. Consequently a configuration word
may substitute right-to-left in more than one way. For example, suppose the zeroth and first in-
structions of C were both (ifr1 2 2). Then configurations (0, k, m) and (1, k,m) both lead in one
step to configuration (2, k,m). This implies that w(2,k,m) could substitute right-to-left into both
w(0,k,m) and w(1,k,m). Therefore it is EC-provable that w(0,k,m) = w(1,k,m), even though neither is
obtainable from the other by left-right EC-substitutions. Nevertheless, provability among config-
uration words remains closely related to going from one configuration word to another strictly by
left-right substitutions.

Lemma 3.1 (Undirected Simulation). Let w be a configuration word of C.

1. If v −→
EC

w, then v is also a configuration word of C.

2. If v ←→
EC

∗ w, then there is an configuration word, u, such that v −→
EC

∗ u and w −→
EC

∗ u.

Proof. Part 1 follows from the definitions of configuration word and EC , as the reader may verify.

To prove Part 2, assume v ←→
EC

∗ w. Consider the shortest sequence of words u0, u1, . . . , un such that

v is identical to u0, w is identical to un, and

u0 ←→
EC

u1 ←→
EC

· · · ←→
EC

un.

By Part 1, each ui is a configuration word. Suppose there are three consecutive words ui, ui+1, ui+2

which are obtained by a right-left substitution followed by left-right substitution. That is,

ui+1 −→
EC

ui and ui+1 −→
EC

ui+2.

Now by the Left-right Simulation Lemma 2.3, ui is the configuration word corresponding to one
step of C from the ui+1 configuration—and so is ui+2. But since C is deterministic, the ui+1 con-
figuration of C uniquely determines the next configuration, so it must be that the ui and ui+2

configurations are the same, which is to say that ui and ui+2 are the same word! Thus the two
steps deriving ui+2 from ui+1 from ui are actually deriving ui from itself. This means that there
is a shorter sequence of undirected substitutions from v to w obtained by removing ui+1 and ui+2

from the sequence, contradicting the fact that the original sequence was the shortest.

So in the shortest sequence of undirected substitutions from v to w, the substitutions from v must
begin with (zero or more) left-right substitutions to some word u, and then be followed by (zero
or more) right-left substitutions from u to w.
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Corollary 3.2. Let w be a configuration word which represents a halting configuration of C. Then for all
words v,

v ←→
EC

∗ w implies v −→
EC

∗ w

Proof. By the Undirected Simulation Lemma 3.1, there is a series of EC-substitutions turning v
into w in which the only right-left substitutions are at the end. But since w represents a halting
configuration, it follows by the Left-right Simulation Lemma 2.3 that w no left-right substitution
can start with w, which is to say that no right-left substitution can end with w. So the substitutions
turning v into w must consist solely of left-right substitutions, viz., v −→

EC

∗ w.

So we conclude that the equation w(0,0,0) = w(n,0,0) is provable from the equations EC iff C cleanly
halts. In other words,

C ∈ CLNHALT 2CM iff (EC , w(0,0,0), w(n,0,0)) ∈ SWP ,

which shows that

Corollary 3.3. CLNHALT 2CM ≤m SWP .

This is what was needed to complete the proof of Theorem 2.2.

Problem 5. In proving the reducibility of the Semigroup Word Problem, we used equations over
an n+3 symbol alphabet {b, a, 0, . . . , n} to simulate a 2-Counter Machine of length n. Let 2-SWP be
the SWP for words over a two symbol alphabet. Show that the 2-CM Halting problem is reducible
to 2-SWP.
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