
Massachusetts Institute of Technology Course Notes 8
6.844, Spring ’05: Computability Theory of and with Scheme April 21
Prof. Albert R. Meyer revised April 29, 2005, 134 minutes

Scheme Equations (partial draft)

1 Observational Equivalence

Revising a program to improve performance is a familiar programming activity. A trivial example
would be to replace an occurrence of a subexpression of the form (+ 1 2) with the subexpression
3. The revised program would then perform fewer additions, but would otherwise yield the same
results as the original. Well not quite “the same”—the expressions

(lambda (x) (* (+ 1 2) x))

and
(lambda (x) (* 3 x))

obviously describe different procedures—applying the first will lead to an addition operation that
is not performed by the second. But we would observe the same numerical result if we applied
either of these procedures to the same numerical argument. Also, we would observe an error if
we applied either of them to a nonnumerical value. As long as all we care to observe about an
evaluation is the number, if any, that results from an evaluation, these two procedure values will
be indistinguishable. This is the sense in which they are ”the same.”

An observation of the result of an evaluation that is even more fundamental than its numerical
value, is whether any value is returned at all. We choose this more fundamental observation as
the basis for our definition of distinguishability.

Definition 1.1. Two Scheme expressions, M and N , are said to be observationally distinguishable iff
there is a context, C, such that exactly one of C[M] and C[N] converges. Such a context is called
a distinguishing context for M and N . If M and N are not observationally distinguishable, they are
said to be observationally equivalent, written M ≡ N .

It is easy to verify that observational equivalence is actually an equivalence relation. Moreover, it
follows immediately from its definition that it is a congruence relation1, namely,

M ≡ N implies C[M] ≡ C[N]

for all contexts C. So the sense in which it is always OK to replace (+ 1 2) by 3 is captured by
noting that (+ 1 2) ≡ 3.

The following problem demonstrates that observing returned self-evaluating or symbol values,
rather than just observing convergence, yields the same observational equivalence relation on
Scheme expressions.

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.
1For this reason, observational equivalence is sometimes called observational congruence.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

2 Course Notes 8: Scheme Equations (partial draft)

Problem 1. Let S denote an expression that is 〈self-evaluating〉 or a 〈symbol〉.

(a) Show that if M ≡ N , and M ↓ S, then N ↓ S.

(b) Show that if M and N are distinguishable, then for any S, there is a context, CS , such that the
one of CS [M] and CS [N] has final value S and the other one diverges.

(c) Conclude that M ≡ N if and only if

C[M] has a 〈self-evaluating〉 or 〈symbol〉 value iff C[N] has the same 〈self-evaluating〉
or 〈symbol〉 value,

for all contexts, C.

We remark that it is implicit in the definition of context that the hole may not be quoted. So, for
example,

(eq? (quote []) (quote hello))

is not a context because the hole in a context is supposed to parse as a variable. But when an
〈identifier〉 is quoted, it parses as a 〈symbol〉 not a variable. This technicality is important, as
indicated in the next problem.

Problem 2. Explain why no two expressions would be observationally equivalent if contexts could
have a quoted hole.

Many statements about Scheme properties are implicitly about observational equivalences. For
example, when we say that bound variable names are “private” in Scheme, we mean precisely
that α-equivalent expressions are observationally equivalent.

Problem 3. Prove that α-equivalence implies observational equivalence.

Similarly, we know that in an environment letrec , the order of the bindings it doesn’t matter.
“Doesn’t matter” more precisely means observational equivalence:

Problem 4.

(letrec ((x1 V1)...(xi Vi)...(xj Vj)...) M)

≡ (letrec ((x1 V1)...(xj Vj)...(xi Vi)...) M)

Hint: Similar to the proof that α-equivalence implies observational equivalence.

In the next sections we’ll develop methods for proving some more sophisticated observational
equivalences.

Course Notes 8: Scheme Equations (partial draft) 3

2 Revised (call/cc) Rules

We observed in Notes 7 that control-context independence does not hold for the (call/cc) and
(abort) rules given there. This property is an important one for reasoning about Scheme evalua-
tion, so we describe how to modify the rules so that they become control-context independent.

2.1 Continuation-form Rules

The idea behind the new rules is that constant return-to-repl that appears in the rules of
Notes 7 will be replaced by a variable that is bound in the argument of an outermost, “continua-
tion,” call/cc application. 2

The new set of Substitution Model rules will first of all include all the rules from Notes 7, with the
exception of the three rules mentioning the procedure contant, return-to-repl , namely, the
(abort), (call/cc), and control-stack garbage collection rules.

To achieve the effect of return-to-repl , we add special versions of the rules for expressions in
“continuation form.” An expression is in continuation form, Cnt(M), if it is of the form

(call/cc (lambda (return) M)) .

If return is not a free variable of M , we say the continuation is superfluous.

Now for every rule M → N adopted from Notes 7, we aim to add a continuation-form version
Cnt(M) → Cnt(N). This should ensure that any expression, M , will evaluate as usual inside a
continuation form as long as none of the three omitted rules is needed.

For example, for each simple control rule of the form

(letrec (B) R[P]) → (letrec (B) R[T]) , (1)

the idea would be to add a new rule

(call/cc (lambda (return) (letrec (B) R[P])))
→ (call/cc (lambda (return) (letrec (B) R[T]))) .

This is almost right, but for one technicality: in the continuation form version of the rule, we want
occurrences of the continuation variable, return , to be parsed in the same way as the procedure
constant, return-to-repl . So for each rule of the form (1), we actually add a rule

(call/cc (lambda (return) (letrec (B̂) R̂[P̂])))
→ (call/cc (lambda (return) (letrec (B̂) R̂[T]))) .

where R̂ is a context that would be a control-context if all occurrences of the continuation vari-
able were parsed as syntactic values, namely, R̂[return := V] is a real control context for some
〈syntactic-value〉, V . (Note that the parsing rules for control contexts don’t distinguish one syn-
tactic value from another, so R̂[return := V] is a control-context for some V iff R̂[return := +] is a

2This approach was first developed by M. Felleisen and R. Hieb, in “The Revised report on the syntactic theories of
sequential control and state,” Theoretical Computer Science, Elsevier, 103 (1992) 235-271, where they consider a λ-calculus
with a control operator similar to call/cc and develop control-context independent rewriting rules for their calculus.

4 Course Notes 8: Scheme Equations (partial draft)

control-context.) Likewise, P̂ is an expression such that P̂ [return := +] is an 〈immediate-redex〉3,
and B̂ would be a sequence of 〈value-binding〉’s if return was parsed as a 〈syntactic-value〉. Sim-
ilarly, we need versions of the other Substitution model rules that will apply in the presence of
outer call/cc ’s. For example, the instantiation rule now has a continuation version4

(call/cc (lambda (return) (letrec (B̂1 (x V̂) B̂2) R̂[x])))

→ (call/cc (lambda (return) (letrec (B̂1 (x V̂) B̂2) R̂[V̂]))) .

We also extend the set of final values to include continuation forms. Namely, expressions of the
form

(call/cc (lambda (return) F̂))

are now considered final values, where F̂ would be a final value in the sense of Notes 7 if return
is parsed as a 〈procedure〉, that is, F̂ [return := +] is an expression that is a 〈syntactic-value〉 or is
of the form Env(〈syntactic-value〉).

2.2 Revised call/cc Rules

The rule replacing the (abort) rule will simply be the old rule in continuation form:

(call/cc (lambda (return) (letrec (B̂) R̂[(return V̂)])))
→ (call/cc (lambda (return) (letrec (B̂) V̂))) ,

(return)

There is also a version of this rule without the environment letrec :

(call/cc (lambda (return) R̂[(return V̂)]))
→ (call/cc (lambda (return) V̂)) .

(return)

Likewise, the (call/cc) rule of Notes 7 will be replaced by its continuation form

(call/cc (lambda (return) (letrec (B̂) R̂[(call/cc V̂)])))
→ (call/cc (lambda (return)

(letrec (B̂)

R̂[(V̂ (lambda (k) (return R̂[k])))]))) ,

(call/cc.1)

where k is a fresh variable. Also, to handle call/cc applications within expressions that are not
in continuation form, we include

(letrec (B) R[(call/cc V)])
→ (call/cc (lambda (return)

(letrec (B)
R[(V (lambda (k) (return R[k])))])) ,

(call/cc.2)

3Note that the rewrite rules do distinguish among 〈syntactic-value〉’s, so we can’t use #f instead of + here, though
we could use any other 〈procedure〉 in place of +. This ensures, for example, that

(call/cc (lambda (return) (procedure? return))) → (call/cc (lambda (return) #t))

4The rule for set! needs a technical modification in the special case when the variable being set is return . The
details are not important and are omitted.

Course Notes 8: Scheme Equations (partial draft) 5

where k and return are fresh variables. There are also versions, which we have not written out, of
each of these rules without the environment letrec .

Notice that the (return) rule removes applications of return , and the (call/cc.1-2) rules replace
call/cc applications by applications of return .

Finally, we add a garbage collection rule for continuations:

Cnt(M) → M,

when the outer continuation is superfluous.

In the rest of these notes, “Substitution Model rules” will mean the set of rules determined by the
rules above. Like the rules of Notes 7, this new set of Substitution Model rules also provides a
complete and accurate model of Kernel Scheme evaluation.

2.3 Control-context Merge Independence

In contrast to the rules of Notes 7, the current Substitution Model rules are control-context inde-
pendent in the following slightly broader sense:

Definition 2.1. The evaluations of expressions M and N are said to merge, in symbols, M ⇓ N , iff
there is an expression, J , such that M

∗→J and N
∗→J .

Lemma 2.2. If M → N by any of the call/cc rules above, then

R[M] ⇓ R[N]

for any control context, R.

In fact, we can use this concept of merged evaluations to state a simplified version of control-
context independence for the full set of Substitution Model Rules:

Corollary 2.3. (Control-context Merge Independence) If M → N by any of the rules in the Substitution
Model, then

R[M] ⇓ R[N]

for any control context, R.

Problem 5. Verify Lemma 2.2 and Corollary 2.3.

Problem 6. Prove that if M ⇓ N , then

R[M] ⇓ R[N]

for any control context, R.

6 Course Notes 8: Scheme Equations (partial draft)

3 Context Rewriting

A direct approach to proving observational equivalences involves examining how the context of
an expression can be rewritten, given some limited information about the kind of expression that
is in the hole.

For example, suppose E1 is the context:

(letrec
((cpn

(lambda (v n)
(if (zero? n) (list) (cons v (cpn (list v) (- n 1)))))))

(cpn [] 2))

The Instantiation Rule allows the operator cpn to be replaced by the lambda expression:

(letrec
((cpn

(lambda (v n)
(if (zero? n) (list) (cons v (cpn (list v) (- n 1)))))))

((lambda (v n)
(if (zero? n) (list) (cons v (cpn (list v) (- n 1)))))

[] 2))

This resulting expression does not rewrite because it is a lookup error of the hole variable. But
suppose we can assume that the hole will be replaced by some unknown expression that is guar-
anteed to be a syntactic value. So we can treat the hole as a value, and the rules for lambda can
be applied. Now, in a few steps, E1 rewrites to:

(letrec ((cpn ...) (n 2) (v []))
(cons []

((lambda (n)
(if (zero? n) (list) (cons v (cpn (list v) (- n 1)))))

1)))

Continuing in this way, we can find value bindings, B, such that E1 converges to

F1 ::= (letrec (B) (list [] (list []))) .

That is, there is a context F1 such that for any syntactic value, V , E1[V] ↓ F1[V]. Notice that F1 is
technically not a context because it has more than one occurrence of a hole; we’ll call F1 a multihole
context.

Definition 3.1. A multihole context, C, is a Scheme expression except that the 〈hole〉, may serve as
a free variable; it may have any number of occurrences.

If C is a multihole context, we write C[M] for the result of replacing all occurrences of 〈hole〉 in C
by M , without any renaming of bound variables. More generally, if C has n occurrences of holes,
then for a sequence Mn ::= M1, . . . ,Mn, of expressions, we write

C[M1]1 . . . [Mn]n, abbreviated C[Mn],

Course Notes 8: Scheme Equations (partial draft) 7

to denote the result of replacing the ith occurrence of 〈hole〉 in C by Mi, without any renaming of
bound variables.

Now let V be the context (lambda (x) (+ x [] (* 3 4))) , and let E2 ::=E1[V] and F2 ::=
F1[V]. That is, E2 is

(letrec
((cpn

(lambda (v n)
(if (zero? n) (list) (cons v (cpn (list v) (- n 1)))))))

(cpn (lambda (x) (+ x [] (* 3 4))) 2)),

and F2 is

(letrec (B) (list (lambda (x) (+ x [] (* 3 4)))
(list (lambda (x) (+ x [] (* 3 4)))))).

Since V is a syntactic value, we know that E2 = E1[V] ↓ F1[V] = F2. Since we concluded this
without any assumptions about what might be in the hole in V , it follows that E2[M] ↓ F2[M] for
every expression, M .

For a second example, let E3 be the same as the context E2 except that caadr of the body of E2 is
applied to 5. That is, E3 is

(letrec
((cpn

(lambda (v n)
(if (zero? n) (list) (cons v (cpn (list v) (- n 1)))))))

((caadr (cpn (lambda (x) (+ x [] (* 3 4))) 2))
5))

Now let F3 be the corresponding modification of F2, namely, F3 is

(letrec (B)
((caadr (list (lambda (x) (+ x [] (* 3 4)))

(list (lambda (x) (+ x [] (* 3 4))))))
5)).

Now by control context independence, with R = ((caadr []) 5) , we can conclude that E3
∗→

F3. But F3 can be further rewritten using rules for car and cdr until its body is

((lambda (x) (+ x [] (* 3 4))) 5)

which will rewrite in a few steps to (+ 5 [] (* 3 4)) . That is, there is an F4 of the form

(letrec (B′) (+ 5 [] (* 3 4)))

such that E3
∗→ F4. Notice that the body of F4 is a control context, and no further rewriting is

possible at this point because F4 is a lookup error of the hole variable.

8 Course Notes 8: Scheme Equations (partial draft)

So we can say that E3[M] ∗→ F4[M] for every expression M , and moreover F4 is of the form
(letrec (B′) R[]) for the control context R = (+ 5 [] (* 3 4)) . It follows, for ex-
ample, that the numerical value of E3[6] is 23. It also follows that if M↑, then also F4[M]↑, and
hence E3[M]↑.

These examples illustrate how any multihole context can be rewritten, based on partial infor-
mation about the expressions that may appear in its holes. The partial information that is often
available is the kind of expressions to be proved equivalent, namely:

Definition 3.2. An expression is of nonvalue kind if it is not a 〈syntactic-value〉. An expression is
of procedure kind if it is a 〈nonpairing-procedure〉. An expression is of constant kind if it is either
〈self-evaluating〉 or a 〈symbol〉. An expression is of structured kind if it is either a 〈nonlist-pair-value〉
or a 〈list-value〉.

If Mn is a sequence of expressions of various kinds, then the kind pattern of Mn, is the sequence
kn ::=k1, . . . , kn such that ki ∈ {nonval, proc, constant, struct} indicates the kind of Mi, for 1 ≤ i ≤ n.

Except for the pairing operators list and cons , every Scheme expression is of exactly one of
these four kinds. The pairing operators play a special role in the Substitution Model, because
applications of 〈pairing-operator〉’s to values are themselves values, rather than combinations that
are immediate-redexes. It’s convenient to designate these operators as not having a kind, ensuring
that list and cons will not by themselves be expressions in set of expressions “of various kinds.”
(But list and cons may certainly appear as subexpressions of expressions of various kinds).

The examples above illustrate how to rewrite a context until it is guaranteed to converge or gets
to a point where more information than the kind of expressions to be placed in the holes is needed
to continue. A further example is the context

(if (list []) ’yes ’no) .

Given that the hole will be replaced with a syntactic value, the body can be rewritten to the
〈symbol〉 ’yes . But if an expression of kind nonvalue is to go in the hole, then rewriting cannot
proceed without more information about the expression.

The Standard Context Lemma 3.5 below summarizes the way contexts can be rewritten. To state
it, we need to generalize control contexts to have multiple holes.

Definition 3.3. If C is a multihole context with n+1 holes one of which is designated as the “main
hole”, and Mn ::= M1, . . . ,Mn is a sequence of expressions, we write

C[M1]1 . . . [Mn]n[], abbreviated C[Mn][],

to denote the single hole context that results from replacing the n non-main occurrences of 〈hole〉
by the expressions Mn, without any renaming of bound variables.

A multihole control context for kind pattern k is a multihole context, R, such that R[Mn][] is a
control context for all expressions Mn with kind pattern k.

For example,
(+ []1 2 (* []2 [] (- n []3)))

Course Notes 8: Scheme Equations (partial draft) 9

is a control context for any kind pattern in which the first and second holes would be assigned
expressions having one of the value kinds proc, constant, struct. Also

(letrec ((n []4)) (+ []1 2 (* []2 [] (- n []3))))

is a control context for any kind pattern in which []1, []2, and []4 have one of the value kinds proc,
constant, struct; the kind of []3 doesn’t matter.

This example illustrates the fact that if there are some expressions Mn with kind pattern k such
that R[Mn][] is a control context, then R must be a control context for k. That is, R[M′

n][] will
be a control context for all M′

n with kind pattern k. This follows because the only distinction
among expressions used by the BNF rules specifying control contexts is whether an expression is
a syntactic value. In fact, R will also be a control context for all patterns k′ obtained by changing
any of the kinds in k into any of the value kinds.

Definition 3.4. A multihole environment context for a kind pattern, k, is a context, E, with a des-
ignated main hole, such that E[Mn][] is a single hole environment context for all Mn with kind
pattern k. An environment control context, F , for k is an environment context for k whose body is a
control context for k.

Lemma 3.5. (Standard Context) Let E be a multihole context, and let k ::= k1, . . . , kn be a kind pattern.
Then either

1. E[Mn] ↓ F [Mn] for some some context F and all expressions Mn with kind pattern k, or

2. E[Mn] ∗→F [Mn] for some context, F , and variable, x, such that F [Mn] is a lookup error of x for all
expressions Mn with kind pattern k, or

3. E[Mn]↑ for all expressions Mn with kind pattern k, or

4. there is a control context, R, and an integer i, 1 ≤ i ≤ n, such that for all expressions Mn with kind
pattern k, either Mi is of kind

(a) nonvalue, and E[Mn] ∗→R[Mn][Mi].

(b) procedure, and there is a (possibly empty) sequence of syntactic values V1, . . . , Vk, such that

E[Mn] ∗→R[Mn][(Mi V1 . . . Vk)].

(c) constant, and there is a sequence of syntactic values V1, . . . , Vk, Vk+1, . . . and a 〈procedure-constant〉,
op, such that

E[Mn] ∗→R[Mn][(op V1 . . . Vk Mi Vk+1 . . .)].

(d) pair, and
E[Mn] ∗→R[Mn][(op Mi)],

for op ∈ {car , cdr , null? , pair? }.

The proof of the Standard Context Lemma 3.5 involves analyzing, along the lines of the examples
above, how a control context for a given kind pattern can control parse. We omit the proof.

10 Course Notes 8: Scheme Equations (partial draft)

4 Proving Observational Equivalence

The Standard Context Lemma provides a basis for proving many observational equivalences. For
example, Scheme subexpressions that diverge can cause an evaluation to diverge, but otherwise
are useless. In fact, they are all equally useless. More precisely, the following fundamental obser-
vational equivalence holds:

Theorem 4.1. If M↑ and N↑, then M ≡ N .

To prove Theorem 4.1, we need to show that for any context, E, if E[M] converges, then so does
E[N]. Intuitively, this follows from the fact that, since E[M]↓ and M↑, the subexpression M can
never have been evaluated during the evaluation of E[M], so the convergence of E[M] does not
depend on what is in the hole. This intuition is captured in the Standard Context Lemma 3.5, and
Theorem 4.1 is an easy corollary.

Proof. We can prove something stronger, namely, if E is a multihole context, and E[M]↓, then
E[N]↓.

So suppose E[M]↓. One possibility is that Standard Context Lemma 3.5.1 applies, namely E[Mn] ↓
F [Mn] for all Mn. In particular, E[N]↓, as required.

Since M diverges, it is of nonvalue kind. So the only other possibility is that the Lemma 3.5.4a
applies, namely E[M] ∗→R[M] for some control context, R. But as we observed in Notes 7, R[M]↑
by control context independence, and hence E[M]↑, a contradiction.

The Standard Context Lemma also captures the property that Scheme evaluation is sequential,
namely, if a context depends on what’s in its holes, then there is a particular hole whose con-
tents are always evaluated first. So behavior that requires evaluating holes in parallel is beyond
Scheme’s expressive power:

Corollary 4.2. There is no Scheme context, G, such that for all closed expressions M,N ,

G[M,N]↓ iff M↓ or N↓ .

Proof. Suppose to the contrary that there was such a G.

Now if Standard Context Lemma 3.5.1 applies to G, then G[Mn]↓ for all Mn. In particular,
G[M,M]↓ for any divergent expression, M , contradicting the fact that G[M,M] should diverge
in this case.

So the only other possibility is that the Lemma 3.5.4 applies. In particular, there is a control context,
R, for nonvalue kinds and an integer, i, such that G[M1,M2]

∗→ R[M1,M2][Mi] for all M1,M2 of
nonvalue kind. Without loss of generality, suppose i = 1. Then choose some M that diverges,
and let N be some convergent expression of nonvalue kind, e.g., N = (+ 1) . By control control
independence, R[M,N][M] diverges, so G[M,N] does too, contradicting the fact that G[M,N]
should converge because N converges.

Course Notes 8: Scheme Equations (partial draft) 11

We can now also give a precise formulation of the slogan “A Scheme procedure is a black-box,”
which reflects the idea that the only way to learn about a procedure is by applying it to arguments.
Another way to say this is that if two procedures can be distinguished from each other, it is only
because there is a set of arguments on which they yield distinguishable results.

Corollary 4.3. [Operational Extensionality] If M1 and M2 are closed expressions of procedure kind and

(M1 V1 . . . Vn) ≡ (M2 V1 . . . Vn)

for all n ≥ 0 and closed 〈syntactic-value〉’s V1, . . . , Vn, then

M1 ≡ M2.

Problem 7. Prove Corollary 4.3.

Problem 8. Prove that if R is a control context and no free variable of M occurs in R, then

((lambda (x) R[x]) M) ≡ R[M],

when x is a fresh variable. Note that M need not be a 〈syntactic-value〉.

A fairly powerful method for proving that two expressions are observationally equivalent is to re-
peatedly apply Substitution Model rewrite rules to their subexpressions until the two expressions
have been rewritten to be the same. The following Lemma shows that this is a sound way to prove
observational equivalences.

Lemma 4.4. If M→N , then M ≡ N .

Problem 9. (a) Let M,N be Scheme expressions such that M→N . Call a sequence of expressions
an M,N sequence if it is a sequence of M ’s and N ’s. Show that if C[Mn]↓ for some M,N sequence,
Mn, and multihole context, C, then C[M′

n]↓ for all M,N sequences, M′
n. Hint: By induction on

the number of steps C[Mn] takes to converge, using control context independence.

(b) Use part (a) to complete a proof of Lemma 4.4.

(c) Conclude that if M ⇓ N , then M ≡ N .

Several of the list rewriting rules can be used to simplify expressions even when not all the argu-
ments are values. These simplifications arise from some simple observational equivalences:

(cons M1 (list M2 M3)) ≡ (list M1 M2 M3) ,

(apply M (list N1 ...)) ≡ (M N1 ...) ,

(car (cons M V)) ≡ M.

12 Course Notes 8: Scheme Equations (partial draft)

Some other simplifications follow from the fact that variables can only be instantiated by 〈syntactic-value〉’s,
so many equivalences involving syntactic values will hold when variables appear instead of val-
ues. For example,

(car (list M y)) ≡ M,

(* x x) ≡ (* 2 x)

Problem 10. (a) Describe an expression, M such that (+ M M) and (* 2 M) are observa-
tionally distinguishable. What is the distinguishing context?

(b) Show that if M is closed, then

(+ M M) ≡ (* 2 M) .

The Standard Context Lemma 3.5 also allows us to deduce interesting observational equivalences
that do not simply follow by rewriting subexpressions or equating divergent ones.

Lemma 4.5. If E is a context such that for each sequence, Mn, of expressions of procedure kind, E[Mn]
converges to some number, then in fact E[Mn] converges to the same number for all Mn.

Proof. Suppose Mn are chosen to be procedures of the form (lambda (x) D) where D is a
divergent expression. Then since E[Mn]↓, only the first case of the Standard Context Lemma can
apply. That is, E[Mn] ↓ F [Mn] for some context F and all expressions Mn of procedure kind.
Since E[Mn] has a numerical value, F [Mn] must in fact be some number n. Hence F [M′

n] will
also be n.

Problem 11. Let T1, T2 be procedure expressions such that (T1) ↓ and (T2) ↑, and let M be any
closed expression. Prove that

(- (M T1 T2) (M T2 T1)) ≡ (* 0 (M T1 T2) (M T2 T1)) .

Hint: Use the Standard Context Lemma and Lemma 4.5. Argue by cases according to whether
(M T1 T2) converges to a number, converges to a non-number, diverges, or causes a lookup error.

Finally, we state an equivalence that reflects a deeper property of Scheme: external procedures can
only affect local variables if they are explicitly passed the ability to do so. For example, if only the
ability to add 2 to some local variable x is passed to an external procedure, use , and the value of
x is initially even, then it will still be even if and when the external procedure returns a value:
Example 4.6.

(letrec ((x 0)) (begin (use (lambda () (set! x (+ x 2)))) #t))

≡ (letrec ((x 0)) (begin (use (lambda () (set! x (+ x 2)))) (even? x)))

Problem 12. Prove the equivalence in Example 4.6. Warning: this may be hard.

	Observational Equivalence
	Revised (call/cc) Rules
	Continuation-form Rules
	Revised call/cc Rules
	Control-context Merge Independence

	Context Rewriting
	Proving Observational Equivalence

