Solutions to Quiz 2

Problem 1 (40 points). *Hint:* Read both parts (a) and (b) before trying to solve either.

(a) (15 points) Give an example of an \langle expression \rangle , M, and a \langle syntactic-value \rangle , V, such that $M[x := +]$ is an \langle immediate-redex \rangle , but $M[x := V]$ is not.

Solution. Let $M ::= (x 1 1), V ::=$ list.

Many students confused an expression being an \langle immediate-redex \rangle , meaning it parses according to the grammar for \langle immediate-redex \rangle , and "matching the lefthand side of a Substitution Model rule," that is, being a *redex*. Unfortunately, the two notions are distinct, and neither even implies the other.

(b) (15 points) Suppose $M[x := +]$ is an \langle immediate-redex \rangle . Explain why $M[x := L]$ is also an \langle immediate-redex \rangle for any \langle lambda-expression \rangle , L. (Don't get tangled in a complicated structural induction based on the BNF grammars for \langle syntactic-value \rangle and \langle immediate-redex \rangle . Just explain clearly what properties(s) of the grammar(s) ensure the result.)

Solution. The only distinction among syntactic values in the grammar for \langle immediate-redex \rangle is between (syntactic-value)'s that are (nonpairing-procedure)'s and those that are not. Since both + and L are (nonpairing-procedure)'s, the (immediate-redex) grammar will parse $M[x := +]$ and $M[x := L]$ the same way, so if one is an \langle immediate-redex \rangle , the other one will be too.

(c) (10 points) Suppose

$$
M[x := +] \to N[x := +].
$$

Does it follow that

$$
M[x := (\text{lambda } (y) (+ y))] \rightarrow N[x := (\text{lambda } (y) (+ y))]
$$
?

Prove or give a counterexample.

Solution. No, let $M ::= (x \ 1)$, $N ::= 1$. So indeed,

 $M[x := +] = (+ 1) \rightarrow 1 = 1[x := +] = N[x := +],$

Copyright © 2005, [Prof. Albert R. Meyer.](http://theory.csail.mit.edu/~meyer/) All rights reserved.

Solutions to Quiz 2 2

but

$$
M[x := (\texttt{lambda } (y) (+ y))] \rightarrow (\texttt{letrec } ((y 1)) (+ y)),
$$

while

$$
N[x := (\text{lambda } (y) (+ y))] = 1.
$$

Alternatively, let $M ::= (x)$, $N ::= 0$. Now again

$$
M[x := +] = (+) \rightarrow 0 = 0[x := +] = N[x := +],
$$

but

$$
M[x := (\texttt{lambda}(y) (+ y))]\n\rightarrow
$$

because it is an immediate error.

Problem 2 (30 points). Prove that observational equivalence, \equiv , (the definition is in an appendix in case you don't remember it) is a congruence relation on Scheme expressions, that is,

1. it is a reflexive, symmetric, and transitive relation, and

2.
$$
M \equiv N
$$
 implies $C[M] \equiv C[N]$ for any context, C .

- **Solution.** *Proof.* 1. [reflexive] M is trivially indistinguishable from M, hence $M \equiv M$ by definition.
	- [symmetry] We prove the contrapositive: if M is distinguishable from N, then N is distinguishable from M . But the definition of distinguishability is symmetric in M and N, so this follows immediately.
	- [transitivity] Suppose $L \equiv M$ and $M \equiv N$. We want to show that $L \equiv N$. So suppose to the contrary, that $L \& N$ were distinguishable, that is, there is a context, C , such that

$$
C[L]\downarrow \quad \text{iff} \quad C[N]\not\downarrow. \tag{1}
$$

But,

$$
C[L]\downarrow \quad \text{iff} \quad C[M]\downarrow \tag{2}
$$

since $L \equiv M$, and likewise

$$
C[M]\downarrow \quad \text{iff} \quad C[N]\downarrow. \tag{3}
$$

Combining (1) , (2) , (3) , we have

$$
C[N]\n \downarrow
$$
 iff $C[L]\n \downarrow$ iff $C[M]\n \downarrow$ iff $C[N]\n \downarrow$,

a contradiction.

2. We prove the contrapostive.

Assume that $C[M]$ and $C[N]$ are distinguishable. So there is a context, D, such that

$$
D[C[M]] \downarrow \quad \text{iff} \quad D[C[M]] \not\downarrow.
$$

So $D[C]$ is a distinguishing context for M and N, proving that M and N are distinguishable.

 \Box \blacksquare

Problem 3 (30 points). Prove that if $M = \alpha N$, then $M \equiv N$. (You may cite any of the facts in Notes 7.)

Solution. We know that $M = \alpha N$ and implies $C[M] = \alpha C[N]$ for any context, C. Also, the Substitution Model rules preserve = α . So it follows that if $C[M]$ rewrites to K in *n* applications of rules, then $C[N]$ rewrites in n rule applications to some K' such that $K =_{\alpha} K'$. Moreover, the grammar for \langle syntactic-value \rangle' s and hence for final values does not depend on the names of variables, so being a final value is also preserved by $=_\alpha$, that is, K is a final value iff K' is a final value. Hence if $C[M] \downarrow K$, then $C[N] \downarrow K'$, which shows that C is not a distinguishing context for M and N. Since this holds for any C, it follows that M and N are indistinguishable. \Box

A Observational Equivalence

Definition 3.1. Two Scheme expressions, M and N, are said to be *observationally distinguishable* iff there is a context, C, such that exactly one of $C[M]$ and $C[N]$ converges. Such a context is called a *distinguishing context* for M and N. If M and N are not observationally distinguishable, they are said to be *observationally equivalent*, written $M \equiv N$.