Your name:_____

DO NOT WRITE BELOW THIS LINE

Problem	Points	Grade	Grader
1	40		
2	30		
3	30		
Total	100		

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

Problem 1 (40 points). *Hint:* Read both parts (a) and (b) before trying to solve either.

(a) (15 points) Give an example of an $\langle \text{expression} \rangle$, M, and a $\langle \text{syntactic-value} \rangle$, V, such that M[x := +] is an $\langle \text{immediate-redex} \rangle$, but M[x := V] is not.

(b) (15 points) Suppose M[x := +] is an (immediate-redex). Explain why M[x := L] is also an (immediate-redex) for any (lambda-expression), *L*. (Don't get tangled in a complicated structural induction based on the BNF grammars for (syntactic-value) and (immediate-redex). Just explain clearly what properties(s) of the grammar(s) ensure the result.)

Your name:_____

(c) (10 points) Suppose

 $M[x:=\mathbf{+}] \mathop{\rightarrow} N[x:=\mathbf{+}].$

Does it follow that

$$M[x := (\texttt{lambda}(y)(+y))] \rightarrow N[x := (\texttt{lambda}(y)(+y))]?$$

Prove or give a counterexample.

Problem 2 (30 points). Prove that observational equivalence, \equiv , (the definition is in an appendix in case you don't remember it) is a congruence relation on Scheme expressions, that is,

- 1. it is a reflexive, symmetric, and transitive relation, and
- 2. $M \equiv N$ implies $C[M] \equiv C[N]$ for any context, C.

Problem 3 (30 points). Prove that if $M =_{\alpha} N$, then $M \equiv N$. (You may cite any of the facts in Notes 7.)

Your name:____

A Observational Equivalence

Definition 3.1. Two Scheme expressions, M and N, are said to be *observationally distinguishable* iff there is a context, C, such that exactly one of C[M] and C[N] converges. Such a context is called a *distinguishing context* for M and N. If M and N are not observationally distinguishable, they are said to be *observationally equivalent*, written $M \equiv N$.

6