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Problem 1 (40 points). Hint: Read both parts (a) and (b) before trying to solve either.

(a) (15 points) Give an example of an 〈expression〉, M , and a 〈syntactic-value〉, V , such that
M [x := +] is an 〈immediate-redex〉, but M [x := V ] is not.

(b) (15 points) Suppose M [x := +] is an 〈immediate-redex〉. Explain why M [x := L] is also an
〈immediate-redex〉 for any 〈lambda-expression〉, L. (Don’t get tangled in a complicated structural
induction based on the BNF grammars for 〈syntactic-value〉 and 〈immediate-redex〉. Just explain
clearly what ¡properties(s) of the grammar(s) ensure the result.)
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(c) (10 points) Suppose
M [x := +]→N [x := +].

Does it follow that

M [x := (lambda (y) (+ y)) ]→N [x := (lambda (y) (+ y)) ]?

Prove or give a counterexample.
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Problem 2 (30 points). Prove that observational equivalence, ≡, (the definition is in an appendix
in case you don’t remember it) is a congruence relation on Scheme expressions, that is,

1. it is a reflexive, symmetric, and transitive relation, and

2. M ≡ N implies C[M ] ≡ C[N ] for any context, C.
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Problem 3 (30 points). Prove that if M =α N , then M ≡ N . (You may cite any of the facts in Notes
7.)
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A Observational Equivalence

Definition 3.1. Two Scheme expressions, M and N , are said to be observationally distinguishable iff
there is a context, C, such that exactly one of C[M ] and C[N ] converges. Such a context is called
a distinguishing context for M and N . If M and N are not observationally distinguishable, they are
said to be observationally equivalent, written M ≡ N .
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