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Solutions to Quiz 1

Problem 1 (20 points). We have explained that, given any proof-checking program for a sound
proof system for arithmetic inequalities over the integers, we can construct a valid inequality
which has no proof in the system. But Ben Bitdiddle (remember him from 6.001? :-) asks, “If the
inequality has no proof, how can we possibly know it is valid?”

Provide a brief explanation to clear up Ben’s confusion.

Solution. Hold on Ben! Nobody said the inequality that isn’t provable in a particular sound
system has no mathematical proof at all. In fact, as soon as you show me a valid inequality that can’t
be proved in some particular formal proof system, I can actually show you another sound formal
proof system in which the inequality can be proved—namely the original system augmented with
the unprovable inequality as an axiom! So there is no such thing as an inherently unprovable valid
inequality.

Of course there is another valid inequality that is still not provable in the augmented system; so
we could also add this new unprovable inequality as another axiom, and so on. But however
many times we augment, there will remain a valid inequality unprovable in the extended proof
system.

Comment (Going beyond the problem solution.)

OK, so given a sound formal proof system, how do we analyze its limitations well enough to find
a valid inequality that is not provable in that particular system? We’ll answer this question in a
lecture later in the course, using a short elegant argument explaining why the inequality is both
unprovable and valid. The argument will be short because it begins with the powerful hypothesis
that the given formal proof system is sound, i.e., that all the inequalities formally provable in the
system are themselves valid.

So how we can know that a given proof system is sound? That is a much harder question in
general, and it will bear further discussion later in the course. �
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Problem 2 (20 points). We consider proofs using the standard equational proof rules (Table 1 in
the Appendix) for terms over a signature with two symbols, f and g, both of arity 2, a single
constant, c. The sole axiom is f(x, y) = g(x, y).

Let F0 be the term f(c, c), and define Fn+1 ::= f(Fn, Fn); likewise for Gn. (That is, Gn is the same
as Fn with all f ’s replaced by g’s.)

(a) (5 points) Explain how to construct a sequence-of-equations proof of length O(n) for the equa-
tion Fn = Gn.

Solution. From a sequence-of-equations proof of Fn = Gn, we can construct a sequence-of-
equations proof of Fn+1 = Gn+1 by adding three lines:

f(Fn, Fn) = g(Fn, Fn) (the (axiom))
g(Fn, Fn) = g(Gn, Gn) (by (congruence) from Fn = Gn)
f(Fn, Fn) = g(Gn, Gn) (by (transitivity))

The last equation is precisely the desired equation Fn+1 = Gn+1. So the length of a proof of
Fn = Gn is at most 3n = O(n). �

(b) (15 points) Let l(n) be the length of the shortest substitution proof of Fn = Gn. Prove that
2n = O(l(n)).

Solution. In a substitution proof with this one axiom, only one symbol can change between suc-
cessive terms — either “g” becomes “f” or vice-versa. Since Fn has 2n occurrences of “f” and Gn

has none, it requires at least 2n successive terms to arrive at Gn starting from Fn. �

Problem 3 (30 points). As in Assignment 4, we consider terms with constants R,F, D and a bi-
nary operation symbol, ◦, with the model, A, being the automorphisms of the square. That is,
the domain of A is the eight automorphisms of the square, and the constants R,F, D mean 900

clockwise rotation, reflection about a vertical axis, and reflection about an upper-left/lower-right
diagonal, respectively, and the operation symbol, ◦, means function composition.

Define another model,A′, whose elements will be pairs (A, s), where A is an automorphism of the
square and s is a binary string. The ◦ symbol in A′ means the operation on pairs that composes
the first coordinates and concatenates the second coordinates. For example,

(vertical reflection, 010) ◦A′ (diagonal reflection, 11) ::= (90o rotation, 01011).

The meanings of the constants R, F, D inA′ will be the pairs (90o rotation, λ), (vertical reflection, λ),
and (diagonal reflection, λ), respectively, where λ is the empty string.
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Let E be the equational axioms

x ◦ (y ◦ z) = (x ◦ y) ◦ z, (associativity)

F 2 ◦ x = x (left identity)

x ◦ F 2 = x (right identity)

and all equations between variable-free terms that are true in A, for example,

R4 = F 2,

R4 = D2,

FR = D,

R3F = D,

...

(a) (5 points) Explain why A′ 6|= x5 = x.

Solution. Let x be (R, 0). Then x5 = (R, 00000) 6= x, so The equation is not valid. �

(b) (15 points) Explain why A′ |= E .

Solution. Let B be the model whose domain is binary strings, the meaning of the symbol ◦ is
string concatenation, and the meaning of each of the constants R,F, D is the empty string. So the
domain of A′ is the product of the domains of A and B, and the operations of the two parts of A′

work independently.

It follows that
A′ |= M = N ←→ A |= M = N and B |= M = N. (1)

(Full credit given for stating (1); a rigorous proof was not expected1.)

Now the axioms were chosen to ensure that A |= E . But B |= E also: (associativity) holds because
string concatentation is associative, and all the other axioms are valid in B because the constants
all denote the empty string. So by (1), we conclude that A′ |= E . �

(c) (10 points) Conclude that E 6` x5 = x.

1 More precisely, for any term, M , and A′-valuation, V ,

[[M ]]A′V = ([[M ]]AV1, [[M ]]BV2), (2)

where V1 and V2 are, respectively, the unique A and B valuations such that

V (x) = (V1(x), V2(x))

for all variables, x. This follows by an easy structural induction on M .
From (2), we have

V |=A′ M = N ←→ V1 |=A M = N and V2 |=B M = N,

which immediately implies (1).
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Solution. SinceA′ |= E by part (b), and the equation x5 = x is not valid inA′ by part (a), it follows
that E does not semantically imply (|=) the equation x5 = x. However, by soundness of the proof
system, all the equations provable from E are semantically implied by E . So x5 = x cannot be
proved from the axioms E . �

Problem 4 (30 points). Consider ae’s extended to include applications

((λ(x)e)f)

A free occurrence of a variable x, in an ae, a, is an occurrence of x that is not in a subexpression of
the form (λ(x) . . . ). For example, we highlight in boldface all the free occurrences of variables in
the ae

([λ(y)
( (λ(x)(x + y))

((y ·w) · x) )]
((y − ((λ(z)z) x)) · ((λ(x)(x− y)) 7)))

(We used square brackets ],[ instead of parentheses to make it easier to see the scope of λ(y).)

The free variables, FV(e), of an ae, e, are those variables which have one or more free occurrences
in e. For example, letting e0 be the ae above, we have FV(e0) = {x, y, w}.

(a) (10 points) Define FV(e) recursively on the structure of e.

Solution.

FV(c) ::= ∅,
FV(x) ::= {x} ,

FV(e + f) ::= FV(e) ∪ FV(f),
likewise for · and −,

FV(((λ(x)e)f)) ::= FV(f) ∪ (FV(e)− {x}).

�

(b) (20 points) Prove that if V1, V2 are valuations such that

V1(x) = V2(x) for all x ∈ FV(e),

then
[[e]]V1 = [[e]]V2. (3)

Solution. The proof is by structural induction on e.
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Base case (e is a constant, c) We have [[c]]V1 = [[c]]0 = [[c]]V2 by definition of [[c]], proving that (3)
holds when e is c.

Base case (e is a variable, x) We have [[x]]Vi = Vi(x) for i = 1, 2 by definition of [[x]]. But x ∈ FV(x),
so V1(x) = V2(x) by hypothesis. This proves that (3) holds when e is x.

Structural induction case (e is (e1 + e2)) Since FV(ei) ⊆ FV(M), we know that V1 and V2 agree
on the free-variables of each ei, so by induction we may assume that [[Mi]]V1 = [[Mi]]V2 for
i = 1, 2. Now

[[e1 + e2]]V1 = [[e1]]V1 + [[e2]]V1 (def of [[e]])
= [[e1]]V2 + [[e2]]V2 (ind. hypothesis)
= [[e1 + e2]]V2 (def of [[M ]]).

proving that (3) holds when e is (e1 + e2).

Structural induction case (e is (e1 · e2) or −e1) Essentially the same as for +.

Structural induction case (e is ((λ(x)f) g)) By the definition of FV(e), we know that V1 and V2

agree on FV(g) and on FV(f)− {x}. So by induction hypothesis for g, we have

[[g]]V1 = [[g]]V2.

Further, V1[x← n] and V2[x← n] agree on FV(f) for any integer, n. So by induction hypoth-
esis for f , we also have

[[f ]](V1[x← n]) = [[f ]](V2[x← n]). (4)

So

[[((λ(x)f) g)]]V1 = [[f ]](V1[x← [[g]]V1]) (def. of [[application]]V1)
= [[f ]](V1[x← [[g]]V2]) (ind. hypothesis for g)
= [[f ]](V2[x← [[g]]V2]) (by (4))
= [[((λ(x)f) g)]]V2 (def. of [[application]]V2)

proving that (3) holds in the final case when e is ((λ(x)f) g).

�
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