Your name:_____

DO NOT WRITE BELOW THIS LINE

Problem	Points	Grade	Grader
1	20		
2	20		
3	30		
4	30		
Total	100		

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

Problem 1 (20 points). We have explained that, given any proof-checking program for a sound proof system for arithmetic inequalities over the integers, we can construct a valid inequality which has no proof in the system. But Ben Bitdiddle (remember him from 6.001? :-) asks, "If the inequality has no proof, how can we possibly know it is valid?"

Provide a brief explanation to clear up Ben's confusion.

Problem 2 (20 points). We consider proofs using the standard equational proof rules (Table 1 in the Appendix) for terms over a signature with two symbols, *f* and *g*, both of arity 2, a single constant, *c*. The sole axiom is f(x, y) = g(x, y).

Let F_0 be the term f(c, c), and define $F_{n+1} ::= f(F_n, F_n)$; likewise for G_n . (That is, G_n is the same as F_n with all f's replaced by g's.)

(a) (5 points) Explain how to construct a *sequence-of-equations proof* of length O(n) for the equation $F_n = G_n$.

(b) (15 points) Let l(n) be the length of the *shortest substitution proof* of $F_n = G_n$. Prove that $2^n = O(l(n))$.

Your name:___

Problem 3 (30 points). As in Assignment 4, we consider terms with constants R, F, D and a binary operation symbol, \circ , with the model, A, being the automorphisms of the square. That is, the domain of A is the eight automorphisms of the square, and the constants R, F, D mean 90⁰ clockwise rotation, reflection about a vertical axis, and reflection about an upper-left/lower-right diagonal, respectively, and the operation symbol, \circ , means function composition.

Define another model, A', whose elements will be pairs (A, s), where A is an automorphism of the square and s is a binary string. The \circ symbol in A' means the operation on pairs that composes the first coordinates and concatenates the second coordinates. For example,

(vertical reflection, 010) $\circ_{\mathcal{A}'}$ (diagonal reflection, 11) ::= (90° rotation, 01011).

The meanings of the constants R, F, D in \mathcal{A}' will be the pairs (90° rotation, λ), (vertical reflection, λ), and (diagonal reflection, λ), respectively, where λ is the empty string.

Let \mathcal{E} be the equational axioms

$$x \circ (y \circ z) = (x \circ y) \circ z,$$
(associativity) $F^2 \circ x = x$ (left identity) $x \circ F^2 = x$ (right identity)

and *all* equations between variable-free terms that are true in A, for example,

$$R^{4} = F^{2},$$

$$R^{4} = D^{2},$$

$$FR = D,$$

$$R^{3}F = D,$$

$$\vdots$$

(a) (5 points) Explain why $\mathcal{A}' \not\models x^5 = x$.

(b) (15 points) Explain why $\mathcal{A}' \models \mathcal{E}$.

(c) (10 points) Conclude that $\mathcal{E} \not\vdash x^5 = x$.

Your name:___

Problem 4 (30 points). Consider ae's extended to include applications

 $((\lambda(x)e)f)$

A *free occurrence* of a variable x, in an ae, a, is an occurrence of x that is not in a subexpression of the form $(\lambda(x)...)$. For example, we highlight in boldface all the free occurrences of variables in the ae

$$(\lambda(y) \\ ((\lambda(x)(x+y)) \\ ((y \cdot \mathbf{w}) \cdot \mathbf{x}))] \\ ((\mathbf{y} - ((\lambda(z)z) \mathbf{x})) \cdot ((\lambda(x)(x-\mathbf{y})) \mathbf{7})))$$

(We used square brackets],[instead of parentheses to make it easier to see the scope of $\lambda(y)$.)

The *free variables*, FV(e), of an ae, e, are those variables which have one or more free occurrences in e. For example, letting e_0 be the ae above, we have $FV(e_0) = \{x, y, w\}$.

(a) (10 points) Define FV(e) recursively on the structure of e.

Your name:_____

(b) (20 points) Prove that if V_1, V_2 are valuations such that

$$V_1(x) = V_2(x)$$
 for all $x \in FV(e)$,

then

$$[\![e]\!]V_1 = [\![e]\!]V_2. \tag{1}$$