Appendix

1 The Meanings of Terms

Definition. A *model*, \mathcal{M} , for signature, Σ , consists a nonempty set, $\mathcal{D}_{\mathcal{M}}$, called the *domain* of \mathcal{M} , and a mapping that assigns an *n*-ary operation on the domain to each symbol of arity *n* in Σ . That is, letting $\llbracket f \rrbracket_0$ be the meaning of $f \in \Sigma$, we have for each *f* of arity n > 0,

$$\llbracket f \rrbracket_0 : (\mathcal{D}_{\mathcal{M}})^n \to \mathcal{D}_{\mathcal{M}},$$

and for each $c \in \Sigma$ of arity 0,

$$[\![c]\!]_0 \in \mathcal{D}_{\mathcal{M}}.$$

An *M*-valuation, *V*, is a mapping from variables into the domain, $\mathcal{D}_{\mathcal{M}}$.

The meaning, [M], of term, M, in model, M, is a function from valuations to values in the domain. It is defined by structural induction on the definition of M:

$$\begin{split} \llbracket x \rrbracket V &::= V(x) & \text{for each variable, } x, \\ \llbracket c \rrbracket V &::= \llbracket c \rrbracket_0 & \text{for each constant, } c \in \Sigma, \\ \llbracket f(M_1, \dots, M_n) \rrbracket V &::= \llbracket f \rrbracket_0(\llbracket M_1 \rrbracket V, \dots, \llbracket M_n \rrbracket V) & \text{for each } f \in \Sigma \text{ of arity } n > 0. \end{split}$$

1.1 The Meanings of Applications

Definition. For any function, *F*, and elements *a*, *b*, we define $F[a \leftarrow b]$ to be the function *G* such that

$$G(u) = \begin{cases} b & \text{if } u = a. \\ F(u) & \text{otherwise.} \end{cases}$$

We can extend the set of terms to allow *applications* of the form $((\lambda(x)M) N)$ whose meaning is defined by the rule

$$[\![((\lambda(x)M)\,N)]\!]V::=[\![M]\!](V[x\leftarrow[\![N]\!]V]).$$

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

2 Validity of Equations

Definition. An equation is *valid* in a model \mathcal{M} , written,

$$\mathcal{M}\models M=N,$$

iff $\llbracket M \rrbracket_{\mathcal{M}} = \llbracket N \rrbracket_{\mathcal{M}}$. When \mathcal{E} and \mathcal{E}' are sets of equations, we write

 $\mathcal{M} \models \mathcal{E}$

to mean that $\mathcal{M} \models M = N$ for each equation $(M = N) \in \mathcal{E}$. We write

 $\mathcal{E}\models \mathcal{E}'$

to mean that

$$\mathcal{M} \models \mathcal{E}$$
 implies $\mathcal{M} \models \mathcal{E}$

for every model, \mathcal{M} .

3 Substitution

Definition. A *substitution* is a mapping, σ , from a set of variables to terms. The notation

$$[x_1,\ldots,x_n:=M_1,\ldots,M_n]$$

describes the substitution that maps variables x_1, \ldots, x_n respectively to terms M_1, \ldots, M_n , and maps all other variables to themselves.

Every substitution, σ , defines a mapping, $[\sigma]$, from terms to terms defined inductively as follows:

$$\begin{split} c[\sigma] &::= c & \text{for each constant, } c, \\ x[\sigma] &::= \sigma(x) & \text{for each variable, } x, \\ f(M_1, \dots, M_n)[\sigma] &::= f(M_1[\sigma], \dots, M_n[\sigma]) & \text{for each } f \in \Sigma \text{ of arity } n > 0, \\ ((\lambda(x)M) \ N)[\sigma] &::= ((\lambda(x')M[\sigma']) \ N[\sigma]) & \text{where } x' \text{ is fresh, and } \sigma' &::= \sigma[x \leftarrow x']. \end{split}$$

Lemma (General Substitution). Let σ be a substitution, V a valuation, and V_{σ} be the valuation such that

$$V_{\sigma}(x) ::= \llbracket \sigma(x) \rrbracket V$$

for all variables, x. Then for every term, M,

$$\llbracket M[\sigma] \rrbracket V = \llbracket M \rrbracket V_{\sigma},$$

Quiz 1 Appendix: Appendix

4 Proofs

Definition. A *sequence-of-equations proof* is a finite sequence of *equations* such that every equation in the sequence follows from equations earlier in the sequence by one of the standard equational inference rules, starting from a given set of equational axioms.

An substitution proof is a sequence of terms,

$$M_0, M_1, \ldots, M_n$$

such that M_{i+1} is the result of replacing a subterm, L_i , of M_i by a term, K_i , where $K_i = L_i$ or $L_i = K_i$ is a substitution instance of an axiom, for i = 1, ..., n.

5 Soundness & Completeness

Theorem (Axiomatic Completeness). $\mathcal{E} \models M = N$ iff M = N is provable using the rules of *Table 1.*

Theorem (Arithmetic Completeness). An arithmetic equation e = f is valid over the reals iff it is valid over the integers iff it is provable using the rules of Tables 1 and 2.

Theorem (Arithmetic Soundness). *If an arithmetic equation or inequality is provable using the rules of Tables 1, 2, and 3, then it is valid over the integers.*

Tal	ole	1:	Stanc	lard	Eq	uati	ional	Inf	ference	Ru	les.
-----	-----	----	-------	------	----	------	-------	-----	---------	----	------

\Rightarrow	$M[\sigma]$	$= N[\sigma]$ for $(M - N) \in \mathcal{S}$	(\mathcal{E} substitution)
\Rightarrow	M	= M	(reflexivity)
$M = N \implies$	N	= M	(symmetry)
$L = M, M = N \implies$	L	= N	(transitivity)
$M_1 = N_1, \dots, M_n = N_n \implies$	$f(M_1,\ldots,M_n)$	$= f(N_1,\ldots,N_n)$	(congruence)
		when $\operatorname{arity}(f) = n > 0$	·

(e+f)+g	=	e + (f + g)	(associativity of +)
$(e \cdot f) \cdot g$	=	$e \cdot (f \cdot g)$	(associativity of \cdot)
e+f	=	f + e	(commutativity of +)
$e \cdot f$	=	$f \cdot e$	(commutativity of \cdot)
0+e	=	e	(identity for +)
$1 \cdot e$	=	e	(identity for \cdot)
e + (-e)	=	0	(inverse for +)
$e \cdot (f+g)$	=	$(e \cdot f) + (e \cdot g)$	(distributivity)

Table 2: Equational Axioms for Arithmetic

Table 3: Inference Rules for Inequalities.

e = f	\Longrightarrow	$e \leq f$	$(\leq$ -reflexivity)
$e \leq f, f \leq e$	\implies	f = e	$(\leq$ -antisymmetry)
$e \leq f, f \leq g$	\implies	$e \leq g$	$(\leq$ -transitivity)
$e_1 \le e_2, \ f_1 \le f_2$	\Longrightarrow	$e_1 + f_1 \le e_2 + f_2$	$(+-\leq$ -congruence)
$e_1 \le e_2, \ 0 \le f_1 \le f_2$	\implies	$e_1 \cdot f_1 \le e_2 \cdot f_2$	$(\cdot - \leq - \text{congruence})$
$e \leq f$	\implies	$-f \leq -e$	$(\leq$ -congruence)
	\implies	$0 \leq 1$	(01-axiom)