Appendix

1 The Meanings of Terms

Definition. A *model,* M, for signature, Σ , consists a nonempty set, \mathcal{D}_M , called the *domain* of M , and a mapping that assigns an *n*-ary operation on the domain to each symbol of arity *n* in Σ . That is, letting $\llbracket f \rrbracket_0$ be the meaning of $f \in \Sigma$, we have for each f of arity $n > 0$,

$$
[\![f]\!]_0 : (\mathcal{D}_\mathcal{M})^n \to \mathcal{D}_\mathcal{M},
$$

and for each $c \in \Sigma$ of arity 0,

$$
[\![c]\!]_0 \in \mathcal{D}_{\mathcal{M}}.
$$

An *M*-*valuation*, *V*, is a mapping from variables into the domain, $\mathcal{D}_{\mathcal{M}}$.

The meaning, $[M]$, of term, M, in model, M, is a function from valuations to values in the domain. It is defined by structural induction on the definition of M :

 $\llbracket x \rrbracket V ::= V(x)$ for each variable, x,. $\llbracket c \rrbracket V ::= \llbracket c \rrbracket_0$ for each constant, $c \in \Sigma$, $[[f(M_1, ..., M_n)]]V ::= [[f]]_0([M_1]]V, ..., [M_n]]V$ for each $f \in \Sigma$ of arity $n > 0$.

1.1 The Meanings of Applications

Definition. For any function, F, and elements a, b , we define $F[a \leftarrow b]$ to be the function G such that

$$
G(u) = \begin{cases} b & \text{if } u = a. \\ F(u) & \text{otherwise.} \end{cases}
$$

We can extend the set of terms to allow *applications* of the form $((\lambda(x)M)N)$ whose meaning is defined by the rule

$$
\llbracket \left((\lambda(x)M)\,N\right) \rrbracket V ::= \llbracket M \rrbracket (V[x \leftarrow \llbracket N \rrbracket V]).
$$

Copyright © 2005, [Prof. Albert R. Meyer.](http://theory.csail.mit.edu/~meyer/) All rights reserved.

2 Validity of Equations

Definition. An equation is *valid* in a model M, written,

$$
\mathcal{M} \models M = N,
$$

iff $[M]_{\mathcal{M}} = [N]_{\mathcal{M}}$. When $\mathcal E$ and $\mathcal E'$ are sets of equations, we write

 $\mathcal{M} \models \mathcal{E}$

to mean that $M \models M = N$ for each equation $(M = N) \in \mathcal{E}$. We write

 $\mathcal{E} \models \mathcal{E}'$

to mean that

$$
\mathcal{M} \models \mathcal{E} \text{ implies } \mathcal{M} \models \mathcal{E}'
$$

for every model, M.

3 Substitution

Definition. A *substitution* is a mapping, σ, from a set of variables to terms. The notation

$$
[x_1,\ldots,x_n:=M_1,\ldots,M_n]
$$

describes the substitution that maps variables x_1, \ldots, x_n respectively to terms M_1, \ldots, M_n , and maps all other variables to themselves.

Every substitution, σ , defines a mapping, $[\sigma]$, from terms to terms defined inductively as follows:

$$
c[\sigma] ::= c
$$
 for each constant, c,
\n
$$
x[\sigma] ::= \sigma(x)
$$
 for each variable, x,
\n
$$
f(M_1, ..., M_n)[\sigma] ::= f(M_1[\sigma], ..., M_n[\sigma])
$$
 for each $f \in \Sigma$ of arity $n > 0$,
\n
$$
((\lambda(x)M) N)[\sigma] ::= ((\lambda(x')M[\sigma']) N[\sigma])
$$
 where x' is fresh, and $\sigma' ::= \sigma[x \leftarrow x']$.

Lemma (General Substitution). Let σ be a substitution, V a valuation, and V_{σ} be the valuation *such that*

$$
V_{\sigma}(x) ::= [\![\sigma(x)]\!] V
$$

for all variables, x*. Then for every term,* M*,*

$$
[\![M[\sigma]]\!]V=[\![M]\!]V_{\sigma},
$$

4 Proofs

Definition. A *sequence-of-equations proof* is a finite sequence of *equations* such that every equation in the sequence follows from equations earlier in the sequence by one of the standard equational inference rules, starting from a given set of equational axioms.

An *substitution proof* is a sequence of *terms*,

$$
M_0, M_1, \ldots, M_n
$$

such that M_{i+1} is the result of replacing a subterm, L_i , of M_i by a term, K_i , where $K_i=L_i$ or $L_i = K_i$ is a substitution instance of an axiom, for $i = 1, \ldots, n$.

5 Soundness & Completeness

Theorem (Axiomatic Completeness). $\mathcal{E} \models M = N$ *iff* $M = N$ *is provable using the rules of Table [1.](#page-2-0)*

Theorem (Arithmetic Completeness). An arithmetic equation $e = f$ is valid over the reals iff *it is valid over the integers iff it is provable using the rules of Tables [1](#page-2-0) and [2.](#page-3-0)*

Theorem (Arithmetic Soundness). *If an arithmetic equation or inequality is provable using the rules of Tables [1,](#page-2-0) [2,](#page-3-0) and [3,](#page-3-1) then it is valid over the integers.*

$(e+f)+g = e+(f+g)$		(associativity of $+)$
	$(e \cdot f) \cdot g = e \cdot (f \cdot g)$	(associativity of \cdot)
	$e + f = f + e$	(commutativity of $+)$
$e \cdot f = f \cdot e$		(commutativity of \cdot)
$0+e = e$		(identity for $+)$)
$1 \cdot e = e$		(identity for \cdot)
$e + (-e) = 0$		(inverse for $+)$
		$e \cdot (f + g) = (e \cdot f) + (e \cdot g)$ (distributivity)

Table 2: Equational Axioms for Arithmetic

Table 3: Inference Rules for Inequalities.

$e = f \implies e \leq f$		$(\leq$ -reflexivity)
$e \leq f, f \leq e \implies f = e$		$(\leq$ -antisymmetry)
$e \leq f, f \leq g \implies e \leq g$		$(\leq$ -transitivity)
		$e_1 \le e_2$, $f_1 \le f_2 \implies e_1 + f_1 \le e_2 + f_2$ (+- \le -congruence)
$e_1 \leq e_2, 0 \leq f_1 \leq f_2 \implies e_1 \cdot f_1 \leq e_2 \cdot f_2$		(·-≤-congruence)
	$e \leq f \quad \Longrightarrow \quad -f \leq -e$	$(--\leq$ -congruence)
	\implies 0 < 1	$(01$ -axiom $)$