
Massachusetts Institute of Technology Course Notes 2
6.844, Spring ’05: Computability Theory of and with Scheme February 17
Prof. Albert R. Meyer revised March 3, 2005, 1265 minutes

An Explicit Continuation Evaluator for Scheme

(revised from Fall 2002, 6.001 Project 3)

1 Yet Another Scheme Interpreter

1.1 Introduction

You will be working with a Scheme interpreter similar in many ways to those described in SICP,
Chapter 4. Without a good understanding of how an interpreter is structured, it is very easy to
become confused between the programs that the interpreter is evaluating, the procedures that
implement the interpreter itself, and underlying Scheme procedures called by the interpreter. You
will need to study carefully Chapter 4 through subsection 4.2.2 and the attached code to do this
project.

In particular, the new Scheme interpreter c-eval 1 used in this project has essentially the same
procedures for handling syntax and environments as the basic “meta-circular” interpreter m-eval
from lecture and Section 4.1.1 of SICP. Like the other interpreters we have considered, the defini-
tion of c-eval is also a conditional branch on the type of expression being evaluated. But c-eval
differs from the other interpreters because it is written in “continuation style.” This means its in-
dividual expression evaluation procedures are defined to pass the value of an expression to an
explicit continuation procedure instead of simply returning the value. We’ll explain this in detail in
Part II of the project. You won’t need to understand continuation style to complete Part I.

The reason for introducing this new explicit continuation interpreter is that it provides a simple
way to explain and implement features that affect the overall “flow of control” in an interpreter.
For example, Scheme’s error procedure is the simplest flow of control operator. When error is
called, the evaluation aborts directly to the Scheme read-eval-print loop, without returning to any
of the procedures awaiting values.

There is a dramatic difference in the ease with which the recursive meta-circular interpreter and
the explicit continuation interpreter can be extended to handle calls to error . It could be done
in the recursive m-eval interpreter, but would require revising nearly every procedure call in the
interpreter code to test if the call returns an error value; this would be very cumbersome. But in
the explicit continuation interpreter, you will see that it requires inserting only a few lines of code
in two places to install error .

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.
1In order to avoid confusing the eval and apply of this interpreter with the eval and apply of the underlying

Scheme system, we have renamed these interpreter procedures c-eval and c-apply .

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

2 Course Notes 2: An Explicit Continuation Evaluator for Scheme

1.2 Using the Interpreter

The Scheme code for this Project comes in two files:

• c-eval.scm contains the new explicit continuation interpreter c-eval . This interpreter
handles only the five special forms if , define , lambda , set! , and begin .

The c-eval has been extended to handle “dotted” parameters (we used these in Project 2;
see the Scheme manual for more on how these work).

• desugar.scm contains procedures that transform a Scheme expression with various spe-
cial forms such as and , cond , and let into an expression containing at most the five special
forms if , define , lambda , set! , and begin . Every expression to be evaluated is “desug-
ared” first.

In this way, an interpreter that directly evaluates only these five special forms still winds up
being able to handle nearly all the Scheme special forms.

Here’s how to use the extended interpreter:

• Start up Scheme/Edwin and load the files c-eval.scm and desugar.scm .

Since the interpreter’s environments are represented as elaborate circular list structures, you
should set Scheme’s printer so that it will not go into an infinite loop when asked to print a
circular list. This can be done by evaluating the expressions

(set! *unparser-list-depth-limit* 7)
(set! *unparser-list-breadth-limit* 10)

which you can find at the end of the file c-eval.scm . You may want to alter the values of
these limits to vary how much list structure will be printed as output.

• To start the c-eval read-eval-print loop, evaluate (start-c-eval 1) . This starts the
read-eval-print loop with a freshly initialized global environment. The argument to start-c-eval ,
in this case 1, serves as a label that appears in the input prompts and outputs from the inter-
preter.

To have c-eval evaluate an expression, you may type the expression into the *scheme*
buffer after the ;;C-Eval1>> input prompt and then type C-x C-e . (Be careful using M-z
to evaluate the expression in the *scheme* buffer—the presence of the interpreter prompts
can confuse the M-z mechanism. But M-z and M-o work fine for sending expressions to the
scheme buffer from other Scheme-mode buffers.)

For example,

(start-c-eval 1)

;;C-Eval1>>
(if (not (= 1 2)) (list 3) 4)

;USER TYPES C-x C-e:
;;C-Eval1 value: (3)

;;C-Eval1>>

Course Notes 2: An Explicit Continuation Evaluator for Scheme 3

shows an interaction with the c-eval interpreter.

• It may be helpful to keep various files of procedure definitions you want to run the inter-
preter on. When your Edwin Scheme buffer is running the c-eval read-eval-print loop,
you can then visit such a file and type M-o to have all the expressions in the file evaluated
by c-eval .

• You can exit or interrupt c-eval by typing ctrl-c ctrl-c . To restart it with the recent
definitions still intact, evaluate (restart-c-eval) .

The c-eval interpreter has a limited error system, and evaluation errors will often bounce
you back into ordinary Scheme. In this case, you can also restart the current interpreter—
with its global environment still intact—by evaluating (restart-c-eval) .

• To undertand or debug a procedure definition, it can be helpful to have a trace of successive
arguments to which the procedure is applied during an evaluation. MIT Scheme supports
this activity with a builtin procedure trace-entry . You will be asked to trace interpreter
procedures in several problems in this project. (You may also want trace your own proce-
dures to debug them for this assignment.)

Applying trace-entry to a defined procedure will cause it to report its successive argu-
ments during a computation. (Note that you should ask the underlying Scheme evaluator
to “trace” things – we have not installed tracing into the c-eval evaluator.) For example:

(define (map1 f l)
(if (null? l) nil (cons (f (car l)) (map1 f (cdr l)))))

;Value: "map1 --> #[compound-procedure 3 map1]"

(trace-entry map1)
;Value: #[unspecified-return-value]

(map1 inc ’(1 2 3))

[Entering #[compound-procedure 3 map1]
Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]

(1 2 3)]
[Entering #[compound-procedure 3 map1]

Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]
(2 3)]

[Entering #[compound-procedure 3 map1]
Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]

(3)]
[Entering #[compound-procedure 3 map1]

Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]
#f]

;Value: (2 3 4)

Apply untrace to the procedure to turn off tracing. There is also a trace-exit procedure
for tracing successive values returned:

4 Course Notes 2: An Explicit Continuation Evaluator for Scheme

(untrace map1)
;Value: #[unspecified-return-value]

(trace-exit map1)
;Value: #[unspecified-return-value]

(map1 inc ’(1 2 3))

[#f
<== #[compound-procedure 3 map1]

Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]
#f]

[(4)
<== #[compound-procedure 3 map1]

Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]
(3)]

[(3 4)
<== #[compound-procedure 3 map1]

Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]
(2 3)]

[(2 3 4)
<== #[compound-procedure 3 map1]

Args: #[compiled-procedure 5 ("arith" #x3A) #xF #x10BED93]
(1 2 3)]

;Value: (2 3 4)

2 Part I, due: Friday, November 22

2.1 Getting Started

Problem 1: Start the c-eval interpreter and evaluate a few simple expressions and definitions.
It’s a good idea to make an intentional error and practice restarting the read-eval-print loop. Show
a transcript of your tests.

Problem 2: Define some simple recursive procedure (eg, factorial , fibonacci , . . .) and trace
the arguments to c-eval and c-apply when your procedure is applied to some argument. Turn
in this trace as part of your solutions. (Note, to do the tracing, you want to enable tracing from the
underlying Scheme environment, then return to c-eval and evaluate your procedure; similarly,
you need to return to the underlying Scheme evaluator to turn off the tracing). Notice how the
arguments are passed into your procedure at each call.

The rest of this project involves defining various Scheme procedures—usually to extend the inter-
preter in some way. For every problem that asks you to produce Scheme code, you should be sure
to include printouts illustrating its correct execution on appropriate examples. If your solution
is buggy or incomplete, you should include comments illustrating what examples your code can
and cannot handle, and explaining the way you intended your code to work.

Course Notes 2: An Explicit Continuation Evaluator for Scheme 5

The following problems in Part I require only small additions or modifications to the code in the
problem set files (if you find yourself making major changes or defining many procedures, you’re
on the wrong track). They do not require an understanding of the continuation passing style,
which we take up in Part II. However, to do Part I, you will have to study the files and develop a
clear understanding of the basic features of the interpreter.

Problem 3: The interpreter does not handle the special form cond . Modify (i.e., change existing
procedures and add any new procedure) the procedures in desugar.scm to desugar cond into
an expression that c-eval can evaluate. Make sure that your desugar-cond procedure correctly
desugars all the conditional expressions in c-eval.scm (if it doesn’t you won’t be able to the final
problems in Part I). Be sure to create any appropriate data abstractions.

Problem 4: Look up the official specification of the special form or . Modify the procedures in
desugar.scm to desugar or into an expression that c-eval can evaluate. Remember that the
individual expressions in the body of or are supposed to be evaluated at most once:

(or
(begin (display "once ") #f)
(begin (display "and ") #f)
(begin (display "only") ’done))

once and only
;Value: done

(One way to desugar or involves using let —which can itself be desugared later. In this case
there can be “false capture” errors if the let variable already appears in the or expression being
desugared. For this problem, it is OK to assume that any variables you use in desugaring do not
already appear. Note that this is not the only way to desugar an or expression.)

2.2 Procedure Values

There are three kinds of procedure values in the explicit continuation interpreter:

1. c-eval primitive procedures. These are bound by the interpreter’s make-initial-environment
procedure (cf., c-eval.scm) to underlying Scheme procedures. The underlying Scheme
procedures may be Scheme primitives like +, or Scheme compound procedures like c-pair? .

2. c-eval compound procedures. These are the values of lambda expressions evaluated in
c-eval . It can also be convenient to have make-initial-environment install some
compound procedures in the global environment on startup. There is one example of this in
the project code: the procedure append is predefined when the interpreter starts.

3. c-eval special procedures apply , error and exit .

Problem 5: Notice that the make-initial-environment procedure in c-eval.scm binds
many interpreter variables such as +, symbol? , . . . to corresponding procedures built into Scheme.
But the interpreter’s variable pair? is bound to a special c-pair? procedure. Give an exam-
ple of what would go wrong if the interpreter’s variable pair? was bound instead to Scheme’s
built-in pair? procedure.

6 Course Notes 2: An Explicit Continuation Evaluator for Scheme

Now temporarily modify make-initial-environment so the interpreter’s variable pair? is
bound to to Scheme’s built-in pair? procedure, and run the interpreter on your example. Then
restore the original definition of initial-environment and verify that your example is han-
dled correctly.

Problem 6: Extend c-eval so that the language interpreted by c-eval includes builtin predi-
cates procedure? and list? (similar to pair?). Make sure your predicates do not confuse
c-eval procedures, which are represented as lists, with c-eval representations of genuine list
values.

For example, evaluating (procedure? (list (list ’procedure) +)) in the interpreter
should return #f —even though its argument evaluates to a list that looks like the interpreter’s
representation of a compound procedure. Conversely, evaluating (list? +) in the interpreter
should also return #f , even though the interpreter’s representation for the primitive procedure +
is a list.

Problem 7: Add a new “special” procedure eval to the interpreter. Evaluating the expression

(eval ’<expr>)

should lead to the same computation as evaluating <expr> in the global environment. For ex-
ample,

;;C-Eval1>>
(let ((x 3))

(eval ’(define x 9))
x)

;;C-Eval1 value: 3

;;C-Eval1>> x

;;C-Eval1 value: 9

Hint: Model your answer after the apply special procedure. You do not really need to under-
stand how continuation passing works to do this. Note how apply is inserted into the initial
environment, and how it is actually handled as part of the “special” procedures.

Problem 8: Now that cond and or can be desugared, c-eval is very nearly general enough to
evaluate itself.

Evaluate the procedures in your modified desugar.scm file in Scheme (in Edwin, just visit the
file and do M-o). Now start the c-eval read-eval-print loop, and at the ;;C-Eval1>> input
prompt, evaluate the procedures in c-eval.scm . This means you have now evaluated all of these
procedures within the continuation evaluator. Then at the final ;;C-Eval1>> input prompt, type
(start-c-eval 2) . What happens?

Fix the problem by modifying make-initial-environment to include the missing procedure
in the global environment (like the procedure append). Go back and repeat the process of loading
the the files into the continuation evaluator and try evaluating (start-c-eval 2) again. You

Course Notes 2: An Explicit Continuation Evaluator for Scheme 7

should get a ;;C-Eval2>> input prompt, indicating that you are in the read-eval-print loop of a
level 2 c-eval interpreter running in a level 1 c-eval interpreter running in Scheme!

Evaluate a couple of simple expressions at the ;;C-Eval2>> ; don’t expect a speedy answer.

To return to the level 1 interpreter, evaluate (exit) at the level 2 prompt. Then to return to
Scheme, evaluate (exit) at the level 1 prompt.

Turn in printouts showing that you accomplished this.

Problem 9: Finally, once we can run an evaluator within an evaluator, we can monitor the amount
of work we do in evaluating expressions. One way to do this is to create a new special form, called
meter , that we can use to explicitly meter the use of resources for a given expression, e.g., (meter
(fact 5)) . However, we are going to make things a bit easier, by altering our evaluator to meter
the use resources for every expression that we type in.

You will do this in the following manner:

• Create some global variables, that you will use to count the number of times an operation
is performed. For example, *eval-count* should be used to count the number of times
that eval is called, and *apply-count* should be used to count the number of times a
primitive procedure is applied.

• Modify your code for the evaluator so that these two variables are incremented each time
their associated operation is performed.

• You need to adjust the part of the evaluator that interacts with the user, the so-called read-
eval-print loop. Inside of start-c-eval you will see code that accomplishes this, called
driver-loop . Look this code over carefully. You should alter this code so that your vari-
ables are reset to 0 each time driver-loop is called.

• Finally, you need to print out the information about usage of eval and apply . This part is a
bit tricky. If you look at the call to c-eval within driver loop, you will see it has three argu-
ments: the expression to evaluated (which is read in and then desugared), the environment
with respect to which the expression should be evaluated, and a third argument, which is the
continuation. This third argument we will explore in much more detail in the second part
of the project. For this part, you simply need to think of this as a procedure that is applied
to the value returned by the evaluation – in this case you can see that it prints out the result
and then calls driver-loop recursively. You will need to alter this continuation procedure
so that it also prints out (or displays) information about the number of calls to c-eval and
the number of primitive apply s.

Once you have made your changes, try reloading your evaluator code c-eval and desugar , and
then try some simple expressions. Note how much effort is expended in doing this. Try defining
a simple recursive, like factorial or fibonacci , and record the number of evals and applys
used in applying these procedures to some argument.

Next, repeat the process of Problem 8: start up your c-eval uator, then evaluate the contents of
your code buffer by using M-o ; and then start up a second level evaluator. Repeat the same defi-
nition of a recursive procedure that you just did (you need to do this within this new evaluator),
and applying it to the same argument. Notice that the number of evals and applys is the same.

8 Course Notes 2: An Explicit Continuation Evaluator for Scheme

Now, exit out of this second level evaluator. Notice what gets printed out in terms of evals and
applys. This is the amount of work that the evaluator itself had to do to similuate the process of
evaluation!

Do the same thing with an iterative version of the procedure.

3 Part II, due Friday, December 6

In this part of the project, we’ll extend Scheme with some further flow of control operations that
are more interesting than simply aborting computation by calling error . There is no direct way
to incorporate such operations into recursive meta-circular interpreters. It is easy to do when
continuations are explicit.

3.1 Continuation Passing

Start by considering our normal Scheme evaluator. The situation at any point during evaluation
of an expression can usefully be understood as consisting of two parts: rules for finding a value
of a subexpression, and rules for what to do when the value is found. It is possible to rewrite
a procedure so the rules for what to do with the returned value are packaged into an explicit
continuation procedure. Instead of returning the subexpression value, the computation “passes on”
the value by applying the continuation procedure to the value.

Because values of subexpressions are always passed on, they never get returned, except perhaps at
a final step. And since no value gets returned after a procedure call, continuation style procedures
always turn out to be tail-recursive. We explained early in the term that tail-recursive procedures
provide a stack-space saving benefit. That’s important, but not our main concern.

As we indicated, the real point of having explicit continuations is to manage flow of control during
computation. This can be a valuable technique in Scheme programming regardless of whether or not
we are defining an interpreter. The added benefit of writing an interpreter in continuation passing
style is that it becomes easy to add all sorts of flow of control primitives to the language being
implemented by the interpreter.

As a first example of how explicit continuations work, we’ll consider the recursive procedure
flatten . Applying flatten to a tree returns a list of its leaves. For example, evaluation of

(flatten ’((a (b) ((c (d))) e)))

returns the list (a b c d e) .

The usual way to define flatten is by a tree recursive procedure:

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

Course Notes 2: An Explicit Continuation Evaluator for Scheme 9

It isn’t obvious how such a procedure could be made tail recursive. Here’s how: we will write a
continuation style flatten procedure cs-flatten that takes two arguments, a tree, T, to be flat-
tened and a one argument continuation procedure, receiver .

Evaluating (flatten T receiver) leads to receiver being applied to the flattened list of
leaves of T. For example,

(define identity (lambda (l) l))
;Value: "identity --> #[compound-procedure 17 identity]"

(cs-flatten ’(((a) b) (((c)))) identity)
;Value: (a b c)

(cs-flatten ’(((a) b) (((c)))) second)
;Value: b

(define (announce-null leaves)
(if (null? leaves)

(begin (display "empty tree")
nil)

leaves))
;Value: "announce-null --> #[compound-procedure 18 announce-null]"

(cs-flatten ’(((a) b) (((c)))) announce-null)
;Value: (a b c)

(cs-flatten ’() announce-null)
empty tree
;Value: #f

To define cs-flatten , we begin with the observation that the usual recursion for flattening a
tree, T, consists of three main steps:

1. flatten the car of T,

2. flatten the cdr of T,

3. append the results of these two flattenings.

Let’s assume for the moment that we can take append as a primitive. We can accomplish the
first step, flattening the car of T, by calling (cs-flatten (car T) identity) . But this call
returns the list of leaves instead of passing it on. Continuation passing strategy is to pass the
leaves of the car to a continuation that will go on to perform the remaining two steps.

Now the second step is to flatten the cdr of T, so a continuation to accomplish the second step is

(lambda (flattened-car) (cs-flatten (cdr T) ...)

10 Course Notes 2: An Explicit Continuation Evaluator for Scheme

What goes in the ellipsis (three dots) above? The answer is a continuation that receives the leaves
of the cdr and performs the third step of appending the two lists. This final list must then be
passed on to receiver . So this final continuation is:

(lambda (cdr-leaves) (receiver (append car-leaves cdr-leaves)))

Here is the final definition:

(define (cs-flatten T receiver)
(cond ((pair? T)

(cs-flatten ;(1.) flatten
(car T) ;the car of T, and pass the result to
(lambda (car-leaves) ;a procedure that will

(cs-flatten ;(2.) flatten
(cdr T) ;the cdr of T, and pass the result to
(lambda (cdr-leaves);a procedure that will

;(3.) append the two flattened lists
;and pass the resulting list to RECEIVER:

(receiver
(append car-leaves cdr-leaves)))))))

((null? T) (receiver nil))
(else (receiver (list T)))))

It may seem like cheating to treat append as primitive. But we can also define append in contin-
uation passing style: break the usual recursion for appending two lists into two steps:

1. append the cdr of the first list to the second list, and

2. cons the car of the first list onto the resulting list.

This leads to

(define (cs-append l1 l2 list-receiver)
(if (pair? l1)

(cs-append ;(1.) append
(cdr l1) l2 ;the CDR of l1 to l2, and pass the result to
(lambda (appended-cdr) ;a procedure that will

;(2.) CONS the CAR of l1 to that result,
;and pass the final list to LIST-RECEIVER:

(list-receiver
(cons (car l1) appended-cdr))))

(list-receiver l2)))

Putting cs-append together with cs-flatten yields an entirely tail-recursive, continuation
passing procedure:

Course Notes 2: An Explicit Continuation Evaluator for Scheme 11

(define (cs-flatten T receiver)
(define (cs-append l1 l2 list-receiver)

(if (pair? l1)
(cs-append

(cdr l1) l2
(lambda (appended-cdr)

(list-receiver
(cons (car l1) appended-cdr))))

(list-receiver l2)))
(cond ((pair? T)

(cs-flatten
(car T)
(lambda (car-leaves)

(cs-flatten
(cdr T)
(lambda (cdr-leaves)

(cs-append car-leaves cdr-leaves receiver))))))
;NOTE THE CHANGE HERE

((null? T) (receiver nil))
(else (receiver (list T)))))

(define (flatten T)
(cs-flatten T identity))

Problem 10: Define a tail-recursive, continuation passing style procedure matchup-var-vals
taking three arguments: a list of variables (represented as Scheme symbols), a corresponding list
of values, and a receiver procedure. Applying matchup-var-vals will split the list of variables
into two lists—those that do not satisfy a dynamic? predicate and those that do—and likewise
split the corresponding list of values into two lists. These four lists will be passed as arguments to
the receiver procedure.

The dynamic? predicate is included in c-eval.scm ; it is satisfied precisely by symbols that start
with %d-. For example,

(matchup-var-vals
’(aa dd %d-xx %d %dd %d-aa)
’(1 2 3 4 5 6)
list)

;Value: ((aa dd %d %dd) (1 2 4 5) (%d-xx %d-aa) (3 6))

You may assume that the first two arguments to matchup-var-vals are of equal length.

Also, remember that you are defining this in the normal Scheme evaluator.

Hint: think about how many arguments the continuation procedure should take.

3.2 Continuations in The Interpreter

Now we can turn to the continuation evaluator. Let’s look at how continuations work in the ex-
plicit continuation interpreter. The c-eval procedure, like m-eval , takes an expression <expr>

12 Course Notes 2: An Explicit Continuation Evaluator for Scheme

and an environment <env> as arguments, but it also takes as a third argument some procedure
<cont> . Applying c-eval causes the result of evaluating <expr> in <env> to be passed on to
<cont> . For example, evaluating

(c-eval expr env identity)

returns the same value and has exactly the same effect as evaluating

(m-eval expr env)

We have already remarked that, like the other interpreters we have considered, the definition of
c-eval is a conditional branch on the type of expression being evaluated. The simplest case is
when the expression is a number or other self-evaluating value. Then c-eval simply passes the
expression directly to its continuation:

(define (c-eval expr env cont)
(cond ((self-evaluating? expr) (cont expr))

...))

A more interesting case is for if expressions;

(define (c-eval expr env cont)
(cond ...

((if? expr) (eval-if expr env cont))))

The strategy for defining eval-if is to remember the two steps in the recursion for evaluating
if-expressions:

1. evaluate the predicate of the if-expression, and then

2. if the value of the predicate is true, evaluate the consequent of the if-expression, otherwise
evaluate the alternative of the if-expression.

The first step can be accomplished with a recursive call to c-eval on the predicate of the if-
expression:

(define (eval-if expr env cont)
(define choose-branch-eval-and-continue ...)
(c-eval (if-predicate expr) env choose-branch-eval-and-continue))

Here choose-branch-eval-and-continue should be a continuation that will perform the
second step and pass the resulting value to cont :

(define choose-branch-eval-and-continue
(lambda (pred-val)

(c-eval (if pred-val
(if-consequent expr)
(if-alternative expr))

env cont)))

Course Notes 2: An Explicit Continuation Evaluator for Scheme 13

Notice that choose-branch-eval-and-continue needs values for expr , env and cont , in
addition to the predicate value it receives as an argument. It gets these by being defined in the
scope of eval-if .

Problem 11: You should now be able to read and understand the procedures in c-eval.scm well
enough to write some similar ones of your own.

In particular, extend c-eval so that the or special form is handled directly instead of requir-
ing prior desugaring. Namely, define a continuation style eval-or procedure, add it to the
c-eval.scm file, and add an or? clause to the c-eval procedure. Handling or as a special
form avoids some of the technical problems with accidental variable capture we noted can come
up when or is handled as syntactic sugar.

Execute (trace-entry eval-or) and then test your extended c-eval on

(or (begin (display "hello ") #f)
(or (begin "good-bye " (= 1 2))

(not #t))
(let ((x "only once")) (display x) #f)
’done)

(Be sure to redefine the desugar procedure so it does not desugar or ’s. Otherwise, your eval-or
procedure will never be called.)

Then exit the c-eval interpreter, evaluate (untrace eval-or) , (trace-exit eval-or) ,
and repeat the test. If your eval-or is in proper continuation passing style, there should be no
returned values displayed by trace-exit . Turn in the code and results with your solutions to
Part 2.

3.3 Errors and Exits

Now we can explain how the error and exit procedures work. For procedure application,
c-eval calls c-apply . Like m-apply , the procedure c-apply takes an operator and operand
values as arguments. It also takes an explicit continuation argument.

The normal task of c-apply is to apply the operator to the operands and pass the resulting
value to its continuation argument. If the operator is a special-procedure, it dispatches to an
apply-special procedure. When apply-special detects that the operator to be applied is
error or exit 2, then apply-special winds up ignoring its continuation. Instead of passing a
value to its continuation, it displays a message and actually returns some unspecified error or exit
value:

2More precisely, error and exit are variables. Their values are special procedures, each of which is represented as
a tagged name.

14 Course Notes 2: An Explicit Continuation Evaluator for Scheme

(define (apply-special op vals cont)
(let ((name (special-op-name op)))

(cond
...

((eq? ’*error name) ;CONT IS IGNORED HERE
(apply fatal-c-eval-error vals))

((eq? ’*exit name)
"exited C-EVAL") ;AND HERE

...)))

Since all the evaluation procedures are tail-recursive, returning a value causes execution of the
interpreter to stop, with the value going directly to Scheme’s read-eval-print loop. After that, the
user can continue his Scheme session. You’ve seen exit and error behave this way in Part I.

Another feature of the explicit continuation interpreter is that it need not bounce all errors back
to the Scheme read-eval-print loop. For example, suppose c-eval calls for looking up a variable
in an environment, and the variable is not there. Here too, the explicit continuation gets ignored.
But instead of returning an error value, the lookup procedure displays an error message, and then
restarts the interpreter read-eval-print loop:

(define (lookup-variable-value var env cont)
....
(if (eq? env the-empty-environment)

(begin
(display "C-EVAL INTERPETATION ERROR: Unbound variable: ")
(display var)
(newline)
(restart-c-eval))
...))

Problem 12: We observed that when the operator is error , the apply-special procedure ig-
nores its continuation argument and returns an error message directly to Scheme’s read-eval-print
loop (or if it is running inside itself, it returns up one level). The global environment (containing
the user defined variables) is saved, so the user can call (restart-c-eval) and proceed to
interact with the interpreter in the saved global environment.

It would be useful for debugging, among other things, if after such an error return the user
has another option: by calling restart-c-eval with an argument, the user could continue the
evaluation where it left off when the error occurred. This can be accomplished by storing the con-
tinuation argument inside the restart-c-eval procedure instead of ignoring it. (Hint: Think
about what this means. To capture the continuation, you need to redefine restart-c-eval so
that it has access to a local frame in which some variable is bound to that continuation, so that it
can access it.)

In particular, if the user calls restart-c-eval in Scheme with an argument, say (restart-c-eval
’<expr>) , then <expr> gets evaluated by c-eval , and the resulting value is passed on if there
was no error. For example,

;;C-Eval1>>

Course Notes 2: An Explicit Continuation Evaluator for Scheme 15

(list (begin (display ’a) (newline) 1)
(error ’jump-out-here)
(begin (display ’z) (newline) 3))

a ;displayed ’a here
FATAL-C-EVAL-ERROR: jump-out-here
;Value: (unspecified)

(restart-c-eval ’(+ 1 1))
z ;displayed ’z here

;;C-Eval1 value: (1 2 3)

;;C-Eval1>>

Extend c-eval so that restart-c-eval can take an optional argument and will behave in this
way. (This means restart-c-eval must be redefined to take zero or one argument.)

3.4 Handling call-with-current-continuation

Flow of control gets really powerful when there is a procedure like the restartable error of the
previous problem, but which allows the computation to proceed—with the option to restart where
the “error” occurred—instead of bouncing out of the interpreter with an error message. Scheme’s
procedure call-with-current-continuation —call-cc for short—does just that.

Instead of an error message, the argument to call-cc will be a procedure, and instead of storing
the “error” continuation in the restart-c-eval procedure, call-cc passes the continuation
to its argument.

For example, instead of asking the user to invoke restart-c-eval restart the evaluation above
that was aborted by (error ’(+ 1 1)) , we can use call-cc to “automatically” restart the
evaluation with the value of (+ 1 1) :

;;C-Eval1>>
(list (begin (display ’a) (newline) 1)

(call-cc (lambda (restart)
(display

"<let c-eval continue without going to Scheme REPL> ")
(newline)
(restart (+ 1 1))
what’s here won’t be evaluated))

(begin (display ’z) (newline) 3))
a
<let c-eval continue without going to Scheme REPL>
z

;;C-Eval1 value: (1 2 3)

;;C-Eval1>>

16 Course Notes 2: An Explicit Continuation Evaluator for Scheme

3.4.1 Using call-with-current-continuation

The bare-bones, official Scheme of R5RS has no error , return or similar escape commands3

because these are easy to define using call-with-current-continuation . For example,

(define error ’dummy)

(call-with-current-continuation
(lambda (cc)

(set! error
(lambda vals (map display vals)

(cc ’returned-to-REPL)))))

A more informative example uses call-with-current-continuation to abort a search and
immediately return a value:

(+ 11 (call-with-current-continuation
(lambda (return)

(for-each (lambda (x)
(display x) (display ",")
(if (negative? x)

(return x)))
’(54 0 37 1 245 19))

-1)))
54,0,37,1,245,19,
;Value: 10

(+ 11 (call-with-current-continuation
(lambda (return)

(for-each (lambda (x)
(display x) (display ",")
(if (negative? x)

(return x)))
’(54 0 37 -111 245 19))

-1)))
54,0,37,-111,
;Value: -100

Problem 13: Add a call-cc special procedure to c-eval . (Hint: This can be accomplished by
adding a total of about a half dozen lines to the definitions of the two procedures apply-special
and make-initial-environment . Here’s how it works: to evaluate (call-cc <expr>) , ex-
pression <expr> gets evaluated and should return a procedure value <f> . Then the apply-special
packages up its continuation argument—the “current” continuation—into a new kind of special
procedure with a “continuation” tag, and the value of <f> is applied to the newly created special
procedure. Later if one of these special tagged procedures <p> is applied to an argument <a> ,

3All actual Scheme implementations actually do provide such commands.

Course Notes 2: An Explicit Continuation Evaluator for Scheme 17

the apply-special procedure ignores its given continuation argument. Instead it extracts the
continuation packaged inside <p> and applies it <a> .)

OPEN-ENDED Problem 14:

This final problem is meant to give you an opportunity to do some original language design or
implementation of your own.

Your modification need not be extensive. Here are some examples of things you might do.

• Implement the Scheme special form do that defines a program loop, and then you could add
some break procedure to abort the loop and immediately return a value to the procedure
that called the do . You could do this in c-eval , or if you prefer, do it in the traditional
m-eval . We have made a copy of m-eval available on the project web page for you to
download. Note in doing this, you get to define the syntax for a “do” loop, and the semantics
of how it should proceed. Typically such a loop has some counter that it tests against an end
test at each stage. If the end test is true, the loop exits with some return value, otherwise, the
body of the loop is evaluated, the loop counter is incremented, and the process is repeated.

• Add lazy parameters, with some different rules for when a thunk gets forced.

• Revise the code in c-eval.scm to define an extension of the c-eval interpreter that treats
variables satisfying the dynamic? predicate as dynamically scoped. Namely, with this
extension, all the procedures like eval-if and eval-assignment will take two environ-
ment parameters, the usual static environment env , and an additional dynamic environ-
ment denv . Applying a compound procedure to arguments now may cause frames to be
hung onto each of the environments. The usual frame with the static variables bound to
their values gets hung onto the static environment, env , in the closure that is the value of
the compound procedure. Another frame with the dynamic variables bound to their values
gets hung onto denv . Also, dynamic variables get looked up in denv , while non-dynamic
variables are treated as usual and looked up in the static environment env . The effect is that
dynamic variables in the body of the compound procedure are looked up in the dynamic
environment where the procedure is applied, while static variables get looked up as usual
in the environment of the closure value that is being appliid.

Your extended interpreter should remain in continuation passing style. This revision affects
all the important procedures in c-eval.scm , but the required changes are minimal, consist-
ing mainly of adding a denv parameter to the procedures. The interesting part of the revi-
sion concerns code for application of compound procedures. Here the matchup-var-vals
procedure of II.2 will come in handy.

• Revise the intepreter to be an “analyzing” interpreter as described in SICP. (If you do rewrite
it as an analyzing interpreter, you should matchup-var-vals notice a dramatic improvement
in speed; see how many levels deep in self-evaluating interpreters you can get before the
innermost evaluation slows to a crawl.)

• Something else (though if you do this, we strongly suggest that you send a note describing
what you plan to do to your TA EARLY so that you can get some guidance on whether your
idea is doable in a reasonable amount of time and effort).

18 Course Notes 2: An Explicit Continuation Evaluator for Scheme

Whatever extension you choose to make, be sure you describe it clearly and hand in your descrip-
tion, new code for the extended interpreter (don’t include in your submission any procedures in
the downloaded files that you have not changed), and a selection of examples with comments.

By the end of this project, we hope that you will have mastered much of the art of intepretation.

	Yet Another Scheme Interpreter
	Introduction
	Using the Interpreter

	Part I, due: Friday, November 22
	Getting Started
	Procedure Values

	Part II, due Friday, December 6
	Continuation Passing
	Continuations in The Interpreter
	Errors and Exits
	Handling call-with-current-continuation
	Using call-with-current-continuation

