
Massachusetts Institute of Technology Course Notes 9
6.844, Spring ’05: Computability Theory of and with Scheme April 29
Prof. Albert R. Meyer revised April 29, 2005, 118 minutes

Compiling Scheme to a Micro2-computer

1 Micro-squared-computers

In the Theory of Computation, it’s useful to study models of extremely simplified general-purpose
computers. These machine models fall off the minimum end of the design charts even for a RISC
(Reduced Instruction Set Computer) microcomputer chip, so we’ll call them micro2-computers to
emphasize this point.

Turing machines are the traditional micro2-computer used in the development of Computability
Theory. In these notes, we’ll outline how programs written in Scheme can be compiled to run on
a micro2-computer that is arguably simpler than a classical Turing machines. The target machine
for our Scheme compiler will be a Counter Machine with two counters.

Of course even though in theory Scheme can be compiled into micro2-computer code, we are not
suggesting that this would be a sensible thing to do. The resulting compiled code is spectacularly
inefficient, and there would be no point in trying to run it. But construction of the compiler fleshes
out the assertion that any procedure programmable in Scheme can be simulated by a micro2-
computer program. Consequently, to prove that some decision procedure can be carried out by a
micro2-computer, it’s sufficient to demonstrate it can be done in Scheme. In fact, we have methods
for designing an interpreter for any other programming language in Scheme, so if we see how to
write a procedure in any programming language, we can construct a micro2-computer to carry out
the procedure.

Compiling Scheme to micro2-computers also explains why analyzing the computational behavior
of micro2-computer programs is going to be hard in general. Even though they look very limited,
analyzing micro2-computer programs is going to be as challenging as analyzing arbitrary proce-
dures in a full-fledged programming language. This is a daunting task—think of trying to un-
derstand an undocumented procedure definition consisting of a few thousand lines of “spaghetti
code”. Determining whether programs even have some simple computational properties is in fact
undecidable, as we have discussed in other Notes. So significantly paring down the features in a
programming language may not guarantee that the pared-down programs will be easy to analyze.

But the main reason to compile to micro2-computers is that it simplifies explaining how various
problems from outside Computer Science can be understood as general computation problems
in disguise. Recognizing the computational component in problems from algebra, number the-
ory, formal logic, formal grammars, and combinatrial optimization, for example, will allow us to
conclude that undecidable properties carry over to these disciplines.

For example, the negative solution to Hilbert’s Tenth Problem shows that the set of multivariable
integer-coefficient polynomials with an integer root-vector is not a decidable set. The proof of

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

Course Notes 9: Compiling Scheme to a Micro2-computer 2

instruction informal meaning
inc i increment Counter i
dec i decrement Counter i,

except leave it alone if it is 0.
ifr i n1 n2 if Counter i is zero, go to line n1,

otherwise go to line n2.

Figure 1: Counter Machine Instructions

0: ifr1 4 1 ;going to line 4 means “halt”
1: dec1
2: inc2
3: ifr1 0 0 ;goto line 0

Figure 2: 2-Counter Machine Cadd

this result involves learning to “program” with such polynomials. But polynomials are a pretty
cumbersome language to program in, so the burden of showing how polynomials can describe
arbitrary computations is a lot lighter when all we have to show is how polynomials can simulate
some micro2-computer.

2 Counter Machines

An n-Counter machine has n registers, each register capable of holding a nonnegative integer
of arbitrary size. The only operations of the machine are to increment (add one) to any register,
decrement any register (leaving it unchanged if the register contains zero), and branch on whether
a register contains zero, as indicated in Figure 1. The registers are called “counters” since in a
single step they can only be incremented and decremented.

A Counter Machine, C, is a finite sequence of such instructions, numbered consecutively starting
at zero. For example, the machine, Cadd, in Figure 2 is a 2-Counter Machine that adds the contents
of its first counter to its second counter and then halts (by transferring to an instruction number
larger than any in the program).

The “configuration” of a 2-CM is defined to be a triple (k, l,m) of nonnegative integers. The
intended interpretation of the triple is that k is the number of the next instruction to be executed,
and l and m are the contents of Counters 1 and 2. Formally, we associate with 2-CM, C, a partial
function stepC from configurations to configurations, where stepC(k, l,m) is the configuration, if
any, after execution of C’s kth instruction when Counter 1 contains l, and Counter 2 contains m.
For example, for the machine Cadd of Figure 2:

stepCadd
(0, 2, 0) = (1, 2, 0),

stepCadd
(1, 2, 0) = (2, 1, 0),

stepCadd
(2, 1, 0) = (3, 1, 1),

stepCadd
(3, 1, 1) = (0, 1, 1).

Course Notes 9: Compiling Scheme to a Micro2-computer 3

Problem 1. Give a precise definition of the function stepC for an arbitrary 2-CM, C.

3 Compiling to Counter Machines

Given the limited structure of counter machines, it is not completely apparent what it means to
compile a Scheme expression into one of them. For example, Scheme values such as procedures,
symbols, lists, or even negative integers are not available in counter machines, so we cannot expect
a target counter machine program to produce the same values as an arbitrary source Scheme
expression.

One approach would be to code Scheme values into nonnegative integers. We would then require
that for any Scheme “source” expression, E, the compiled counter machine CE , started in some
standard way—say with an all zero configuration—halts with the the nonnegative integer repre-
sentation of the value of E in some designated counter. However, for theoretical purposes it is not
necessary to develop such a representation of Scheme values. It is enough to capture whether the
Scheme evaluation—started from the standard user’s initial environment—“halts” by returning
some value; we need not specify what the value, if any, actually is.

Our main result is:

Theorem 3.1. (Scheme→2-CM) There is a procedure for translating any Scheme expression, E, into a
2-counter machine, CE , such that

E returns a value iff CE halts.

4 From Scheme to Register Machines

Going from Scheme expression, E, to the 2-CM, CE , is a long trip, and we need some “rest stops”
along the way. The beginning leg of the trip is the longest, ending at the first rest stop: List Register
Machines (LM’s).

LM’s are the machines which Abelson/Sussman use as a target for the Scheme compiler described
in their book. These are machines with a fixed number of registers capable of holding primitive
values like symbols and numbers, or cons -cells whose car ’s and cdr ’s may be primitive values
or other cons -cells.

In their initial development of LM’s, Abelson/Sussman include some moderately high-level op-
erations on environments in the instruction set, e.g., lookup-in-environment . Subsequently,
they explain how to implement all such operations using basic operations on primitive data types
like integers, booleans, and symbols, along with only the list operations:

cons , car , cdr , set-car! , set-cdr! , null? .

The second rest stop is also described by Abelson/Sussman. They show how to represent the
“heap” of cons -cells and their contents1 using Random Access Machines (RAM’s). These are ma-
chines with an array of registers numbered consecutively starting at zero. Each register may hold

1They also explain how garbage-collection works for the heap, but for our theoretical purposes, garbage-collection
is not necessary.

Course Notes 9: Compiling Scheme to a Micro2-computer 4

an arbitrary nonnegative integer. The RAM instruction set involves familiar arithmetic operations
on register contents. Registers may be referenced directly, as in the assignment statement:

R4 := R4 + R5

Executing this instruction changes the contents of Register 4 to be the sum of its current contents
and the contents of Register 5.

Registers may also be referenced indirectly, as in

ref(R4) := R3 * ref(R6)

Here Registers 4 and 6 have indirect references. Specifically, let m4 be the contents of Register 4,
and m6 the contents of Register 6. Executing this instruction sets the contents of Register m4 to the
product of the contents of Register 3 and the contents of Register m6.

Test instructions like

if 4 < ref(R1) goto line 7 else goto line 9

may also refer to registers directly or indirectly. A RAM is defined to be a finite sequence of such
instructions.

Formally, we can define a configuration of a RAM to be a sequence

〈c, n0, n1, n2, . . . , nk〉

of k + 2 nonnegative integers, where c specifies the number of the next instruction to be executed,
n0, n1, . . . , nk are the contents of Registers 0, 1, . . . , k, and all registers numbered greater than k
contain zero.

For definiteness, we may assume that the integer operations of RAM’s are exactly +, *, - (re-
stricted to return zero if a result would be negative), the test operations are exactly < and =, and
all instructions are of one of the forms illustrated above.

Problem 2. Let R be a RAM. Give a precise definition of the function stepR mapping a config-
uration of R to the “next” configuration, if any, that follows after executing the designated next
instruction of R.

So with Abelson/Sussman as our guides on these first legs of the trip, we arrive at

Theorem 4.1. (Scheme→RAM). There is a procedure for translating any Scheme expression, E, into a
RAM, RE , such that

E returns a value iff RE halts.

This translation is normally referred to as compilation, and the Abelson/Sussman compiled ver-
sion, RE , of E will exhibit all the computational behavior of E. But as explained above, for our
purposes Theorem Scheme 4.1 is all we need to know about “real” compilation.

Course Notes 9: Compiling Scheme to a Micro2-computer 5

5 Register Machines

The next rest stop will be “ordinary” Register Machines (RegM’s). These are the same as RAM’s
except that indirect register references are not allowed. This means that only a fixed number of
registers can be accessed by a given RegM.

A RAM, R, can be simulated with a RegM, MR, by coding the entire current configuration of R
into one number that MR stores in some register. Let pair be some function which codes any pair
of nonnegative integers into a single integer, e.g,

pair(m,n) = 2m3n.

Now code a configuration 〈c, n0, n1, . . . , nk〉 of R into the single number, rep(〈c, n0, n1, . . . , nk〉),
defined as:

rep(〈c, n0, n1, . . . , nk〉) ::= pair(k, pair(c, pair(n0, . . . , pair(nk−1, nk) . . .))).

It is not hard to program a RegM to update

rep(〈c, n0, n1, . . . , nk〉)

into
rep(stepR(〈c, n0, n1, . . . , nk〉))

as suggested by 3. In fact, besides the register used to store the number representing the R’s
configuration, MR only needs some small fixed number of registers—not more than four—for
various temporary results. In other words, we can be sure that MR is a 4-Register Machine, no
matter how many registers R may access.

Problem 3. (a) Exhibit a RegM, Mpair, which, started in configuration, 〈0, k, l〉, halts in configu-
ration 〈n, m〉 where m = pair(k, l) and n = length(Mpair).

(b) Exhibit a RegM, Mfetch, which, started with rep(〈c, n0, n1, . . . , nk〉) in Register 1 and an integer
m2 in Register 2, halts with Registers 1 and 2 unchanged, and the integer nm2 in Register 3 if
m2 ≤ k. Mfetch should halt with zero in Register 3 if m2 > k.

So we have

Theorem 5.1. (RAM→RegM). There is a procedure for translating any RAM, R, into a 4-Register Ma-
chine, MR, such that

R halts iff MR halts.

6 Register Machines to Counter Machines

It is easy to see how to write RegM routines which add, subtract, multiply, compare, or copy
registers using only increment, decrement, and branch on zero instructions, which leads to our
penultimate rest stop:

Course Notes 9: Compiling Scheme to a Micro2-computer 6

Theorem 6.1. (RegM→CM). There is a procedure for translating any Register machine, M , into an
Counter machine, CM , such that

M halts iff CM halts.

Problem 4. (a) Exhibit an counter machine which, started in configuration 〈0,m, n, 0, . . . , 0〉 halts
in a configuration of the form 〈l, m, n, m + n, 0, . . . , 0〉.

(b) Same as the previous part with m + n replaced by m · n.

Finally, a k-counter machine, K, can be simulated by a 2-counter machine, CK , that keeps in its
first counter the code number representing the contents n1, n2, . . . , nk of K’s counters. The code
number will be

2n13n2 · · · pk
nk

where pk is the kth prime number. To simulate an increment instruction on K’s Counter 2, for
example, CK need only multiply the code number by the 3. This it can do by repeatedly decre-
menting its first counter once, while incrementing its second counter three times, until the first
counter is empty. Then it copies the second counter back into the first by repeatedly decrementing
the second and incrementing the first until the second is empty.

To simulate K’s testing Counter 3 for zero, CK can divide the code number by p3, namely 5, and
branch on the remainder. This it can do by repeatedly decrementing its first counter five times
while incrementing its second counter once until the first counter is empty. At this point the quo-
tient of the code number divided by 5 is in Counter 2, and number of decrements left unperformed
among the final group of five is the remainder. Before branching on the remainder, CK can restore
the code number into counter 1 by reversing the divide-by-5 process it just performed.

This sketch should be enough to understand how to complete the final leg of our trip:

Theorem 6.2. (n-CM→2-CM) There is a procedure for translating any n-Counter machine, K, into an
2-Counter machine, CK , such that

K halts iff CK halts.

Combining all the legs of our trip completes the journey from Scheme to 2-CM’s and the proof of
Theorem 3.1.

Problem 5. Let E be a Scheme expression whose value is a procedure of one argument. Explain
how to construct a 3-CM, CE , such that (E n) returns a value iff CE halts when started in con-
figuration 〈0, n, 0, 0〉.

Problem 6. Prove that the halting problem for counter machines with only increment and branch-
on-zero instructions—no decrement instructions—is decidable.

	Micro-squared-computers
	Counter Machines
	Compiling to Counter Machines
	From Scheme to Register Machines
	Register Machines
	Register Machines to Counter Machines

