
Massachusetts Institute of Technology Course Notes 11
6.844, Spring ’05: Computability Theory of and with Scheme April 29
Prof. Albert R. Meyer revised May 3, 2005, 642 minutes

Scheme Computability

What can and can’t Scheme do? We can begin to pin this question down by asking what functions
can be computed by Scheme procedures.

Computability theory is traditionally developed using functions on the natural numbers. Com-
putations on other types of objects such as programs, formulas, or graphs are modelled by cod-
ing these objects into natural numbers. An advantage of developing computability theory us-
ing Scheme is that Scheme programs are a special case of S-expressions that have an immediate
representation in Scheme without indirect coding. So we consider computability over the set of
S-expressions.

However, we will restrict Scheme numbers to be integers, and also omit Scheme expressions
containing numerical operators like / or sin that do not return integer values. This avoids
the ambiguities of numerical analysis—how accurately should the value of (sin 3) be calcu-
lated?, as well as other messy details of general numerical calculation—e.g., in MIT Scheme,
(= 1 1.0000000000000001) returns #t ,

1 S-Expressions and Printable Syntactic Values

The Scheme printer has standard ways of displaying certain returned values: strings and booleans
are “self-evaluating” which means they print out “as themselves.” Symbols print out as their
names, and lists print out as a parenthesized sequence of the standard printed representations of
the list elements. We call these the printable values. For example, the Scheme expression,

(list ’a 2 3 (list) "6.844 is" ("list great")) (P)

describes a printable value that would print out as:

(a 2 3 () "6.844 is" ("great")) . (print(P))

The only kind of values that are not printable are procedures, list structures containing procedures,
and circular cons -cell structures. 1

The standard printed representations we consider are called S-expressions. Formally, they are de-
fined by the following simple grammar:

〈s-expr〉 ::= 〈integer〉 | 〈boolean〉 | 〈string〉 | 〈identifier〉 | (〈s-expr〉∗)

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.
1In real Scheme, nonlist pairs are included among the values with standard printed representations. These would

be displayed with “dotted pair” notation. For example, the value of

(cons (quote a) (cons 2 "bb"))

would be displayed by the Scheme printer as (a 2 . "bb") . Such non-list pairs are of no particular importance, and
for simplicity, we exclude them from the class of values we consider printable.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

Course Notes 11: Scheme Computability 2

In the Scheme Substitution Model, printable values are represented by a subset of 〈syntactic-value〉’s
called the printable syntactic values, 〈printable-sval〉. For any 〈printable-sval〉, P , we let print(P)
be its printed representation. The printable syntactic values can also be described by a simple
grammar:

〈printable-sval〉 ::= 〈integer〉 | 〈boolean〉 | 〈string〉 | (quote 〈identifier〉)
| 〈nil〉 | (list 〈printable-sval〉+)

〈nil〉 ::= (list)

Scheme supports a special form, quote , to create printable values. Namely, for any S-expression,
S, the Scheme expression (quote S) has a printable value which prints out as S.

We can extend our Scheme Substitution Model to handle such quoted S-expressions by applying
“desugaring” rules to translate quoted expressions into expressions of kernel Scheme (in which
quotes only apply to identifiers). The straightforward rules are given in an appendix. The 〈printable-sval〉’s
are precisely the 〈syntactic-value〉’s obtained by desugaring quoted S-expressions.

Problem 1. (a) Give a precise recursive definition of the function print(.) : 〈printable-sval〉 →
〈s-expr〉.

(b) Give a precise recursive definition of the unprint(.) function that maps an S-expression, S, to
the 〈printable-sval〉, P , such that S = print(P).

Problem 2. Define a Scheme expression, Prnbl?, such that evaluation of (Prnbl? M)

returns

{
#t if M returns some 〈printable-sval〉,
#f if M returns some nonprintable value.

for every Scheme expression, M .

Your Prnbl? procedure should work on “real” expressions M which may include set-car! and
similar list-mutating procedures and should return #f if M returns a list structure with circular or
shared substructures.

2 The Quote-mark Abbreviation

The notation ’ S is a convenient abbreviation for the S-expression (quote S) . So, for example,
we would write

’(’ a ’ 2 b 3)

as shorthand for
(quote ((quote a) (quote 2) b 3)) . (1)

The Scheme expression (1) desugars into a 〈printable-sval〉 in kernel Scheme:

Course Notes 11: Scheme Computability 3

(list (list (quote quote) (quote a))
(list (quote quote) 2) (quote b) 3).

Of course, we could abbreviate this expression with the shorthand description

(list (list ’quote ’a) (list ’quote 2) ’a 3) . (2)

Real Scheme implementations support the quote-mark abbreviation, but in these notes we will
treat it purely as a notational shorthand, not an extension of Scheme.

3 Computable Functions on S-Expressions

In developing computability theory in a way that covers integers or strings, for example, it will
be helpful to regard familiar functions such as addition of integers or duplication of strings (con-
catenating a string with a copy of itself) as partial functions with arguments ranging over all S-
expressions. So the integer addition function will be considered a function on S-expressions that
is undefined if any of its arguments is not actually an integer. Likewise, the string duplication
function is undefined when its argument is not a 〈string〉.
The domain, domain (f), of a partial function, f , is the set of elements, s, such that f(x) is defined.
So the domain of the addition function is the set of all pairs of integers, and the domain of the
string duplication function is the set of strings. In the same way, we consider the print function,
print(.), to be a partial function on 〈s-expr〉’s with domain (print(.)) = 〈printable-sval〉.

Definition 3.1. Let final-value(.) be the partial function mapping Scheme expressions to their final
values, if any. That is, the domain of of final-value(.) is the set of a〈expression〉’s, M such that M↓,
and

final-value(M) = V iff M ↓ V.

Let output(M) be the printed form, if any, of final-value(M). That is,

output(M) ::= print(final-value(M)).

If f is an n-argument partial function on S-expressions, we say that a Scheme expression, F ,
computes f iff

output((F ’ S1 . . . ’ Sn)) = f(S1, . . . , Sn). (3)

for all S-expressions S1, . . . , Sn.

Note that if f, g are partial functions, then by standard convention, the equality f(a) = g(a) is
considered to hold when f(a) and g(a) are both undefined, as well as when both are defined
and have equal values. So if F computes the partial function f , and S /∈ domain (f), then by
convention output((F ’ S)) must not be defined, namely, evaluation of (F ’ S) does not result
in a printable value.

Notice that this definition works as expected on integers and strings. For example, integer addi-
tion is computed by the Scheme builtin +, and string duplication is computed by

(lambda (s) (string-append s s)) .

Course Notes 11: Scheme Computability 4

Problem 3. Show that if f is an n-argument computable function, then there is a closed (no free
variables) expression, F , that computes f such that (F ’ S1 . . . ’ Sn) ↑ whenever f(S1, . . . , §n) is
undefined. Hint: Use the procedure Prnbl? of Problem 2.

Problem 4. Explain why the output(.) function is computable. This is a fundamental result we’ll
discuss further in Part II of these Notes.

We know a lot about Scheme programming, and this translates to knowing a lot about the prop-
erties of computable functions. For example,

Lemma 3.2. The computable functions of one argument are closed under composition.

Proof. If F computes f and G computes g, then

C ::= (lambda (x) (F (G x)))

computes f ◦ g. This claim about the expression C will be unsurprising to anyone familiar with
Scheme. It could be proved rigorously by appeal to the Control-context Independence of the
Substitution Model rules, but a careful proof here would be a distraction from our theme of com-
putability, and so we omit it.

Problem 5. Suppose f is a two-argument function on the natural numbers that is a total com-
putable function. Prove that the function min[f] is partial computable, where

min[f](n) ::= min {k ∈ N | f(n, k) = 0} .

Problem 6. Let f be the partial function whose domain is the set of Arithmetic Expressions from
previous Notes, where f(e) is the canonical form of e. (You may assume that variables are ordered
by Scheme’s symbol<?) Explain why f is Scheme computable.

Definition 3.3. A set, S, of S-expressions is Scheme decidable iff its membership function is Scheme
computable, that is,the function mS : 〈s-expr〉 → 〈boolean〉 such that

mS(S) ::=

{
#t for S ∈ S,

#f for S 6∈ S,

is Scheme computable. A Scheme expression that computes the membership function is called a
decider for S.

Course Notes 11: Scheme Computability 5

For example, the Scheme builtin string? is a decider for the set 〈string〉 of strings.

Problem 7. Explain why the set, 〈expression〉, of Scheme expressions, and the set of closed 〈expression〉’s,
are both decidable. Hint: See the free-variables procedure defined in the Substitution Model
implementation.

For any set, S, of S-expressions, let S be the complement of S, that is,the set of S-expressions not
in S.

Lemma 3.4. If S is Scheme decidable, then so is S.

Proof. Let F be an expression that computes mS . Then N ::= (lambda (x) (not (F x)))
computes mS .

The correctness of N follows from the fact that the Substitution Model rules preserve observational
equivalence (Notes 8, Lemma 4.4). Again, we omit the correctness proof.

Problem 8. Prove that if S1 and S2 are Scheme decidable, then so are S1 ∪ S2 and S1 ∩ S2.

Definition 3.5. For any Scheme computable partial function, f : 〈s-expr〉 → 〈s-expr〉, and set, S,
of S-expressions, define

f(S) ::= {f(S) | S ∈ (S ∩ domain (f))} ,

f−1(S) ::= {S | S ∈ domain (f) and f(S) ∈ S} .

Problem 9. Let S1 and S2 be sets of S-expressions. Verify that

S1 ≤m S2,

iff there is a computable total function, f , such that S1 = f−1(S2). The function, f , is said to
many-one reduce S1 to S2.

Problem 10. Prove that if f is a Scheme computable total function, and S is decidable, then so is
f−1(S).

So we could rephrase the result of Problem 10 as saying that

Decidability inherits downward under many-one reducibility.

Course Notes 11: Scheme Computability 6

Problem 11. Prove that A ≤m B iff A ≤m B.

The “≤” notation for many-one reducibility highlights the fact that

Lemma 3.6. Many-one reducibility is transitive.

Proof. Suppose f many-one reduces S1 to S2, and g many-one reduces S2 to S3, then g◦f many-one
reduces S1 to S3.

Definition 3.7. A set S of S-expressions is recognizable iff there is a Scheme computable partial
function whose domain is S. A Scheme expression that computes such a function is called a
recognizer for S. Recognizable sets are usually called recursively enumerable (r.e.) sets.

Lemma 3.8. If a set of S-expressions is decidable, then it and its complement are also recognizable.

Proof. Suppose D is decidable. Then it has a decider, D. Then

(lambda (x) (or (D x) Ω0))

is a recognizer for D, where Ω0 is any closed expression such that Ω0↑. For example, let

Ω0 ::= (letrec ((t (lambda () (t)))) (t)) .

By Lemma 3.4, D is also decidable, and so is also recognizable.

The converse of Lemma 3.8 also holds: if a set and its complement are both recognizable, then the
set is wholly decidable. We’ll postpone the proof of this converse to Part II.

Problem 12. (a) Prove that if S1 and S2 are recognizable, then so is S1 ∩ S2.

(b) Prove that if f is a Scheme computable partial function, and S is recognizable, then so is
f−1(S).

Note that as a special case of Problem 12(b), it follows that

Recognizability inherits downward under many-one reducibility.

Definition 3.9. A nonempty set, S, of S-expressions is computably countable iff S = f(N) for some
computable partial function, f : 〈s-expr〉 → 〈s-expr〉, such that N ⊆ domain (f). Such an f is said
to count S.

In other words, there is a procedure to enumerate all the elements of S, possibly with repetitions,
in some order, namely, successively compute f(0), f(1),

Lemma 3.10. Every computably countable set is recognizable.

Course Notes 11: Scheme Computability 7

Proof. Let S be computably countable, so S = f(N) for some f as in Definition 3.9. Then a pro-
cedure to recognize whether any given input, S, is in S, is to compute f(0), f(1), . . . stopping if
and when S shows up in the list. So the following expression is a recognizer for S, where F is an
expression that computes f :

(lambda (s)
(letrec

((try (lambda (n)
(if (equal? s (F n)) #t (try (+ n 1))))))
(try 0)))

In Part II we’ll prove the converse of Lemma 3.10, allowing us to conclude that a nonempty set
is computably countable iff it is recognizable. For now, it’s informative to solve the following
problems without assuming this fact.

Problem 13. Suppose S and S ′ are computably countable. Prove that:

(a) If g is a total computable function, then g(S) is computably countable.

(b) S ∪ S ′ and S ∩ S ′ are computably countable.

(c) S+ ::= {(S1 . . . Sn) | Si ∈ S for 1 ≤ i ≤ n} is computably countable.

Problem 14. (a) Prove that the set of 〈string〉’s is computably countable.

(b) Conclude that the set of symbols is computably countable. Hint: Look up string->symbol
in Revised5 Scheme Manual.

(c) Prove the set of S-expressions is computably countable.

4 Applications of Self Applications

4.1 Self-Reproducing Expressions

For practice with quoting, and in preparation for the non-computability arguments in the next
section, we consider how to make “self-reproducing” Scheme expressions. A Scheme expression,
P , is self-reproducing iff evaluation of P returns a value that prints out as P , that is,

output(P) = P.

Course Notes 11: Scheme Computability 8

All self-evaluating expressions have this property of course, but it’s not so obvious how to find
one that is not self-evaluating. Here’s how: let L be an expression such that

output((L ’ S)) = (S ’ S) (4)

for any S-expression, S. For example, we could define

L ::= (lambda (s) (list s (list ’quote s))) .

Now substituting L for S in (4) above yields

output((L ’ L)) = (L ’ L) .

In other words, we can choose P to be (L ’ L) , namely,

P ::=((lambda (s) (list s (list (quote quote) s)))

(quote (lambda (s) (list s (list (quote quote s)))))) .

Problem 15. (a) Check that this last P is self-reproducing by evaluating it in MIT Scheme.2

(b) Exhibit two other self-reproducing expressions and check them in real Scheme. Turn in your
pretty-printed output. Hint: L need only satisfy the specification (4).

Problem 16. An expression D is doubly self-reproducing iff output(D) = (D D) . Exhibit a doubly
self-reproducing expression and check that it works in real Scheme. Turn in your output.

4.2 The Y Operator [Optional]

Self application provides a way to formulate recursive definitions in Scheme without using letrec , define , or set! .
Although mainly a curiosity, one corollary of the construction is that a small fragment of Scheme, containing only
variables, combinations, and lambda expressions—no numbers, lists or other data types, nor any special forms be-
sides lambda —can simulate the full language, and therefore this fragment inherits all the undecidability properties of
Scheme.

To explain how this works, let’s begin with one of the most familiar examples:

(define factorial
(lambda (x)

(if (zero? x) 1 (* x (factorial (- x 1))))))

A way to understand this simple recursive definition of factorial begins with the observation that the variable
factorial occurs free in the body of the definition. So we can regard the body as a function, L(factorial), of this free
variable, namely, L is defined by

2This works in MIT Scheme because the printer displays the value of (quote (quote a)) as (quote a) . Other
Scheme printers maintain the quote-mark abbreviation in their output and display the value of (quote (quote a))
as ’a .

Course Notes 11: Scheme Computability 9

(lambda (factorial)
(lambda (x) (if (zero? x) 1 (* x (factorial (- x 1))))))

It will simplify the discussion if we rename the parameter to be f :

(define L
(lambda (f)

(lambda (x) (if (zero? x) 1 (* x (f (- x 1)))))))

Now the factorial procedure is a “fixed point” of L:

factorial ≡ (L factorial) .

In general, a fixed point of a function, L, is an element, f , such that L(f) = f . A “fixed point operator,” Y , is used to
obtain fixed points of procedures like L. Informally, we want Y (L) = L(Y (L)). More precisely, we want a Scheme
procedure, Y, satisfying:

(Y l) ≡ (lambda (z) ((l (Y l)) z)) .

Notice that we have wrapped the righthand side of this equivalence in (lambda(z) (...z)) . This ensures that
(Y l) will converge in any environment in which l is defined.

So instead of defining factorial recursively, we could instead have written:

(define factorial
(Y (lambda (f) (lambda (x) (if (zero? x) 1 (* x (f (- x 1))))))))

To arrive at a definition of Y, let

Ml ::= (lambda (x) (lambda (z) ((l (x x)) z))) ,

so
(Ml x) ≡ (lambda (z) ((l (x x)) z)) .

Then,
(Ml Ml) ≡ (lambda (z) ((l (Ml Ml)) z)) .

That is, (Ml Ml) is the desired fixed point of l , so we could define (Y l) to be (Ml Ml) :

(define Y
(lambda (l)

((lambda (x) (lambda (z) ((l (x x)) z)))
(lambda (x) (lambda (z) ((l (x x)) z))))))

Problem 17. Evaluate ((Y L) 3) in Scheme and in the Substitution Model interpreter, using the definitions Y and L
above.

Problem 18. Explain what happens if we omitted the (lambda (z) ...z) wrapper and used the definition:

(define Y
(lambda (l)

((lambda (x) (l (x x)))
(lambda (x) (l (x x))))))

Problem 19. Adapt the definition of Y so it works for multi-argument fixed points, namely, so

(Y f) ≡ (lambda l (apply (f (Y f)) l)) .

Course Notes 11: Scheme Computability 10

5 The Halting Problem

We aim to prove the most famous theorem in Computability Theory: the undecidability of the
Halting Problem. The problem is to determine whether the evaluation of any given Scheme ex-
pression will “halt.” To formalize this, we’ll interpret halting to mean converging. It will simplify
matters if we extend the Substitution Model to all S-expressions, with the convention that if any S-
expression that is not a Scheme 〈expression〉 will be counted as an immediate error. In particular,
if an 〈s-expr〉, S, is not an 〈expression〉, then S↑ by convention. Now define

Halts ::= {S ∈ 〈s-expr〉 | S↓} .

Problem 20. Prove that every recognizable set is many-one reducible to Halts.

We remark that Halts itself is recognizable: if E is a Scheme expression defining an interpreter for
Scheme (what Abelson-Sussman call a “meta-circular interpreter”) then

(E ’ M empty-env) ↓ iff M↓

for all Scheme expressions, M . So a meta-circular Scheme interpreter would provide a recognizer
for Halts. We’ll explore this further in Part II.

By Lemma 3.8, this remark implies that showing that Halts is undecidable is equivalent to showing
that its complement is not even recognizable.

Theorem 5.1. (The Halting Theorem) Halts is not recognizable.

We’ll prove this indirectly, by proving two Lemmas:

Lemma 5.2. Let
Self-Halts ::= {S | (S ’ S) ↓} .

Then
Self-Halts ≤m Halts.

Proof. (of Theorem 5.1) By definition,

S ∈ Self-Halts iff (S ’ S) ∈ Halts,

for all S-expressions, S. So the mapping, f , many-one reduces Self-Halts to Halts, where f(S) ::=
(S ’ S) is computed by the expression

(lambda (s) (list s (list ’quote s))) ,

Lemma 5.3. The complement, Self-Halts, of Self-Halts is not recognizable.

Course Notes 11: Scheme Computability 11

Note that by Lemma 5.2, Self-Halts ≤m Halts. Since recognizability inherits downward, we con-
clude that if Halts was recognizable, then Self-Halts would also be recognizable, contradicting
Lemma 5.3. This proves the Halting Theorem.

So it remains only to prove Lemma 5.3. The definition of Self-Halts was chosen to make the proof
almost immediate:

Proof. (of Lemma 5.3) Let H be a recognizable set, and H a recognizer for it. So by definition, of
H ,

S ∈ H iff (H ’ S) ↓,

for all S-expressions, S. Letting S be H , we have

H ∈ H iff (H ’ H) ↓ . (5)

But by definition of Self-Halts,

(H ’ H) ↓ iff H 6∈ Self-Halts. (6)

From (5) and (6), we conclude

H ∈ H iff H 6∈ Self-Halts. (7)

In particular, (7) implies that
H 6= Self-Halts

because H is in one of these sets and not the other. Since H was an arbitrary S-expression, it
follows that Self-Halts is not equal to any recognizable set, that is, it is not recognizable.

Any S-expression, M , is by definition a recognizer for a set HM :

Definition 5.4.
HM ::= {S ∈ 〈s-expr〉 | (M ’ S) ↓} .

For sets A,B, we say that an element, a, is a witness that A 6= B when a is in one of the sets and
not the other. That is, a ∈ (A−B)∪ (B−A). The proof of Lemma 5.3 shows that finding a witness
that HM 6= Self-Halts is trivial: the expression M is a witness. More generally, a set, P , is said to
be productive when there is a Scheme program that, given M , finds a witness that P 6= HM :

Definition 5.5. A set, P , of S-expressions is productive iff there is a total computable function,
w : 〈s-expr〉 → 〈s-expr〉, such that

w(M) ∈ HM iff w(M) 6∈ P.

Such a function, w, is called a witness function for P .

Clearly, no productive set can be recognizable, since it differs from every recognizable set. So
now we can rephrase the conclusion that comes out of the proof of Lemma 5.3: the set Self-Halts
is productive with witness function equal to the identity function on S-expressions. Of course
Self-Halts was carefully contrived to be productive with a trivial witness function, but there are
many uncontrived examples. For example, Halts is also productive. This follows from the fact
that Self-Halts ≤m Halts along with:

Course Notes 11: Scheme Computability 12

Lemma 5.6. Productivity inherits upward under many-one reducibility.

The concept of productivity will be useful when we return to a discussion of proof systems.

Problem 21. Prove Lemma 5.6.

Problem 22. Prove that Halts and Halts are incomparable under many-one reducibility.

6 Incompleteness

Suppose we have some formal notation for expressing mathematical assertions, and some system
for proving assertions. The proof system is called sound if all the provable asertions are actually
valid. The proof system is called complete if all the valid assertions are provable. In previous Notes,
we saw a sound and complete proof system for arithmetic equalities.

In considering Scheme observational equivalences, we will use assertions that are S-expressions
in the form of equations between Scheme expressions. In this case, the valid assertions will be
the set, E , of equations that are true when equality is interpreted to be observational equivalence.
That is,

E ::= {(M = N) | M ≡ N} .

6.1 First Incompleteness Theorem

We aim to prove:

Theorem 6.1. First Incompleteness Theorem for Scheme equivalence: If a proof system for Scheme
observational equivalences is sound, then it is incomplete.

Notice that this is a wonderfully general theorem, which applies to all possible proof systems, not
just some particular ones we might devise based on the various observational equivalences we
have established up to this point. Of course, to be truly general, we need a notion of “proof
system” that leaves no loopholes: every possible set of axioms and inference rules should count
as a proof system; in fact, we want any procedure for determining validity to count as a proof
system. For example, a system for proving arithmetic equations by transforming the two sides of
the equation into identical canonical forms should count as a proof system—one that we know is
also sound and complete.

There is one essential property we will require of a proof system. The purpose of proving an
assertion is to confirm the truth of the assertion even to someone who can’t understand the proof.
They need only be able to check—in a purely mechanical way—that the proof is well-formed
according to the rules of the proof system.

In particular, a proof system has things called proofs that serve to prove things called assertions.
In a formal proof system, the assertions and proofs are objects that we can safely assume are

Course Notes 11: Scheme Computability 13

represented by S-expressions. The condition that a proof be checkable “without understanding”
can be captured by requiring that there be a procedure for checking whether an S-expression is a
proof of an assertion. That is, the set of S-expressions of the form (A P) , where A is an assertion
and P is a proof of A in the proof system, should be a decidable set, D, of S-expressions.

Now we have a way to recognize the provable assertions in the proof system: on input A, start-
ing generating all the possible S-expressions, S0, S1, . . . ; this is possible because the set of S-
expressions is computably countable (Problem 14). As the S-expressions are generated, succes-
sively apply the decider for D to (A S0) , (A S1) , . . . until the decider returns #t . So if A has
a proof, this procedure will eventually find it and halt. Conversely, if A does not have a proof,
then this procedure will search forever without terminating. So this proof-search procedure is a
recognizer for the set of assertions provable in the system. So we conclude:

Theorem 6.2. The set of assertions provable using any given proof system is recognizable.

Problem 23. Sketch how to write a Scheme program computing a decider for proofs in the arith-
metic equation proof system of the Notes.

Notice that Theorem 6.2 holds regardless of the meaning of assertions. But if assertions are mean-
ingful and a proof system is sound, then it follows that the provable assertions are a recognizable
subset of the valid assertions. Now, if we show that the valid assertions are not recognizable, then
the assertions provable using any given system must be a proper subset of the valid assertions. In
other words, there must be a valid assertion that is not provable: the system is incomplete.

Therefore, to prove the First Incompleteness Theorem for Scheme equivalence, we need only show
that the set, E , of true equivalences is not recognizable. In fact, we can prove something stronger:

Lemma 6.3. E is productive.

Proof. We showed in the Notes on the Scheme Substitution Model that all divergent expressions
are observationally equivalent. So by our convention that S-expressions that are not Scheme
〈expression〉’s are immediate errors, we have

S↑ iff S ≡ Ω0,

for all S-expressions, S.

Note that an expression whose evaluation leads to a lookup errors does not converge, but may
not be observationally equivalent to Ω0. However, there is a simple way to transform any S-
expression, S, into an expression, Ŝ, that diverges in the event of a lookup error. That is,

Ŝ↑ iff S 6↓ . (8)

Problem 24. Describe a procedure mapping S to an expression Ŝ satisfying (8).

Course Notes 11: Scheme Computability 14

Now let f : 〈s-expr〉 → 〈s-expr〉 be defined by the rule

f(S) ::= (Ŝ = Ω0) .

Then

S ∈ Halts iff S 6↓
iff Ŝ ≡ Ω0

iff f(S) ∈ E .

Since f is easy to program in Scheme, we conclude that Halts ≤m E . Since we know Halts is
productive, we have by Lemma 5.6 that E is also productive.

A consequence of Lemma 6.3 is that given any proof system for Scheme equivalences, we can find
a witness to its imperfection. Specifically, given a recognizer for the equations provable in the
system, we can apply the witness function for E to the recognizer to obtain an equation that is
either

• provable but not in E , implying that the system is unsound, or

• in E but not provable, implying that the system is incomplete.

Notice that we can accomplish this without assuming that the system is sound.

A final technical remark: the proof of Lemma 6.3 also demonstrates that Halts ≤m E0 where

E0 ::= {(M = Ω0) | M ≡ Ω0} .

So we have

Corollary 6.4. E0 is productive.

7 Scott’s Rice’s Theorem

Two general theorems due to Dana Scott characterize a large class of sets that are either undecid-
able or not even recognizable. Scott’s results extended earlier theorems, due to Rice, to a Scheme-
like setting.

Definition 7.1. Let G and H be sets of S-expressions. A total function, s : 〈s-expr〉 → 〈s-expr〉,
such that s(A) = #t for A ∈ G, and s(B) = #f for B ∈ H is said to be a separator of G and H. The
sets are Scheme separable iff there is a Scheme computable separator for them. G and H are Scheme
inseparable iff they are not Scheme separable.

By definition, any two nondisjoint sets will trivially be inseparable. Also, a set is decidable iff it
and its complement are Scheme separable. This follows because the membership function for a
set is, by definition, a separator of the set and its complement. In fact, the membership function
separates a decidable set from every set contained in its complement. So two disjoint Scheme
inseparable sets must both be undecidable.

Course Notes 11: Scheme Computability 15

Definition 7.2. A set S of S-expressions is submodel-invariant if

(M ∗→N and N ∈ S) implies M ∈ S

for all closed Scheme expressions M,N .

For example, Halts is submodel-invariant set of S-expressions, because if M
∗→N , then obviously

M↓ iff N↓. Likewise, Halts is submodel-invariant.

Theorem 7.3. (Scott’s Rice’s First Theorem.) Let G and H be nonempty, submodel-invariant sets of
S-expressions. Then G and H are Scheme inseparable.

So Halts and its complement satisfy the conditions of Theorem 7.3, and so are inseparable. This
provides another proof that neither Halts nor its complement is Scheme decidable.

A more interesting example is the sets {M | final-value(M) = 1} and {M | final-value(M) = 2}.
These are disjoint sets that obviously satisfy the conditions of Theorem 7.3, so they are Scheme
inseparable, and hence neither is decidable.

Finally, let Gstore be the set of expressions, M , such that the builtin operation cons is applied
an infinite number of times in the evaluation of M . Then Gstore and its complement are disjoint
submodel-invariant sets, and so are both undecidable.

Proof. We prove Theorem 7.3 by contradiction: suppose there was a Scheme computable separator,
t, for G and H. Let T be the Scheme expression that computes t.

By hypothesis, there are Scheme expressions G0 ∈ G and H0 ∈ H. Let s be a variable not free in T ,
G0 or H0, and define the “Perverse” expression,

P ::= (lambda(s) (if (T (list s (list ’quote s))) H0 G0)) .

Now suppose S is an S-expression such that

(T ’(S ’ S)) ↓ #t .

Then
(P ’ S)

∗→H0.

Hence by submodel-invariance,
(P ’ S) ∈ H.

Now by definition of the separator computed by T , we conclude that

(T ’(P ’ S)) ↓ #f .

Conversely, by the same argument

(T ’(S ’ S)) ↓ #f implies (T ’(P ’ S)) ↓ #t .

That is, for every S-expression, S,

(T ’(S ’ S)) ↓ #t iff (T ’(P ’ S)) ↓ #f . (9)

Course Notes 11: Scheme Computability 16

Now let S be P and then M be (P ’ P)) in (9). This yields

(T ’ M) ↓ #t iff (T ’ M) ↓ #f . (10)

But (10) can only hold if (T ’ M) ↑, contradicting the fact that the separator, t, is a total function.

Theorem 7.4. (Scott’s Rice’s Second Theorem.) Let S be a set of S-expressions with a submodel-
invariant, nonempty, complement. If Halts ⊆ S, then S is not recognizable.

The proof of the Second Theorem is similar to that of the First.

These two theorems reveal that no Scheme procedure can predict a nontrivial fact about the con-
tinuing evaluation or value of an arbitrary Scheme expression presented as input. Since we know
that Scheme can simulate any other programming language, we can simply say that no compu-
tational procedure whatsoever can reliably determine any nontrivial property of the behavior of
Scheme expressions.

Problem 25. Prove Scott’s Rice’s Second Theorem 7.4.

Problem 26. Strengthen Theorem 7.4 so that it directly implies that neither the set Gstore above nor
its complement are recognizable.

A Desugaring quote

(quote K) → K if K is 〈integer〉, 〈boolean〉, or 〈string〉
(quote ()) → 〈nil〉

(quote (S1 S2 ...)) → (list (quote S1) (quote S2) ...)

Application of these rules will desugar any 〈s-expr〉, S, into a Scheme expression, unprint(S), that
is a 〈printable-sval〉. In particular,

(quote S) ↓ unprint(S)

for all S-expressions, S.

	S-Expressions and Printable Syntactic Values
	The Quote-mark Abbreviation
	Computable Functions on S-Expressions
	Applications of Self Applications
	Self-Reproducing Expressions
	The Y Operator [Optional]

	The Halting Problem
	Incompleteness
	First Incompleteness Theorem

	Scott's Rice's Theorem
	Desugaring quote

