
Massachusetts Institute of Technology Course Notes 12
6.844, Spring ’05: Computability Theory of and with Scheme May 9
Prof. Albert R. Meyer revised May 9, 2005, 1051 minutes

Scheme Computability, Part II

1 Meta-Circular Interpreters

A high point of the Abelson/Sussman text Structure and Interpretation of Computer Programs (SICP)
is the construction of a Scheme interpreter in Scheme—“meta-circular” interpreter. Of course from
a mathematical point of view, such an interpreter is simply circular: it’s of no use as a mathematical
definition of anything unless Scheme evaluation has been already been independently defined—
such as by our Substitution Model. Nevertheless, the construction serves a sound pedagogical
purpose as a first illustration of interpreter design for variants and extensions of Scheme.

Meta-circular interpreters play a similar role in computability theory: the use of helpful program-
ming features that are not directly available in Scheme—for example, the ability to evaluate two or
more expressions in parallel (cf. Notes 3, Cor. 9.2)—can be justified by extending a meta-circular
interpreter for Scheme to simulate these features.

Definition 1.1. A meta-circular interpreter for Scheme is a Scheme expression, Meval, such that for
all S-expressions, M ,

M ↓ iff (Meval ’ M) ↓,

and,
output(M) = output((Meval ’ M)).

Let’s review some of the several approaches available for constructing meta-circular interpreters.
First, there is the basic one in SICP1. Next, Abelson/Sussman also exhibit a compiler written in
Scheme which compiles Scheme expressions to register machine code formatted as S-expressions.
They also show how to write a register machine simulator in Scheme. So this second meta-circular
interpreter could essentially be expressed in the form

(lambda (s) (simulate-register-machine (compile s))) .

A third, altogether different meta-circular interpreter is our Scheme implementation of the Substi-
tution Model. Inspection of this interpreter reveals that side-effects are used in inessential ways
– mainly to control the interpreter’s read-eval-print-loop, global environment, and I/O behav-
ior. The pattern-matching and rewrite-rule portions of the interpreter that implement the kernel
Substitution Model interpreter are side-effect free, that is,they are functional.

So each of these three approaches leads to a proof that interpreters exist:

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.
1The basic Abelson/Sussman interpreter, however, does not handle call/cc . It has to be rewritten in tail-recursive

style, as in 6.001 Project 3 from Fall ’02, to support the call/cc control abstraction

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/

Course Notes 12: Scheme Computability, Part II 2

Theorem 1.2. There is a meta-circular interpreter, Meval, for Scheme.2

A full proof of Theorem 1.2 should not only produce an Meval expression, but should also prove
that it satisfies Definition 1.1. Developing such a correctness proof is an important exercise in pro-
gram verification. But as we observed, we are familiar with meta-circular interpreters, and since
most of the ideas involved in such a correctness proof are not needed elsewhere in developing
Scheme computability theory, we will not actually prove that these interpreters work as specified.

Now we can confirm an important claim made in Part I:

Corollary 1.3. Halts is recognizable.

Proof. Meval is a recognizer for Halts.

A meta-circular interpreter implies that there is a single “universal” recognizable set, U , that codes
all recognizable sets.

Theorem 1.4.
U ::= {(M N) | N ∈ HM}

is a recognizable set.

Proof. Given input (M N) , a recognizer for U need only simulate the application of M to N ,
which just means evaluating the combination (M N) . So a recognizer for U would be

(lambda (s)
(if (and (list s) (= (length s) 2)) ; s = (M N)

(Meval s) ; apply M to N
Ω0) ; otherwise diverge

2 Step by Step Interpretation

We claimed earlier that if a set and its complement were both recognizable, then the set is decid-
able.

The proof of the claim is fairly easy: if H is a recognizer for some set S and G is a recognizer for
its complement, then to decide whether S ∈ S , just evaluate (H ’ S) and (G ’ S) in parallel.
Exactly one of these expressions will halt; if it’s the first, then S ∈ S, otherwise S 6∈ S.

2It is cheating a little to appeal to the Abelson/Sussman approaches in justifying Theorem 1.2, because in the Able-
son/Sussman interpreter, mutable lists (set-car! , set-cdr!) are used to implement environments. However, our
mathematical model of Scheme, namely the Substitution Model, does not model mutable lists (set-car! , set-cdr!).
Consequently, this interpreter technically does not provide an Meval expression in the part of Scheme we have mathe-
matically defined. However, the only lists that need to be mutated by the SICP evaluator are the ones used to represent
bindings in an environment frame. The representation of bindings can easily be replaced with a procedural represen-
tation described elsewhere in SICP, where set! is used to simulate the list mutators. A similar remark applies to the
Abelson/Sussman register machine compiler and simulator. So in this way, their constructions would, in fact, yield the
required Meval expression.

Course Notes 12: Scheme Computability, Part II 3

The only problem is that this procedure involves running two Scheme evaluations in parallel, but
we know that Scheme has no such run-in-parallel operation. But it can simulate the parallelism
by alternating between simulations of the two evaluations.

To manage this, we need the ability to run a metacircular interpreter for a given number of “steps.”
For definiteness, we’ll define a step to be a Substitution Model rule application, and let step be the
total function taking an S-expression and a natural number argument such that

step(M,n) =


(printable-flag output(M)) if M

≤n→V for some 〈printable-sval〉, V ,

(not-printable-flag) if M
≤n→V for some, V /∈ 〈printable-sval〉

#f otherwise.

Theorem 2.1. There is a stepping meta-circular interpreter for Scheme.

Proof. Modify the Substitution Model interpreter to take an extra argument natural number, n, in
addition to an expression argument, M . At each rule application increment a counter until M gets
rewritten to a final value or there have been n rule applications.

Now we can complete the proof of:

Theorem 2.2. S is decidable iff S and S are recognizable.

Proof. We already proved the left to right implication in Part I.

For the other direction, let H be a recognizer for S and G be a recognizer for its complement. As
suggested above, to decide of S ∈ S, simulate H and G running on S in parallel. Exactly one of
them will halt on S, and the answer is true or false according to which halts first. Namely, let Step
be an expression that computes the step function. Then a decider for S is:

(lambda (s)
(letrec

((try (lambda (n)
(cond ((Step (list ’ H s) n) #t)

((Step (list ’ G s) n) #f)
(else (try (+ n 1)))))

(try 0))

Note that correctness of this decider depends on the fact that neither H nor G causes side-effects
on lists to which they are applied. This property is guaranteed in our kernel Scheme, since we
omitted operations such as set-car! with side-effects on lists. 3

Similarly, we can now prove another fact claimed in Part I:

Theorem 2.3. Every nonempty recognizable set is computably countable.

3A decider modified so that H and G were always applied to fresh copies of their argument would work even if H
and G were allowed to side-effect included lists.

Course Notes 12: Scheme Computability, Part II 4

Proof. Let S be a recognizable set with recognizer H , let S0 be some S-expression in S. We count
S by calculating the nth pair consisting of an expression M and a natural number m. If (H M)
halts within m steps, we let M count as the nth element of S; otherwise we let S0 be the nth
element.

Namely, let C compute a counting function for the set of all S-expressions. Then a counting func-
tion for S is computed by

(lambda (n)
(let ((Mm (C n)))

(if (and (list? Mm)
(>= (length Mm) 2)
(step (list ’ H (car Mm)) (cdr Mm)))

(car Mm)
’ S0)))

Problem 1. Prove that the recognizable sets are closed under union.

Problem 2. (a) Let f : 〈s-expr〉 → 〈s-expr〉 be a computable partial function. Prove that if S is
recognizable, then so is f(S).

(b) Prove that an infinite set S is recognizable iff S = f(N) for some one-to-one (that is,injective)
computable function, f , that is total on N.

Problem 3. For sets A,B of S-expressions, let

A] B ::= {(0 A) | A ∈ A} ∪ {(1 B) | B ∈ B} .

Prove that if A is not decidable, then neither A]A nor its complement is recognizable.

3 The Recursion Theorem

The Recursion Theorem synthesizes the self-application techniques used in Part I of these Notes.
It guarantees the existence of fixed points, up to observational equivalence, of computable trans-
formations of programs.

Theorem 3.1. (The Recursion Theorem) Let f be a total computable function on S-expressions. Then there
is a Scheme expression, fix(f), such that

fix(f) ≡ f(fix(f)).

Course Notes 12: Scheme Computability, Part II 5

Here is one weird interpretation of what the Recursion Theorem says: many compilers perform
“source to source” transformations of programs into equivalent ones that are better suited for
compilation. Suppose we try to define an opposite kind of computable program transformation,
f , that never preserves equivalence. Namely, f is supposed to transform every expression into one
that is not observationally equivalent to the original. The Recursion Theorem implies there is no
such computable f . This is another example of the phenomenon demonstrated by Scott’s Rice’s
Theorems in Part I: nontrivial properties of expression evaluation are undecidable. In this case,
the Recursion Theorem implies that no procedure can even determine enough about an arbitrary
expression simply to yield a different value.

A simple application of the Recursion Theorem implies the existence of the kind of self-reproducing
programs constructed in Part I. Namely, let

f(M) ::= (quote M) .

Then by the Recursion Theorem, there is a Scheme expression, fix(f), such that

fix(f) ≡ (quote fix(f)) . (1)

So in particular, the outputs of these expressions, if any, must be the same:

output(fix(f)) = output(’ fix(f)). (2)

But since
output(’ S) = S (3)

for all S-expressions, S, we conclude from (2) and (3) that

output(fix(f)) = fix(f),

that is, fix(f) is self-reproducing.

Proof. (The Recursion Theorem)

We begin by observing that there is a total computable function, g, with the property that

g(S) ≡ f(output((S ’ S))) (4)

for all expressions, S, such that output((S ’ S)) is defined.

In fact, we can exhibit an expression, G, computing, g. Namely,

G ::= (lambda (s) (list ’F (list s (list ’quote s)))) .

Now since g is total, g(G) is defined. So by definition of G computing g, we have that

output((G ’ G)) = g(G). (5)

In particular, output((G ’ G)) is defined, so we can let S be G in (4), to obtain

g(G) ≡f(output((G ’ G))) by (4)
=f(g(G)) by (5). (6)

So define fix(f) ::= g(G). Now (6) implies

fix(f) ≡ f(fix(f))

as required.

Course Notes 12: Scheme Computability, Part II 6

Problem 4. (a) Show that if M ≡ N , then HM = HN .

(b) Show that there is a “self-recognizing” expression, Q, namely, an expression such that

HQ = {Q} .

Problem 5. Describe a procedure to compute fix(f) given any expression, F , that computes a total
function, f .

4 Minimal Scheme Expressions

You may have heard of the “Liar” paradox: if I say “I am lying,” am my lying or not? A slightly
less obvious paradox comes out of the following definition:

Let n be the smallest nonnegative integer that is not definable by an English sentence
of fewer than 112 characters.

The paradox here is that this definition of n has only 111 characters.

The resolution of the paradox is easy: we should have rejected this alleged definition of n from
the start because it refers to ill-defined concepts such as “English sentence” and definability by
such sentences. But an interesting theorem arises from this paradox when we replace reference
to English sentences by reference to some given infinite set of Scheme expressions, and replace
reference to the meaning of a sentence by reference to the value of the expression.

Namely, if we had a way to generate the expressions in a given infinite set, then we could write
a program that searched for, and then evaluated, the first generated expression bigger than the
program we write. The Recursion Theorem will justify our writing a program that contains its
own size as a known constant. It follows that our program has the same value, if any, as one of
the generated expressions, but our program is smaller. Another way to say this is that there can’t
be a generating procedure for an infinite set of minimum-size expressions.

Definition 4.1. Define the size, size(S), of an S-expression, S, to be the number of occurrences of
characters, including blanks, in S. A closed Scheme expression, M , is minimal iff output(M) is
defined, and for any closed expression, N , if size(N) < size(M), then output(N) 6= output(M).
Let MINScheme be the set of minimal expressions.

Definition 4.2. A set, S, of S-expressions is immune iff it is infinite but has no infinite recognizable
subset.

Theorem 4.3. MINScheme is immune.

Proof. We begin with the observation that Scheme’s builtin procedures for converting symbols
and numbers to strings make it easy to define a procedure for mapping any S-expression to its
representation as a string. Since there is also a builtin string-length procedure, it follows that
the function, size(.), is computable.

Course Notes 12: Scheme Computability, Part II 7

Now let H be any infinite recognizable set of S-expressions. We will show that there is an expres-
sion in H that is not minimal. It follows that H 6⊆ MINScheme, which proves that MINScheme is
immune.

To find the non-minimal expression in H, define m(S) to be the first expression in H that is bigger
than S. That is, letting h be a computable counting function for H,

m(S) ::= h(min {n ∈ N | size(h(n)) > size(S)}).

Now since h and size(.) are computable, so is m. Also, by definition of m,

m(S) ∈ H (7)

and
size(m(S)) > size(S) (8)

for all S-expressions, S.

If m(S) does not converge to a printable value, then m(S) is a non-minimal expression in H, and
we are done. So we may assume that output(m(S)) is defined for all S-expressions, S.

Now by the Recursion Theorem, there is a Scheme expression R ::= fix(m) such that

R ≡ m(R),

and since output(m(R)) is defined, we have

output(R) = output(m(R)). (9)

But size(m(R)) > size(R) by (8), and we conclude from (7) and (9) that m(R) ∈ H is not minimal.

All the undecidable sets we identified before MINScheme could be proved undecidable by many-
one-reducing Halts, or its complement, to them. This is not the case for any immune set, as demon-
strated in the following problems.

Problem 6. (a) Prove that if S1 = f−1(S2), for some partial function, f , then S1 = f−1(f(S1)).

(b) Conclude that if S1 is a recognizable set that is undecidable and S1 ≤m S2, then S2 has a
recognizable subset that is undecidable.

(c) Conclude that Halts 6≤m MINScheme.

Problem 7. (a) Show that every productive set has an infinite recognizable subset. Hint: Start by
applying the witness function to a recognizer for the empty set.

(b) Conclude that Halts 6≤m MINScheme.

Course Notes 12: Scheme Computability, Part II 8

On the other hand, there is a natural sense in which the halting problem and the minimality
problem for Scheme expressions are “computationally equivalent.” Namely, if we had an “oracle”
procedure available to decide membership in Halts, then we could define a Scheme procedure
that decides MINScheme by making calls to the oracle, and vice-versa. Of course we know an
oracle-procedure for Halts can’t be a Scheme procedure, but we needn’t be concerned with how
the oracle works as long as it is guaranteed to provide correct answers to membership queries.

Formally, we add a new procedure constant, oracle? , to the grammar for Scheme expressions
to obtain the oracle-Scheme expressions. Now let S be any set of S-expressions. We can extend
the Substitution Model to apply to oracle-Scheme expressions by adding two simple rules for the
oracle:

(oracle? V) →#t if print(V) ∈ S, (S-#t)
(oracle? V) →#f otherwise. (S-#f)

If an oracle-Scheme expression computes a function, f , when the Substitution Model is extended
with the S oracle rules above, then f is said to be computable relative to S, or S-computable, for
short. We define S-decidability, S-recognizability, etc., similarly.

Another way to say that S1 is decidable relative to S2 is to say that S1 is Turing-reducible to S2,
indicated with the notation

S1 ≤T S2.

So the remark above that Halts and MINScheme are “computationally equivalent” has the precise
meaning that each of these sets is Turing-reducible to the other.

Problem 8. (a) Prove that MINScheme ≤T Halts.

(b) Show conversely that Halts ≤T MINScheme.

Problem. There is a recognizable set, C, whose complement is immune. To generate successive
elements of C, start by generating all pairs (M N) such that M ↓ N and 2 size(M) ≤ size(N).
Then filter this sequence so that no two pairs have the same M .

Prove that C is immune. Hint: Don’t forget to prove C is infinite.

5 Builtin eval [Optional]

An eval procedure has become an official part of Scheme in the Revised5 Scheme Manual. It requires an extra envi-
ronment argument, but the choice of environment is essentially limited to being the Scheme initial environment, so we
shall omit it in our discussion. Note that it is not included in the Scheme kernel used in the Substitution Model.

The new eval operator is a builtin Scheme procedure officially satisfying a specification, that, at least for closed expres-
sions, is simpler to express, but a little more demanding to achieve, than Definition 1.1 for meta-circular interpreters.
Namely,

(eval ’ M) ≡M (espec)

Course Notes 12: Scheme Computability, Part II 9

for all closed Scheme expressions, M .

The meta-circular interpreters described above satisfy this condition only when the value of M is printable—and when
M diverges—but not when the value is non-printable. The reason is that each of these interpreters uses its own repre-
sentation of procedures and environments, and needs a corresponding apply procedure adapted to those representa-
tions. But the condition (espec) above requires that if M converges to a procedure value, then (eval ’ M) must return
an actual Scheme procedure equivalent to M and have caused the same side-effects on the environment as evaluation of
M .

But it is actually simple to modify an SICP-style evaluator to use actual procedures instead of lists to represent pro-
cedure values. This allows the builtin eval to be treated as syntactic sugar. Specifically, the basic SICP meval uses a
constructor make-procedure to represent a compound procedure as a list of three things: the procedure parameters,
the procedure body, and the procedure environment. If we simply modify the constructor definition:

(define (make-procedure params body-expr env)
(lambda vals

(meval body-expr (extend-environment params vals env)))) ,

then the ordinary Scheme apply procedure can be used instead of the interpreter’s m-apply . The result is a defined
eval procedure that satisfies (espec).

The specification (espec) does not apply in the presence of free variables because it implies that (eval ’ M) should
reference the dynamic evaluation environment instead of the top-level user environment. Evaluation of quoted free
variables is problematic in other ways, e.g., the property that

(lambda (x) M) ≡ (lambda (y) M [x := y])

for y not free in M , no longer holds. For example, M might be:

(lambda (xx) (eval ’(string->symbol (string-append "x" "x")))).

Problem 9. Notice that the new make-procedure procedure above uses the (lambda val ...) form to define a
procedure taking a variable number of arguments. Prove that a meta-circular evaluator satisfying (espec) for closed
expressions, M , could not be written in the sublanguage of kernel Scheme that does not include this form. Hint: Prove
that the maximum number of parameters of any lambda expressions appearing in an expression is preserved by the
Substitution Model rewrite rules.

Problem 10. (a) Prove that no meta-circular interpreter can satisfy (espec) for all open expressions M . Hint: Observe
that if M→N , then the free variables of N are a subset of the free variables of M .

(b) Explain how, for any finite set of variables, to construct a meta-circular interpreter satisfying (espec) for all Scheme
expressions, M , whose free variables are contained in the finite set.

6 Second Incompleteness Theorem [Optional]

Draft

The First Incompleteness Theorem states that any sound proof system is incapable of proving
some true assertion; there is even a way to contruct such an unprovable truth given the rules for
the system. On the other hand, the “missing truth” is contrived just for the purpose of witnessing

Course Notes 12: Scheme Computability, Part II 10

incompleteness, and there is no reason to suppose that it is of any independent interest. The
Second Incompleteness Theorem addresses this concern by identifying an “interesting” truth that
can’t be proved. Namely, no sound proof system can prove its own soundness!

Actually, the Second Incompleteness Theorem is even stronger: there is a weaker condition than
soundness called “consistency,” and the Second Theorem shows that no consistent proof system
can even prove its own consistency.

Definition 6.1. A set of S-expressions is called inconsistent iff the equation (N = Ω0) is in the set
for some closed expression N such that N↓. The set is consistent iff it is not inconsistent.

A proof system for Scheme equivalences is called consistent iff its set of provable equations is
consistent.

An inconsistent proof system is certainly unsound. Conversely, if a system is consistent, and
(N = Ω0) is provable for some closed expression, N , then N must diverge, and so the equation
must be true. In other words, a consistent system is sound for equations of the restricted form
(N = Ω0) (though it need not be sound in general).

Now given the recognizer, P , for the provable assertions in some proof system, there is a way to
detect when the system is inconsistent. Namely,

Lemma 6.2.
I ::= {P | HP is inconsistent}

is recognizable.

Proof. To see if HP is inconsistent, test in parallel all expressions N to see if both N converges
and (N = Ω0) is provable. This parallel process can be simulated by enumerating all the S-
expressions, looking for one of the form (N l m) such that the equation (N = Ω0) is provable
in l steps and N converges in m steps.

So, letting I be the recognizer for I,

HP is consistent iff P 6∈ I
iff (I ’ P) ↑
iff (I ’ P) ≡ Ω0.

In other words, the assertion that the proof system given by P is consistent can be expressed by
the single equation

((I ’ P) = Ω0) .

Let’s call this equation consis-eq(P).

Let P0 be the equations of the form (M = Ω0) in HP . Note that there is a total computable
function, g, such that P0 = Hg(P). We leave it to the reader to exhibit a Scheme expression, G,
computing g.

Now suppose consis-eq(P) is true. Since the proof system described by P is consistent, it follows
that P0 is a subset of E0, the valid Scheme equivalences of the form (M = Ω0) .

Course Notes 12: Scheme Computability, Part II 11

This means that if w is the witness function for E0, then w(g(P)) will be in E0 but not in HP . So we
have shown that if consis-eq(P) is true, then w(g(P)) is an equation of the form (MP = Ω0) that
is true (because it’s in E0) and not provable in the proof system given by P . In fact, given P , we
can actually find this expression MP . In other words, we have proved

Lemma 6.3. There is a total computable function, f , such that if HP is consistent, then the equation
(f(P) = Ω0) is true but not in HP .

Now here’s the wonderful observation (originally due to the Logician Kurt Gödel, for a class of
proof systems for logical assertions about integers rather than Scheme equivalences): if we have
a strong enough proof system for proving equations, then equations that we can prove by mathe-
matical reasoning like that in the previous paragraph could also be proved formally in the system.
In other words, if the equation consis-eq(P) was not only true, but was also a provable equation
of the system described by P , then the reasoning we used above to conclude that the equation
(f(P) = Ω0) is true could be mirrored by a proof in the system. Therefore, (f(P) = Ω0) would
also be provable, contradicting the fact that it is not provable. So we conclude that consis-eq(P)
cannot be provable:

Theorem 6.4 (Second Incompleteness Theorem for Scheme equivalence). If a proof system is con-
sistent and strong enough, then it cannot prove its own consistency. That is, if P is a recognizer for a strong
enough, consistent set of Scheme equations, then consis-eq(P) is true, but is not in HP ,

Of course we still need to define “strong enough.”

Definition 6.5. A set, P , of equations between Scheme expressions is strong enough providing:

• if M
∗→N then (M = N) ∈ P ,

• P is closed under equational reasoning, including the congruence rule that for any context
C, if (M = N) ∈ P then (C[M] = C[N]) ∈ P .

• ((begin Ω0 M) = Ω0) ∈ P ,

• ((begin (Meval ’ M) 1) = (begin M 1)) ∈ P ,

• the equation (valid-eq) below is in P .

Lemma 6.6. The the following equation describes a valid observational equivalence:

((begin (I ’ P) (Meval (F ’ P)) 1) = (begin (Meval (F ’ P)) 1)) , (valid-eq)

where F computes the total computable function, f , of Lemma 6.3.

Proof. There are two cases:

First, suppose that P ∈ I, that is,(I ’ P) ↓. Hence,

(begin (I ’ P) (Meval (F ’ P)) 1)
∗→ (begin (Meval (F ’ P)) 1) ,

so (valid-eq) is will be true since Substitution Model rewriting preserves observational equiva-
lence.

Course Notes 12: Scheme Computability, Part II 12

Second, suppose that P 6∈ I, that is,(I ’ P) ↑. But this means thatHP is consistent, so (f(P) = Ω0)
is true, which means that f(P)↑ and therefore (Meval (F ’ P)) ↑. Hence both sides of (valid-eq)
diverge, and again (valid-eq) will be true.

Problem 11. Complete the proof by contradiction of the Second Incompleteness Theorem, by
proving that if HP is strong enough, and consis-eq(P) ∈ HP , then (f(P) = Ω0) ∈ HP . Warn-
ing: The definition of “strong enough” above is probably not strong enough :-) . I’m not even
sure if it’s on the right track.

	Meta-Circular Interpreters
	Step by Step Interpretation
	The Recursion Theorem
	Minimal Scheme Expressions
	Builtin eval [Optional]
	Second Incompleteness Theorem [Optional]

