
Massachusetts Institute of Technology
6.844, Spring ’05: Computability Theory of and with Scheme March 3
Prof. Albert R. Meyer revised March 3, 2005, 1213 minutes

Solutions to Assignment 3.5

Problem 1. Extend Arithmetic Expressions with another case called an application. Namely,
if e and f are ae’s and x is a variable, and then the application of e, regarded as a function of
x, to f , written

((λ(x)e)f),

is also an ae. The meaning of the application is given by the rule

[[((λ(x)e)f)]]V ::= [[e]](V [x← [[f ]]V ]) (1)

(a) Extend the definition of the substitution operation, [σ], so it applies to ae’s with ap-
plications and so that the Substitution Lemma will continue to hold.

Hint: Substitution into an application will now generally have to include renaming lambda-
bound identifiers to avoid ”false capture.” For example,

[[((λ(y) ((λ(x)(x + y)) 0) ) x)]]V ::= [[((λ(x)(x + y)) 0)]]V [y ← V (x)])

= [[x + y]]((V [y ← V (x)])[x← 0])

= V (x),

whereas if we try evaluating by naively substitute x for y inside the inner application, we
get a different result:

[[((λ(x)((x + y)[y := x])) 0)]]V = [[((λ(x)2x) 0)]]V

= 0.

The fix is to replace the x’s in the inner application by a “fresh” variable, x′ before substi-
tuting x for y:

[[((λ(x′)(x′ + y)[y := x]) 0)]]V = [[((λ(x′)(x′ + x)) 0)]]V

= [[x′ + x]](V [x′ ← 0])

= V (x).

Copyright © 2005, Prof. Albert R. Meyer. All rights reserved.

http://web.mit.edu/
http://theory.csail.mit.edu/classes/6.844/spring05-6844
http://theory.csail.mit.edu/~meyer/
http://theory.csail.mit.edu/~meyer/


Solutions to Assignment 3.5 2

Solution. Substitution into an application will be defined by the rule:

((λ(x)e)f)[σ] ::= ((λ(x′)e[σ′])f [σ]) (2)

where x′ is a “fresh” variable — a variable not occurring in e, f , or σ — and

σ′ ::= σ[x← x′].

�

(b) Prove it.

Solution.

Lemma (General Substitution).

[[M [σ]]]V = [[M ]]Vσ, (3)

where
Vσ(y) ::= [[σ(y)]]V.

The proof by structural induction on M of the Substitution Lemma for ordinary ae’s car-
ries over without change for ae’s with applications, except that there is now one further
induction case, namely when M is an application, ((λ(x)e)f). In this case, the lefthand
side of (3) is

[[((λ(x)e)f)[σ]]]V = [[((λ(x′)e[σ′])f [σ])]]V (by (2))
= [[e[σ′]]]U (by (1))

where U ::= V [x′ ← [[f [σ]]]V ]

= [[e]]Uσ′ (ind. hypothesis for e) (4)

Similarly, the righthand side of (3) is

[[((λ(x)e)f)]]Vσ = [[e]](Vσ[x← [[f ]]Vσ]) (by (1))
= [[e]]W (5)

where W ::= Vσ[x← [[f ]]Vσ]. (6)

So we need only prove that
Uσ′ = W (7)

to conclude from (4) and (5) that the General Substitution Lemma holds for an application.

To prove (7), we use a key property of “fresh” variables:

Lemma (Fresh Variable). For any ae, M , valuation, V , and value, d, if x′ does not occur in M ,
then

[[M ]]V = [[M ]](V [x′ ← d])



Solutions to Assignment 3.5 3

The proof of the Fresh Variable Lemma follows immediately by structural induction on
M , as the reader can easily verify.

Now for a variable y distinct from x, we have

Uσ′(y) = [[σ′(y)]]U (by def. of (valuation)σ′)
= [[σ(y)]]U (def. of σ′)
= [[σ(y)]]V (by Fresh Var. Lemma since x′ /∈ σ(y))
= Vσ(y) (def. of Vσ)
= W (y) (since y is not x)

Also,

Uσ′(x) = [[σ′(x)]]U (by def. of (valuation)σ′)
= [[x′]]U (def. of σ′)
= [[f [σ]]]V (def. of U )
= [[f ]]Vσ (ind. hypothesis for f )
= W (x) (def. of W )

So we have shown that Uσ′ = W , completing the proof. �


	Problem 1
	(a)
	(b)


