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Notes on Proving Arithmetic Equations

1 Expressions and Values

In these notes we describe a formal system for proving arithmetic equations. Our objective is to
explain what it means to have a completely formal, automatically verifiable proof system, and to
clarify the basic properties of such proof systems. Our objective is not to clarify the basic properties
of numbers—we need to know these beforehand in order to understand and justify the proof
system. For example, it will take some effort in our system to prove that e · 0 = 0; the formal proof
certainly does not make this equation any more or less obvious.

Definition 1.1. Arithmetic expressions (ae’s) are defined inductively as follows:

• The numerals 0 and 1 are ae’s.

• Any variable, x, is an ae.

• If e is an ae, then there is an ae called “minus e” which is abbreviated as −e.

• If e, f are ae’s, then there is an ae called the “sum of e and f” which is abbreviated as e + f ,
and there is also an ae called the “product of e and f” which is abbreviated as e · f or ef .

• That’s all.

We use the symbol R for the set of real numbers and Z for the set of all integers {0, 1,−1, 2,−2, . . . }.

In order to evaluate an ae, we need to know the values of the variables – what a Computer Scientist
would call an environment. The kind of environments needed for ae’s simply map each variable to
a real number; these simple environments are called valuations.

Definition 1.2. A valuation, V, is a mapping from the set, Var, of variable symbols which may
appear in ae’s, into R. The value, val (e, V ) , of an ae, e, at a valuation, V , is defined by structural
induction on ae’s as follows:

• val (0, V ) ::= 0 and val (1, V ) ::= 1.

• val (x, V ) ::= V (x) for any variable, x.

• val (−e, V ) ::=− val (e, V ).

• val (e + f, V ) ::= val (e, V ) + val (f, V ), and
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• val (e · f, V ) ::= val (e, V ) · val (f, V ).

The meaning, [[e]], of an ae, e, is the function from valuations to R defined by:

[[e]](V ) ::= val (e, V ) .

It is conventional to omit parentheses around the arguments of meaning functions, writing “[[e]]V ”
instead of “[[e]](V ).”

Definition 1.3. An arithmetic equation (aeq) consists of two ae’s called its lefthand side and its right-
hand side. The aeq with lefthand side e and righthand side f is abbreviated as “e = f”. The aeq
e = f is true at valuation V , written

V |= (e = f),

iff [[e]]V = [[f ]]V . The equation is valid, written

|= (e = f),

iff it is true at all valuations, that is, iff [[e]] = [[f ]].

Example 1.4. Let e0, f0 be the ae’s

e0 ::= ((1 + (1 + 1)) · (x + y)),
f0 ::= ((y · (x · y)) + (−((1 + 1) + 1))).

Let V1 be a valuation such that V1(x) = 2, and V1(y) = 3. Then val (e0, V1) = 15 and val (f0, V1) =
15, so V1 |= (e0 = f0). Let V2 be the valuation such that V2(v) = 0 for all variables v. Then
val (e0, V2) = 0 6= −3 = val (f0, V2), so V2 6|= (e0 = f0). Thus, the aeq e0 = f0 is not valid.

As another example, note that equations of the following form are valid:

Lemma 1.5.
|= ((e · (f + g)) = ((e · f) + (e · g)))

for all ae’s e, f, g.

Proof. Let V be any valuation and l,m, n be the values of e, f, g at V . Then

[[(e · (f + g))]]V = l(m + n)

by definition of the meaning of ae’s. Likewise,

[[((e · f) + (e · g))]]V = lm + ln.

But l(m + n) = lm + ln by the distributive law of arithmetic, so

[[(e · (f + g))]]V = [[((e · f) + (e · g))]]V.

But V was arbitrary, so this equation must hold for all V , i.e., the equation is valid.
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2 Equational Proofs

Definition 2.1. An aeq, C, is said to follow by the transitivity rule from the pair of aeq’s A1 and A2

iff A1 is of the form e = f , A2 is of the form f = g, and C is of the form e = g.

We use the notation

e = f, f = g =⇒ e = g

as a shorthand description of this rule. The aeq’s to the left of =⇒ are called the antecedents of the
rule, and the aeq to the right is called its consequent.

Along with transitivity, the reflexivity, symmetry, and congruence rules together are called the stan-
dard equational inference rules. They are described in Table 1. Note that the reflexive rule has no
antecedents. Such rules without antecedents are usually called axioms and are just written as
equations, omitting the symbol =⇒ .

Table 1: Standard Equational Inference Rules.

=⇒ e = e (reflexivity)
e = f =⇒ f = e (symmetry)

e = f, f = g =⇒ e = g (transitivity)
e1 = e2, f1 = f2 =⇒ e1 + f1 = e2 + f2 (+-congruence)
e1 = e2, f1 = f2 =⇒ e1 ∗ f1 = e2 ∗ f2 (∗-congruence)

e = f =⇒ −e = −f (−-congruence)

To capture the properties of arithmetic, we will need some additional axioms. These equational
axioms for arithmetic are all the aeq’s of the forms given in Table 2.

Table 2: Equational Axioms for Arithmetic

(e + f) + g = e + (f + g) (associativity of +)
(e · f) · g = e · (f · g) (associativity of ·)

e + f = f + e (commutativity of +)
e · f = f · e (commutativity of ·)

0 + e = e (identity for +)
1 · e = e (identity for ·)

e + (−e) = 0 (inverse for +)
e · (f + g) = (e · f) + (e · g) (distributivity)

Definition 2.2. An arithmetic equational proof is a finite sequence of aeq’s such that every aeq in the
sequence follows from aeq’s earlier in the sequence by one of the standard equational inference
rules or axioms of arithmetic. An aeq, e = f , is equationally provable, written

` e = f,

iff it is the last equation of some proof.
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A crucial property of formal proofs is that they can be checked automatically, i.e., by a program,
without any need for “understanding” of the subject matter by the checker. Adding comments to
an equational proof can make proof checking easier, but it is not strictly necessary, since it is not
hard to program a checker for uncommented proofs.

Figure 1 contains a formal proof of the equation (f + g) + −g = f . For the reader’s convenience,
the names of the rules from which each equation follows have been included as a comment after
the equation.

Figure 1: An arithmetic equational proof.

g +−g = 0 (inverse for +)
f = f (reflexivity)

f + (g +−g) = f + 0 (congruence)
(f + g) +−g = f + (g +−g) (associativity of +)
(f + g) +−g = f + 0 (transitivity)

f + 0 = 0 + f (symmetry)
(f + g) +−g = 0 + f (transitivity)

0 + f = f (identity for +)
(f + g) +−g = f (transitivity)

Using this formal proof, we can show:

Lemma 2.3. For all ae’s e,
` 0 = 0 · e.

Proof. Figure 2 exhibits a formal proof with rule names as comments.

Figure 2: A proof of 0 = e · 0.

0 + 1 = 1 (identity for +)
e = e (reflexivity)

e · (0 + 1) = e · 1 (congruence)
e · 1 = e · (0 + 1) (symmetry)

e · (0 + 1) = (e · 0) + (e · 1) (distributivity)
e · 1 = (e · 0) + (e · 1) (transitivity)

−(e · 1) = −(e · 1) (reflexivity)
(e · 1) +−(e · 1) = ((e · 0) + (e · 1)) +−(e · 1) (congruence)

...
(Insert proof from Fig. 1 with f, g replaced by e · 0, e · 1, respectively).

...
(e · 1) +−(e · 1) = e · 0 (transitivity)
(e · 1) +−(e · 1) = 0 (inverse for +)

0 = (e · 1) +−(e · 1) (symmetry)
0 = e · 0 (transitivity)
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The axioms of Table 2 are so fundamental that they have a special mathematical name: the com-
mutative ring axioms. Any set of elements with +, ·,− operations satisfying these axioms is called
a commutative ring. In addition to R, other examples of commutative rings are the integers, Z, the
rational numbers, Q, the complex numbers, C, and Zn, the integers modulo n.

Problem 1. (a) Show that ` −e = −1 · e.

(b) Show that ` 1 = −1 · −1.

Problem 2. Define the set of Arithmetic Equational Theorems (aet’s) inductively as follows:

• every equational axiom of arithmetic is an aet.

• if all the antecedents of a standard equational inference rule are aet’s, then so is the conse-
quent.

Prove that the set of equationally provable aeq’s equals the set of aet’s.

Problem 3. For arithmetic expressions e, f and variable x, the substitution, e[x := f ], of f for x in
e is defined by induction on e:

x[x := f ] ::= f,

c[x := f ] ::= c for any constant or variable, c, distinct from x,

(−e0)[x := f ] ::= −(e0[x := f ]),
(e0 op e1)[x := f ] ::= e0[x := f ] op e1[x := f ], where op ∈ {+, ·}

(a) Prove that
` f = g implies ` e[x := f ] = e[x := g].

(b) Prove that
` e = g implies ` e[x := f ] = g[x := f ].

Problem 4. Repeat 1, using the results of the previous two problems to simplify the argument.
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The validity of the distributivity axiom—Lemma 1.5—followed directly from the distributivity of
the integers and definition of the value of an ae. It is equally easy to see that all the other equational
axioms of arithmetic of Table 2 are valid as well.

A rule of inference is validity-preserving if the consequent of the rule is valid whenever all its an-
tecedents are valid. For example, it follows directly from the symmetry of mathematical equality,
that the (symmetry) inference rule of our formal equational proof system is validity-preserving.
Clearly all the standard equational inference rules of Table 1 are also validity-preserving. As a
consequence, we have:

Theorem 2.4. (Soundness)
` e = f implies |= e = f.

Proof. Immediate by induction on the definition of arithmetic equational theorems given in Prob-
lem 2, using the fact that the inference rules are validity-preserving.

3 Canonical Forms

The only numerals defined to occur in aeq’s are 0 and 1—not 2, 3, . . . . We don’t need these other
numerals since there are expressions for them, e.g., 1 + 1 is an expression whose meaning is the
integer two. It is useful to have a standard expression, or canonical form, for every integer:

Definition 3.1. For integers n ≥ 0 define ae’s n̂ and −̂n inductively:

• 0̂ ::= 0,

• n̂ + 1 ::= 1 + n̂,

• ̂−(n + 1) ::= (−1) + −̂n.

For example,

3̂ is 1 + (1 + (1 + 0)),
−̂2 is (−1) + ((−1) + 0).

Problem 5. Prove that [[n̂]]V = n for all n ∈ Z and valuations V .

Problem 6. (a) Show that ` (1 + n̂) = n̂ + 1 for all n ∈ Z.

(b) Show that ` (−1) + n̂ = n̂− 1 for all n ∈ Z.

(c) Show that ` (n̂ + m̂) = n̂ + m for all m,n ∈ Z. (hint: Induction on magnitude of n.)

(d) Show that ` (n̂ · m̂) = n̂ ·m for all m, n ∈ Z.
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(e) Show that ` −n̂ = −̂n for all n. ∈ Z.

(f) Let e be an arbitrary ae in which there are no occurrences of variables. Conclude that for all
valuations V ,

` e = [̂[e]]V .

(hint: Structural induction on e.)

Lemma 3.2. (Completeness for Constant Expressions) Let e, f be ae’s in which there are no occurrences of
variables. Then

|= e = f implies ` e = f.

Proof. Choose some fixed valuation V . From |= e = f , we have [[e]]V = [[f ]]V = n for some n ∈ Z.
By f, part (f), ` e = n̂ and ` f = n̂, so ` e = f by symmetry and transitivity.

The usual canonical form for a polynomial in x is

cnxn + cn−1x
n−1 + . . . + c0

where the leading coefficient cn is nonzero. We use instead the “sparse” canonical form

cn1x
n1 + cn2x

n2 + . . . + cnk
xnk

where n1 > n2 > . . . and all coefficients are nonzero. We generalize to more than one variable
by treating, for example, a polynomial in variables y and x as a polynomial in y with coefficients
which are polynomials in x. Here is the precise definition:

Definition 3.3. For any ae e and integer n ≥ 1, let e1 ::= e and en+1 ::= (e · en).

Let L be a sequence of distinct variables. An L-canonical arithmetic expression of degree d ∈ N is
defined by induction on the length of L:

• If L is empty, then the L-canonical ae’s of degree 0 are precisely the ae’s of the form n̂ for
n ∈ Z. In this case, there are no L-canonical ae’s of positive degree.

• If L begins with the variable x, and L′ is the rest of L, then the L-canonical ae’s of degree d
are defined by induction on d:

– the L-canonical ae’s of degree 0 are the L′-canonical ae’s (of any degree),

– the L-canonical ae’s of degree d > 0 are those ae’s of the form

(a · xd) + c,

or
a · xd,

where a is a nonzero L′-canonical form, and c is a nonzero L-canonical form of degree
< d.
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Problem 7. Describe an x, y, z-canonical form with the same meaning as ((x + (−̂3 · y2)) + z3)2.

Theorem 3.4. Let e be an arithmetic expression and L a sequence of distinct variables including all the
variables occurring in e. Then there is an L-canonical form c such that ` e = c.

Proof. (Sketch) First prove by induction on d that the sum of an L-canonical form of degree d and
any L-canonical form is provably equal to an L-canonical form. Use this to prove that a product
of two L-canonical forms, as well as the negative of an L-canonical form, is provably equal to an
L-canonical form. Then proceed by structural induction on e.

Lemma 3.5. If c and d are syntactically distinct L-canonical forms for some L, then [[c]] 6= [[d]].

Proof. (Sketch) By induction on the length of L. The induction step uses the fact that if p, q are
polynomials in the same variable, x, with real number coefficients, then if the degree of p is greater
than that of q, or they have the same degree and the absolute value of the leading coefficient of p
is greater than that of q, then the absolute value of p is greater that the absolute value of q for all
large enough values of x.

Theorem 3.6. (Completeness) For all ae’s e, f ,

|= e = f implies ` e = f.

Proof. Let L be a sequence of distinct variables including all the variables occurring in either of e
or f . By Theorem 3.4, ` e = c and ` f = d for some L-canonical forms c, d. By Soundness, we
have [[e]] = [[c]] and [[f ]] = [[d]]. Now if |= e = f , then [[e]] = [[f ]], so [[c]] = [[d]]. Then by Lemma 3.5, c
and d must be syntactically identical, so we really have ` e = c and ` f = c, from which ` e = f
follows by symmetry and transitivity.

Problem 8. Let e be an ae and L a sequence of distinct variables including all the variables in e.
Show that there is a unique L-canonical form c such that ` e = c.

The development above extends easily to arithmetic expressions that are to be evaluated over
subsets, A, of the real numbers that are closed under the arithmetic operations. We’ll use the
notation |=A e = f to indicate that V |= e = f for all valuations, V , in which all variables have
values in A. For example, |=Z indicates validity when all variables must be integer-valued. In
particular, the notion of validity considered above is |=R.

Problem 9. Prove that
|=R e = f iff |=Z e = f.
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