6.044J/18.423J: Computability, Programming, and Logic Handout ii
Massachusetts Institute of Technology 8 December 1993

® ® =

10.
11.

12.
13.

14.
15.
16.
17.
18.

19.
20.
21.
22,
23.

24.
25.

Outline of Lectures

. (Fri, 9/10) Administration, course overview. Informal discussion: what do we mean when we say two

programs are “the same” or are “different”? Grammar of IMP.

. {(Mon, 9/13) Definition of kernel Scheme.

(Wed, 9/15) Extended Scheme vs. kernel Scheme: syntactic sugar.

. (Fri, 9/17) The substitution model of kernel Scheme; rewrite rules.

(Mon, 9/20) The substitution model continued.

(Wed, 9/22) Definition of syntactic substitution. Declaratioun contexts and referential transparency.
(¥ri, 9/24) Final lecture on the substitution model: evaluation contexts, deterministic evaluation.
(Mon, 9/27) Inductive definition of rules.

(Wed, 9/29) Proofs by induction.

(Fri, 10/1) What is a good inductive definition? What is a well-defined function?

(Mon, 10/4) Functional equations with no, many, unique, unique least solutions. Mention least fixed
points.

{(Wed, 10/6) Evaluation assertions for IMP. Functionality of arithmetic exp’s by structural ind.

(Fri, 10/8) ADD DATE. Derivations in IMP. Example: Euclid’s algorithm. Proofs by induction on
derivations.

(Mon, 10/11) CoLuMBUS DAY.

(Wed, 10/13) What is the “meaning” of an IMP program?

(Fri, 10/15) Quiz 1.

(Mon, 10/18) Compositionality of meaning, observational congruence, and full abstraction.
(Wed, 10/20) Proof of compositionality.

(Fri, 10/22) Introduction to Hoare logic. Partial correctness assertions. Rules of Hoare logic for IMP.
Soundness.

(Mon, 10/25) Hoare logic rule for assignments. While-loop invariants.

(Wed, 10/27) Proof of correctness for Euclid’s algorithm. |

(PFri, 10/29) Language of assertions. Using assertions to encode primes and prime-powers.
{Mopn, 11/1) Express “¢ = k™” in Assn using base-p concatenation.

(Wed, 11/3) IMP-computable functions, predicates, and sets. Closure properties of IMP-decidable A
sets. “Computable” implies “expressible”. .

(Fri, 11/5) Expressibility of IMP input/output relations.

{Mon, 11/8) Checkable, decidable, and expressible sets.
(Tue, 11/9, evening) QUIZ 2.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

6.044J/18.423J Handout ii: Outline of Lectures

(Wed, 11/10) All IMP-computable functions are expressible. Dynamic assertions. Weakest precondi-
tions. Expressing partial correctness assertions as dynamic assertions.

(Fri, 11/12) Relative completeness of Hoare logic for IMP. Closure properties of expressible sets.

(Mon, 11/15) More on closure properties of decidable and expressibile sets. Checkable sets. A set is
decidable if and only if it is checkable and co-checkable.

(Wed, 11/17) Relative computability /expressibility. The halting problem. H is not checkable, and H
is not decidable.

(Fri, 11/19) DROP DATE. Hp is not checkable. Many-one reducibility (<m,). Godel encoding of
commands.

(Mon, 11/22) H is checkable. True is not checkable. True is not checkable. Definition of provable;
Peano arithmetic.

(Wed, 11/24) General definition of proof system as a decidable relation, I, between a countable set, D,
of derivations and an Assn. Theorem: for any proof system, , let Provable = {A|dF A}. Then
Provable is checkable. Corollary (Incompleteness): for sound proof systems, Provable C Valid.
Statement of Rice’s Theorem.

(Fri, 11/26) THANKSGIVING HOLIDAY.

(Mon, 11/29) Proof of Rice's Theorem. Examples of checkable, not decidable sets; 2H U 2H + 1 is
expressible but not checkable, not co-checkable. Statement of Theorem: Validity is not expressible.

(Wed, 12/1) Proof of Theorem: Validity is not expressible. Turing-reducibility (<7). The Arithmetic
Hierarchy and Hilbert’s 10t® Problem.

(Fri, 12/3) More on Hilbert’s 10" Problem. The Diophantine sets = the checkable sets. Hilbert’s 10"
is undecidable, in fact uncheckable. Corollary: {b € Bexp | k= b} is uncheckable. Corollary: it is
uncheckable whether two while-free commands are equivalent.

(Mon, 12/6) Theorem: {(a;,a2) € Aexp x Aexp | | a; = aq } is decidable and completely axioma-
tizable (by transformation to canonical form).

(Wed, 12/8) Further courses: 6.821 Programming Languages; 6.830 Program Semantics and Verifica-
tion; 6.826 Principles of Systems; 18.505 Mathematical Logic. Further Topics: Undecidable problems
in grammars, geometry, algebra, program schemes; logic programming; semantics of concurrency; de-
notational semantics of first-class functions; types in programming and constructive logic; formal logic,
predicate calculus and completeness.

(Wed, 12/15, 1:30—4:30 PM, room 24-115) FINAL EXAM.

6.044J/18.423J: Computability, Programming, and Logic Handout 1
Massachusetts Institute of Technology 10 September 1993

Course Information

Staff.

Lecturer: Prof. Albert R. Meyer NE43-315 x3-6024
meyer@theory.lcs.mit.edu

Teaching Assistant: Trevor Jim NE43-338 x3-7583
trevorQtheory.lcs.mit.edu

Secretary: David Jones NE43-316 x3-5936

6044-secretary@theory.lcs.mit.edu

Lectures and Tutorials. Class meets MWF from 1:00-2:00 PM in 24-115.
There will be no recitation sections, but tutorial/review sessions may be orga-
nized in response to requests. The TA will have one regularly scheduled office
hour to be announced. Further meetings with the TA or instructor can be
scheduled by appointment.

Prerequisites. The official prerequisite for the course is either 18.063 In-
troduction to Algebraic Systems, or 18.310 Principles of Applied Mathematics.
Students who have taken 6.045J/18.400J or 6.840J/18.404J have more than met
the prerequisites. (There will be less than 25% overlap between this course and
6.045J/18.400J or 6.840J/18.404J, so students who have taken either of these
other courses are welcome to take this course.)

The courses 6.045J /18.400J or 6.840J/18.404J contain much more material than
is necesssary for this course, because the actual prerequisite is knowledge of the
basic vocabulary of mathematics and how to do elementary proofs. With such
mathematical experience you should be able to handle this course; in this case
ask the instructor for permission to take the course.

Textbook. The required text for the course is Introduction to the Formal
Semantics of Programming Languages by Glynn Winskel, published by MIT
Press in 1993. The book is available at the Coop.

Grading. There will be homework problems, two one hour quizzes, and a final
exam. The problems and exams count about equally toward the final grade. The
grading is nonlinear: ace the homework or the quizzes and you get an A, but
counting on exam grades to outweigh neglected homework is a high-risk strategy.

2 6.044J/18.423] Handout 1: Course Information

Problem Sets. There will be problem sets most weeks. Homework will usu-
ally be assigned on a Friday and due the following one.

Handouts and Notebook. You may find it useful to get a loose-leaf note-
book for use with the course, since all handouts and homework will be on stan-
dard three-hole punched paper. If you fail to obtain a handout in lecture, you
can get a copy from the file cabinet to the right of the door to room NE43-311.
If you take the last copy of a handout, please inform the course secretary, and
get instructions on making more copies.

Handouts will also be available on-line in the 6.044 directory. To access this
directory from Athena, type

attach -m /theory/6.044 -e theory.lcs.mit.edu:/pub/ftp/pub/6.044
source /theory/6.044/.athena startup

(We recommend adding these lines to your .environment file, causing them
to be executed every time you log in.) You will get a warning that “the-
orylcs.mit.edu isn’t registered with kerberos,” which is entirely accurate but
irrelevant. This will make the 6.044 directory available to you as /theory/6.044
and tell IATEX where to find the additional files it needs. All handouts are writ-
ten in IATRX.

If all else fails, the handouts can be retrieved via anonymous ftp or by mail from
Theory. To retrieve these files by ftp, run ftp theory.lcs.mit.edu, supplying
“anonymous” as the name (account) and “guest” as the password. Files may
then be fetched by first typing “cd pub/6.044” to change directories and then
typing “get filename”. If you get the files in this way, you will also need to
get the files 6.044.sty, handout.sty and handouts-6044-fall-92.tex from
pub/6.044/input in order to run IATEX on the handout files. To find out about
retrieving files by mail, send mail to archive-server@theory.lcs.mit.edu
containing the single word “help” in the body of the message.

Electronic mail. All students are encouraged to subscribe to the course mail
list by sending email to 6044-secretary@theory.lcs.mit.edu; other admin-
istrative requests should also be directed to this address.

To facilitate communication in the class, there are three electronic mail ad-
dresses:

6044-secretary@theory.lcs.mit.edu
6044-forum@theory.lcs.mit.edu
6044-staff@theory.lcs.mit.edu

6.044J/18.423J Handout 1: Course Information 3

The 6044-forum mailing list is for general communication by students, the
instructor, and the TA to the class; a message sent here will automatically
be distributed to those on the mailing list. Students are encouraged to use
6044-forum to arrange study sessions, discuss ambiguities and problems with
homework, and send comments to the whole class. The TA and instructor may
also post bugs and corrections to homeworks and handouts to 6044-forum.

Messages to the instructor or TA should be sent to 6044-staff.

Pictures. You can help us learn who you are by giving us your photograph
with your name on it. This is especially helpful if you later need a recommen-
dation.

6.044J/18.423J: Computability, Programming, and Logic Handout 2
Massachusetts Institute of Technology September 10, 1993

Diagnostic Quiz

You will not be graded on this quiz. Take it sometime after class, and return
it in class on Monday, September 13. Be sure to indicate your name, the date
and “6.044 Diagnostic Quiz” on your answer sheet.

Problem 1. Let succ be the successor function on integers:
succ(z) =z +1

Describe the function (succo succ), that is, the composition of succ with itself.
Problem 2. How many strings of length 4 are there over the alphabet {a, b, c}?

Problem 3. Define < to be the binary relation between sets such that A < B
if and only if the cardinality of A is less than or equal to the cardinality of B.

(a) What is the definition of “uncountable set”? Now express the definition
in terms of <. Give an example of an uncountable set.

(b) For each of the following properties, state whether the relation < has the
property, and if not, give a simple counterexample.

1. reflexivity
2. symmetricity
3. transitivity

Problem 4. Two Boolean formulas Fi(z,,...,z,) and Fy(z,,...,z,) are
equivalent iff they yield the same truth value for all truth assignments to the
variables 1,,...,Zn.

(a) The Boolean binary operation conjunction (and), which our text writes
as “&”, is commutative, namely z, & z2 is equivalent to z, & xz,. Describe
a Boolean binary operation which is not commutative.

(b) Describe an infinite set of equivalent Boolean formulas.
(c) Explain why “equivalent” is actually an equivalence relation on formulas.

(d) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z;,...,z,.

(e) How many are there?

2 6.044J/18.423J Handout 2: Diagnostic Quiz

Problem 5. A binary relation < is anti-symmetric if £ = y whenever z < y
and y < z. A partial order of a set D is a binary relation < that is refiexive,
transitive, and anti-symmetric on D. A partial order is total if for every d;,d; €
D, eitherd; <dsordy <dy. f XCDand y<zforeveryx€ X, then yis a
lower bound of X. Similarly, if x < y for every x € X, then y is an upper bound
of X. If y is a lower bound of X, and z < y for every lower bound z of X, then
y is the greatest lower bound (“glb” or “meet”) of X. If y is an upper bound
of X, and y < z for every upper bound z of X, then y is the least upper bound
(“lub”) of X.

Let A be the set {1,2,3,4,5}.

(a) Give a total order of A. That is, describe a binary relation < on A that is
a total order.

(b) Give a partial order of A such that: (1) every pair of elements has a glb;
and (2) there is no lub of {4,5}.

(c) Give a partial order of A such that every pair of elements has both an lub
and a glb, but the order is not total.

Problem 6. For any set, A, let Pow(A) be the powerset of A, namely, the set
of all subsets of A. Exhibit the members of Pow(Pow(Pow($))).

Problem 7. Have you taken 18.063 or 18.310? If not, do you have any alter-
nate qualifications that have prepared you for taking this course?

Problem 8. About how long did it take you to complete this quiz?

6.0441/18.4231: Computability, Programming, and Logic Handout 3
Massachusetts Institute of Technology 10 September 1993

Outline of lectures from last year

This is an outline of the lectures given LAST YEAR (fall 1992) in 6.044. This may give you an idea of the
pace of the course and the topics it covers. We do plan to make some changes in the course, but the outline
should be about 75% accurate.

Lecture outline, 1992

1.

10.
11.

12.

13.

(Fri, 9/11) Administrivia. Sample IMP while-program, Euclid, p.34; brief sketch of partial correctness
and termination.

(Mon, 9/14) Syntax of IMP, and the “natural” evaluation semantics of Aexp. The derivation tree
for (M + N) x N,o[10/N][6/M]) — 160.

(Wed, 9/16) Natural eval rules for Com. Derivation tree for (Euclid, [10/N][6/M]) — o[2/M][2/N].
Uniqueness of derivation tree for each configuration; exists for Aexp, Bexp, and while-free Com, but
{whiletruedoc,o) /- for all ¢,o. No proofs.

(Fxi, 9/18) One-step rules. Example (Euclid,c[10/N][6/M]) —} o[2/M][2/N]. Remark: —, is total,
functional, computable relation. Inductive def of transitive closure. Statement of“equivalence” of
one-step and natural rules: v —} § iff v — 4 for all configurations v and values § € NUTUZX.

(Mon, 9/21) Proof of equiv of natural and one-step semantics.

(Wed, 9/23) Proof by induction on deriv. of functionality of command evaluation (Winsk, 3.11). Proof
by minimum principle that (whiletruedoc,a) /~ (Winsk. 3.12).

(Fri, 9/25) Formal def of derivations, and induction on them (§3.4). Set R of rule instances determines
a monotone, continuous, operator R on sets (§4.4) with derivable elements = fiz(R).

(Mon, 9/28) (Winskel §5.4) Def and examples of cpo’s, monotone and continuous functions. Contrast
with usual (epsilon-delta) continuity.

(Wed, 9/30) Examples of Ro(A) for Ry = {8/3,0/4,{n,n +1}/n+ 2}. Proof that R is continuous.
Proof of fixed points of continuous functions on cpo’s.

(Fri, 10/2) QUIZ 1, IN CLASS, on lectures 1-8

(Mon, 10/5) Comments on Quiz 1. Discussion of wellformed and non-wellformed recursive function
def’s, eg, e(z) = e(z+1), f(z) = f(z+1)+1, for g, h functions on w*: g(1) = 1; g(z+y) = g(z)+9(¥),
h(1) = 1; h(z + y) = h(z) + 2h(y). Function def by structural induction, eg, length and depth of a
derivation, def of loc; (§3.5) and statement w/o proof: ¢ only effects locr(c) (Winskel 4.7). Brief
mention of capturing computational behavior of recursive def’s by choosing leest partial funmctions
satisfying constraints.

(Wed, 10/7) Motivation for fixed points as explanation of recursion: While-loops as fixed points of
mappings on command meanings. Command meanings, C, will be partial functions € ¥ — X (mean-
ings of expressions will be total functions from states to Num or T). Statement of equivalence of
denotational and natural semantics: Eval(c) = C[[c]. Then define denotational semantics by structural
induction assuming ['ypie (Winskel p.62) has a least fixed point.

(Fri, 10/9) Motivate Iy nite by considering G : Com — C where G(while) = unwind-once- while. Out-
line proof that Eval(while) is fixed point of I'; observe that there may be other fixed points: every
comand is fixed point of Twhile true doskip. State that Eval(while) is least fixed point and T'yhite has
least fixed point because it is continuous on cpo C.

(Mon, 10/12) COLUMBUS DAY

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29,

30.

6.044J/ 18.423] Handout 3: Outline of lectures from last year

(Wed, 10/14) Properties like Eval((ci; ¢2)) = Eval(cz) o Eval(c,). Comments on proof of equivalence of
natural and denotational semantics (Winskel Thm. 5.7): by structural induction, with subinduction
for while case.

(Fri, 10/16) First-order arithmetic: Assn’s and their meaning. Assn’s for “is prime,” “divides,” “lcm.”
Inductive def of free variables.

(Mon, 10/19) Formal def of o = A (Winskel§6.3). Validity, satisfiability, invalidity.

(Wed, 10/21) Semantic of partial correctness; o = {true}e{ false} iff ¢ diverges in state o; A equiv
{true} skip {A}. Sample axioms and rules of Hoare logic, mention soundness, hint about completeness
and incompleteness.

(Fri, 10/23) Def of equivalent Assn’s. Lemma: A equiv B iff = (A= B) & (B = A). Lemma: ~Vj.4
equiv 3j.~A. Substitution Lemma: for expressions (WinskelLemma 6.8).

(Mon, 10/26) Substitution Lemma: for Assn’s (WinskelLemma 6.9). Prove validity of Hoare Assign-
ment axiom. Lemma: A only depends on FV(A) and loc(A). Lemma: If j ¢ FV(A), then Vj.(AV B)
equiv (Vj.A) V (Vj.B) equiv A V (Vj.B). Proofs omitted.

EVENING QUIZ 2, Mon, 10/26, on lectures 9, 11-18

(Wed, 10/28) Soundness of inference versus antecedents implying consequent. Mention optional exer-
cise: which Hoare rules are valid as implications. Informal soundness of Hoare rules and proof example:
Euclid.

(Fri, 10/30) Soundness of Hoare loop invariant rule. Weakest preconditions and Dynamic Assertions.
Translate dynamic assertions into assertions, assuming expressiveness.

(Mon, 11/2) Prove expressiveness of Assn for IMP. Corollary: Relative completeness of Hoare logic.

(Wed, 11/4) Thm: Every Assn equiv to prenex.[polynomial = 0]. Intro to rules for Aexp equations
and sum-of-products polynomial representation of Aexp’s.

(Fri, 11/6) Notion of canonical form. Deriving enough equational axioms to put Aexp's into sum-of-
monomials form.

(Mon, 11/9) Canonical forms for Aexp’s as polynomials-with-multivariate-polynomial-coefficients.
Proof that distinct canonical forms have distinct meanings by induction on number of variables. Com-
pleteness and decidability for polynomial equations.

(Wed, 11/11) VETERAN’S DAY

(Fri, 11/13) Gddel numbers of Assn’s. A,(m,n) = An[m/io] for expressible p. Nonexpressibility of
Truth for Assn’s.

(Mon, 11/16) QUIZ 3, IN CLASS, on lectures 19-25

(Wed, 11/18) Complete proof of nonexpressibility of Truth. Define IMP checkable and state Lemma:
Checkable implies expressible. Mention incompleteness.

(Fri, 11/20) DROP DATE & Underground Guide Survey. Prove Checkable implies Expressible using
expressiveness. Define IMP-decidable proof system as having IMP-decidable proof relation. State
Lemma: IMP-decidable proof system has IMP-checkable set of provable Assn’s, so Provable # Truth.

(Mon, 11/23) Def of computable, decidable. Remark: IMP-computable same as IM P,-computable
by Handout—but not obvious. Decidable implies checkable. Thm: D decidable and f total computable
implies f(D) checkable. Cor: Provable assertions are checkable.

Pty

6.044J/18.423J Handout 3: Outline of lectures from last year 3

31.

32.

33.
34.

35.

36.

(Wed, 11/25) Vocabulary: Checkable = r.e., decidable = recursive, computable = (partial) recursive.
Decidable closed under intersection, complement. Mention dovetailing, f(r.e.) is r.e. Discussion of
thesis that Effectively decidable = IMP-decidable. The set of (G6del numbers of) sentences is a
decidable set; likewise, the set of commands. Incompleteness Theorem: In a sound proof system, there
is a true sentence which is not provable.

(¥ri, 11/27) THANKSGIVING HOLIDAY

(Mon, 11/30) Uncheckability of H where H is the self-halting problem, so undecidability of H. Venn
diagram of decidable, checkable, co-checkable, expressible. Decidable iff checkable and co-checkable.
Universal IMP command, u. Checkability of halting problem.

(Wed, 12/2) Uncheckability of zero-halting problem (by reduction). <, and Rice’s Theorem.

(Fri, 12/4) Incompleteness of substitution instances of the single Assn W(false,cy)[n/X,]. Hilbert’s
10th. Mention other undecidable problem: semigroup word problem; tiling problem (no time to mention
zero matrix product problem; CFG equivalence and ambiguity problem, CSG emptiness).

(Mon, 12/7) IM P,,,ala Brookes. Noncompositionality of state transition semantics. Def of observa-
tional congruence. X:=X not cong skip; some other identities do hold.

(Wed, 12/9) Compositional “interrupt sequence” semantics “interrupt sequences” fully abstract when
n-ary-test-and-set is added to IMP,,,. Comments on what was not covered: higher-order-IMP.
Follow-up courses: 6.821 (programming linguistics and semantics), 6.830 (research in logic and seman-
tics of programs), 6.840 (computability and complexity), 6.826 (Systems modelling and specification),
Math and Philosophy courses in Logic.

(Thu, 12/17) (Exam Period) QUIZ 4, 1:30-3:30 in du Pont, on lectures 26, 28-36

6.044J/18.423J: Computability, Programming, and Logic Handout 4
Massachusetts Institute of Technology 15 September 1993

Diagnostic Quiz Solutions

Problem 1. Let succ be the successor function on integers:
suce(z) =z +1

Describe the function (succo succ), that is, the composition of succ with itself.

The composition of succ with itself is the “add two” function,
add2:

add2(z) =z + 2

because

(succ o succ)(z) = succ(suce(z))
= succ(z + 1)
=(z+1)+1
=z+2
= add2(zx)

Problem 2. How many strings of length 4 are there over the alphabet {a, b,c}?

With three possibilities in each of four positions, there are 3% =
81 possible strings.

Problem 3. Define < to be the binary relation between sets such that A < B
if and only if the cardinality of A is less than or equal to the cardinality of B.

(a) What is the definition of “uncountable set”? Now express the definition
in terms of <. Give an example of an uncountable set.

A set A is uncountable iff there is no one-to-one and onto (bi-
jective) correspondence between A and a subset of the integers.
Thus, if N is the set of integers, then an uncountable set is any
set A such that A £ N. The real numbers, R, are a well-known

example of an uncountable set, as is the powerset of any infinite
set.

(b) For each of the following properties, state whether the relation < has the
property, and if not, give a simple counterexample.

2 6.044J/18.423J Handout 4: Diagnostic Quiz Solutions

1. reflexivity
2. symmetricity

3. transitivity

The relation < is reflexive (A < A for all sets A) and tran-
sitive (if A = B and B < C then A < C), but not symmetric
(there are sets A and B with A < B but B £ A, for example N
and R).

Problem 4. Two Boolean formulas Fi(z,...,%,) and Fy(zi1,...,Z,) are
equivalent iff they yield the same truth value for all truth assignments to the
variables z1,...,Zn.

(a) The Boolean binary operation conjunction (and), which our text writes
as “&”, is commutative, namely x; & x5 is equivalent to z2 & x;. Describe
a Boolean binary operation which is not commutative.

The “implies” operation, often written =, is non-commuta-
tive: false = true, but true & false, so ; = 29 and z; = 1,
are not equivalent.

(b) Describe an infinite set of equivalent Boolean formulas.

Define the formulas F; as Fp def zo and Fip def (F; & o)
for all ¢ > 0. These formulas are all equivalent, since for any

truth assignment they all have the same truth value as zq.
(c) Explain why “equivalent” is actually an equivalence relation on formulas.

An equivalence relation is a binary relation on a set A, that
is, R C A x A, which is reflexive (a R a for all a € A), transitive
(if a Ra’ and @’ R a" then a R a”), and symmetric (a R o’ iff

a Ra).
Take any three formulas Fy, F} and F;. Given any truth
assignment to z,...,Zx:
o [y yields the same truth value as itself, so “equivalent” is
reflexive. ‘

e If Fy yields the same truth value as F}, then F) yields the
same truth value as Fp, so “equivalent” is symmetric.

e If Fy yields the same truth value as F, and F; yields the
same truth value as Fy, then clearly Fy yields the same truth
value as Fy, so “equivalent” is transitive.

Thus, “equivalent” is an equivalence relation on formulas.

6.044J/18.423J Handout 4: Diagnostic Quiz Solutions 3

(d) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z;,...,z,.

(e) How many?

Formulas are equivalent iff their truth tables agree, so there
are as many equivalence classes as there are truth tables. Given
n variables, there are 22" possible truth tables. To see this, think
of a truth table as having a row for each possible truth assign-
ment. A truth assignment consists of a true or false value for
each variable, so there are (size of {true, false})" = 2™ possible
truth assignments. Then, a truth table consists of an assign-
ment of true or false to each truth assignment, so with 2"
truth assignments there are 22" possible truth tables, giving us
22" equivalence classes of formulas.

Problem 5. A binary relation < is anti-symmetric if ¢ = y whenever z < y
and y < z. A partial order of a set D is a binary relation < that is reflexive,
. transitive, and anti-symmetric on D. A partial order is total if for every dy,ds €
D,eitherd; <dsordy<d;. f X CDandy<zforeveryz € X, then yisa
lower bound of X. Similarly, if z < y for every x € X, then y is an upper bound
of X. If y is a lower bound of X, and z < y for every lower bound z of X, then
y is the greatest lower bound (“glb” or “meet”) of X. If y is an upper bound
of X, and y < z for every upper bound z of X, then y is the least upper bound
(“lub”) of X.

Let A be the set {1,2,3,4,5}.

(a) Give a total order of A. That is, describe a binary relation < on A that is
a total order.

The usual numerical “less than or equal to” relation is a total
order.

(b) Give a partial order of A such that: (1) every pair of elements has a glb;
and (2) there is no lub of {4,5}.

The ordering in which 3 is less than or equal to any other
number, but all other numbers are incomparable, is such an
order. In pictures, we can draw the order as follows:

12 45

4 6.044J/18.423J Handout 4: Diagnostic Quiz Solutions

Here we are using a common graphical shorthand for partial
orders, in which an element is “less than” another element if we
can trace an upwards path from the first element to the second.
Since there is an upwards path from 3 to every other number, we
have 3 < z for all z € A. (There is an upwards path from 3 to
3, namely the upwards path of length 0). However, 1 £ 4 since
there is no upwards path from 1 to 4, and 4 £ 1 since there is
no upwards path from 4 to 1; that is, 1 and 4 are incomparable.

From the diagram, it is clear that every pair of distinct num-
bers has a unique lower bound in the ordering, namely 3. Since
there is only one lower bound possible, it is clearly the greatest
lower bound. However, 4 and 5 have no upper bound at all, let
alone a least upper bound.

(c) Give a partial order of A such that every pair of elements has both an lub
and a glb, but the order is not total.

A slight variant, in which we leave 3 as the least element but
make 2 the greatest, gives us an ordering in which every pair
of elements has both a least upper bound and a greatest lower
bound, but the ordering is still not total.

2

1 4 5

Y

Problem 6. For any set, A, let Pow(A) be the powerset of A, namely, the set
of all subsets of A. Exhibit the members of Pow(Pow(Pow(®))).

Given the empty set, §, with no members, the only subset is the
(non-proper) subset @. Thus, if Pow(®) is the set of all subsets of @,
then)

Pow(0) = {0}.
Moving along, the subsets of Pow(®) are § and {8}, so

Pow(Pow(@)) = {0, {0}}.
Then, Pow(Pow(®)) has subsets @, {0}, {{0}}, and {0, {8}}, so
Pow(Pow(Pow(8))) = {0, {0}, {{0}}, {0, {@},}}

Sep 15 12:42 1993 factorial.scm Emacs buffer Page 1

SUB-EVAL==> (define (factorial n)
(if (<= n 0)
1
(* n (factorial (- n 1)))))

(define (factorial n) (if (<= n 0) 1 (* n (factorial (- n 1))})))
factorial has been defined

value—-not-specified

SUB-EVAL==> (factorial ()

(factorial 0)

((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1))))) 0)
(letrec ((n 0)) (if (<= n 0) 1 (* n (factorial (- n 1)))))

(letrec ((n 0)) (if (<<<=>> 0 0) 1 (* n (factorial (- n 1)))))

SUB-EVAL==> (factorial 1)
(factorial 1)

((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1))))) 1)
(letrec ((n 1)) (if (<= n 0) 1 (* n (factorial (- n 1)))))
(letrec ((n 1)) (if (<<<=>> 1 0) 1 (* n (factorial (- n 1)))))
(letrec ((n 1)) (* n (factorial (- n 1))))

(letrec ((n 1)) (<<*>> 1 (factorial (- n 1))))
10 ——==m=—m

(letrec

((n 1))

(<<*>> 1 ((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1)})))) (- n 1))))
11 ——=———

(<<*>> 1 ((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1))))) (K<=>>1 1)))
13 =——mm——o

(<<*>> 1 (letrec ((n 0)) (if (<= n 0) 1 (* n (factorial (- n 1))))))
15 ——-———=- -

(<<*>> 1 (letrec ((n 0)) (if (<<<=>> 0 0) 1 (* n (factorial (- n 1))))))

Sep 15 12:42 1993 factorial.scm Emacs buffer Page 2

(<<*>> 1 1)
19 ———==—=-

SUB-EVAL==> (factorial 2)
(factorial 2)

((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1))))) 2)
(letrec ((n 2)) (if (<= n 0) 1 (* n (factorial (- n 1)))))
(letrec ((n 2)) (if (<<<=>> 2 0) 1 (* n (factorial (- n 1)))))
(letrec ((n 2)) (* n (factorial (- n 1))))

(letrec ((n 2)) (<<*>> 2 (factorial (- n 1))))
10 —=—em—

(letrec

((n 2))

(<<*>> 2 ((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1)})))) (- n 1})))
1] ———e—em

(<<*>> 2 ((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1})))) (<<=>> 2 1})))
13 ——————o :

(<<*>> 2 (letrec ((n 1)) (if (<= n 0) 1 (* n (factorial (- n 1))))))
15 ———————-

(<<*>> 2 (letrec ((n 1)) (if (<<<=>> 1 0) 1 (* n (factorial (- n 1))))))
17 ~=—=m——=m

(<<*>> 2 (letrec ((n 1)) (* n (factorial (- n 1)))))
20 —====em-

(<<*>> 2 (letrec ((n 1)) (<<*>> 1 (factorial (- n 1)))))
22 —————===

(<<*>>
2
(letrec

((n 1))
(<<*>> 1 ((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1))))) (- n 1))y

(<<*>>
2
(<<*>>
1

Sep 15 12:42 1993 factorial.scm Emacs buffer Page 3
((lambda (n) (if (<= n 0) 1 (* n (factorial (- n 1))))) (<<=>> 1 1))))

(<<*>> 2 (<<*>> 1 (letrec ((n 0)) (if (<= n 0) 1 (* n (factorial (- n 1)))))))
27 ——=m-m——

(<<*>>
2

(<<*>> 1 (letrec ((n 0)) (if (<<<=>> 0 0) 1 (* n (factorial (- n 1)))))))
29 ————w—e-

(<*>> 2 (<<*>> 1 1))
31 ——————-

Sep 15 12:42 1993 test-14 Emacs buffer Page 1

SUB-EVAL==> (define (zero f) (lambda (x) x))

(define (zero f) (lambda (x) x))

o —— —— ———

zer0 has been defined

value-not-specified
SUB-EVAL==> (define (one f) (lambda (x) (f x)))

(define (one £) (lambda (x) (£ x)))

one has been defined

value-not-specified
SUB-EVAL==> (define (suc n) (lambda (f) (lambda (x) (£ ((n £) x)))))

(define (suc n) (lambda (f) (lambda (x) (£ ((n £) x)))))

-t — —

suc has been defined

value-not-specified
SUB-EVAL==> (define (to-num n) ((n 1+) 0))

{(define (to-num n) ((n 1+) 0))

to-num has been defined
value-not-specified

SUB~EVAL==> (define (x*x n) {(n n))
(define (x*x n) (n n))

Xx*x has been defined

value-not-specified
SUB-EVAL==>

(x*x one)

(x*x one)

({(lambda (n) (n n)) one)

((lambda (n) (n n)) (lambda (f) (lambda (x) (f x))))

(letrec ((n (lambda (f) (lambda (x) (£ x))))) (n n))

(letrec
{((n {(lambda (f) (lambda (x) (£ x)))}))
((lambda (£f) (lambda (x) (f x))) n))

((lambda (f) (lambda (x) (f x))) (lambda (f) (lambda (x) (f x))))

Sep 15 12:42 1993 test-14 Emacs buffer Page 2

(letrec ((f (lambda (f) (lambda (x) (f x)})})) (lambda (x) (f x)))
SUB-EVAL==> (sucC zero)
(suc zero)

((lambda (n) (lambda (f) (lambda (x) (£ ((n f£) x))))) zero)

((lambda (n) (lambda (f) (lambda (x) (£ ((n £) x)))))
(lambda (f) (lambda (x) x)))

(letrec
((n (lambda (f) (lambda (x) x))))
(lambda (f) (lambda (x) (f ((n £) x)))))
SUB-EVAL==> (((suc one) 1+) 3)
(((suc one) 1+) 3)

((((lambda (n) (lambda (f) (lambda (x) (£ ((n £) x))))) one) 1+) 3)

((((lambda (n) (lambda (f) (lambda (x) (£ ((n £} x)}}))
" (lambda (f) (lambda (x) (f x))))

1+)

3)

(((letrec
((n (lambda (f) (lambda (x) (f x)))))
(lambda (f) (lambda (x) (£ ((n £) x)))))
1+)
3)

((letrec

((n (lambda (f) (lambda (x) (f x)))))

((lambda (£f) (lambda (x) (£ ((n f) x)))) <<1+>>))
3)

6 ———mmm———
((letrec
((n (lambda (f) (lambda (x) (f x)))))
(letrec ((f <<1+>>)) (lambda (x) (£ ((n £) x)))))
3)
y S ——
(letrec

((n (lambda (f) (lambda (x) (f x)))))
((letrec ((f <<1+>>)) (lambda (x) (£ ((n £f) x)))) 3))

(letrec
((n (lambda (f) (lambda (x) (£ x)))}))
(letrec ((f <<1+>>)) ((lambda (x) (£ ((n £f) x))) 3)))

Sep 15 12:42 1993 test-14 Emacs buffer Page 3

(letrec

((n (lambda (f) (lambda (x) (f x)))))

(letrec ((f <<1+>>)) (letrec ((x 3)) (£ ((n £) x)))))
10 —==————-

(letrec
((n (lambda (f) (lambda (x) (f x)))))
(letrec ((f <<1+>>)) {(letrec ((x 3))
11 —~———=—-

(<<1+>> ((n £) x)))))

(letrec
((f <<1+>>))

(letrec ((x 3)) (<<1+>> (((lambda (f) (lambda (x) (£ x))) £) x))))
12 ==—mmmee

(letrec ((x 3)) (<<1+>> (((lambda (f) (lambda (x) (f x))) <<1+>>) x)))
13 —-==——=w-

(letrec ((x 3)) (<<1+>> ({letrec ((f <<1+>>)) (lambda (x) (f x))) x)))
(<<1+>> ((letrec ((f <<1+>>)) (lambda (x) (f x))) 3))
15 =mmmmmmm ,

(<<14+>> (letrec ((f <<1+>>)) ((lambda (x) (f x)) 3)))
16 ==m—=mm-

(<<1+>> (letrec ((f <<1+>>)) (letrec ((x 3)) (f x))))
17 =~——m—e

(<<1+>> (letrec ((x 3)) (<<1+>> x)))
18 —=—==mmm

(<<1+>> (<<1+>> 3))
19 ——=-———-

Sep 15 12:44 1993 urop.babyl Emacs buffer Page 1

SUB-EVAL==> (define (update new-passkey passkey-checker)
(define (updated-checker passkey)
(if (= passkey new-passkey) #t (passkey-checker passkey)))
updated-checker)

(define
(update new-passkey passkey-checker)
(define
(updated-checker passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))

updated-checker)

update has been defined

value-not-specified
SUB-EVAL==> (define keychecker (update 3 (update 2 (update 1 (lambda (key) #£)))))
(define keychecker (update 3 (update 2 (update 1 (lambda (key) ())))))

(define
keychecker
((lambda
(new-passkey passkey-checker)
(letrec .
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
3
(update 2 (update 1 (lambda (key) ())))))

(define
keychecker
{ (lambda
(new-passkey passkey-checker)
(letrec
{ (updated-checker
(lambda
(passkey)
(1f (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
3
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(1f (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
2
(update 1 (lambda (key) ()})))))

Sep 15 12:44 1993 urop.babyl Emacs buffer Page 2

(define
keychecker —
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey} #T (passkey-checker passkey)))))
updated-checker))
3
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(1f (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
2)
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
1 —
(lambda (key) ())))}))

(define
keychecker
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))

3
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
2
(letrec
((new-passkey 1) (passkey-checker (lambda (key) ())))
{letrec

((updated-checker

Sep 15 12:44 1993 wurop.babyl Emacs buffer Page 3

(lambda

(passkey)

(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker)))))

(define
keychecker
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
3
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
2
(letrec
((new-passkey 1) (passkey-checker (lambda (key) ())))
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))}))

(define
keychecker
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
3
(letrec
((new-passkey 2)
(passkey-checker
(letrec
((new-passkey 1) (passkey-checker (lambda (key) ())))
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey))))))
(letrec
((updated-checker
(lambda
(passkey)

Sep 15 12:44 1993 wurop.babyl Emacs buffer Page 4

(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))))

(define
keychecker
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
3
(letrec
((new-passkey 2)
(new-passkey#1l 1)
(passkey-checker#l (lambda (key) (}))
(passkey-checker
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))))

(define
keychecker
((lambda
(new-passkey passkey-checker)
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker))
3
(letrec
{ (new-passkey 2)
(new-passkey#1l 1)
(passkey~checker#l (lambda (key) ()))
(passkey~-checker
(lambda
(passkey)
(1f (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey))))))

(define

Sep 15 12:44 1993 wurop.babyl Emacs buffer Page 5

keychecker
{(letrec
((new-passkey 3)
(passkey-checker
(letrec
((new-passkey 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()}))
(passkey-checker
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey))))))
(letrec
((updated-checker
{(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker)))

—— — ——— -

(define
keychecker
{(letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()}))
(passkey-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
(passkey)
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
(letrec
((updated-checker
(lambda
(passkey)
(if (= passkey new-passkey) #T (passkey-checker passkey)))))
updated-checker)))

(define
keychecker
(letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey—-checker#2
(lambda
(passkey)

Sep 15 12:44 1993 urop.babyl Emacs buffer Page 6

(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker

(lambda

(passkey)

(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))}))
(lambda
(passkey)

(if (= passkey new-passkey) #T (passkey-checker passkey)))))

keychecker has been defined

value-not-specified
SUB-EVAL==> (keychecker 3)
(keychecker 3)

((letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
(passkey)
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))

(lambda (passkey) (if (= passkey new-passkey) #T (passkey-checker passkey})))
3)

(letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l1 (lambda (key) ()))
(passkey-checker#2
(lambda
{passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
(passkey) ,
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
((lambda (passkey) (if (= passkey new-passkey) #T (passkey-checker passkey)))
3))

(letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2

Sep 15 12:44 1983 urop.babyl Emacs buffer Page 7

(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
(passkey) .
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey))}))
(letrec ’
((passkey 3))

(if (= passkey new-passkey) #T (passkey-checker passkey))))

(letrec
((new—-passkey 3)
{(new-passkey#2 2)
(new-passkey#1 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
(passkey)
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
(letrec
((passkey 3))

(if (<<=>> 3 new~passkey) #T (passkey-checker passkey))))

(letrec
((new-passkey#2 2)
(new-passkey#l 1)
(passkey—-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)}))
(passkey-checker
(lambda

(passkey)

(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
(letrec ((passkey 3)) (if (<<=>> 3 3) #T (passkey-checker passkey))))

#T

SUB-EVAL==> (keychecker 0)
(keychecker 0)

((letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2

Sep 15 12:44 1993 wurop.babyl Emacs buffer Page 8

(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey~-checker
(lambda
(passkey)
(if (= passkey new-passkey#2) #T (passkey~-checker#2 passkey)))))
(lambda (passkey) (if (= passkey new-passkey) #T (passkey-checker passkey))))

(letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#1l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
" (passkey)
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
((lambda (passkey) (if (= passkey new-passkey) #T (passkey-checker passkey)))
0))

(letrec
((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey~-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
(passkey)
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
(letrec

((passkey 0))

(if (= passkey new-passkey) #T (passkey-checker passkey))))
§ ——m————
(letrec

((new-passkey 3)
(new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker

Sep 15 12:44 1993 wurop.babyl Emacs buffer Page 9

(lambda
(passkey)
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
(letrec
((passkey 0))
(if (<<=>> 0 new~passkey) #T (passkey-checker passkey))))

(letrec
((new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l1 (lambda (key) ()}))
(passkey-checker#2
(lambda
(passkey)
(1f (= passkey new-passkey#1l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
{(passkey)
(1f (= passkey new-passkey#2) #T (passkey-checker#2 passkey)})))
(letrec ((passkey 0)) (if (<<=>> 0 3) #T (passkey-checker passkey))))

(letrec
((new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)
(1f (= passkey new-passkey#l) #T (passkey-checker#l passkey))))
(passkey-checker
(lambda
(passkey)
(1f (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))))
(letrec ((passkey 0)) (passkey-checker passkey)))
10 ~=—=———-

(letrec
((new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) (}))
(passkey-checker#2
(lambda
(passkey)
(1f (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))
(letrec
{ (passkey 0))
((lambda
(passkey)
(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))
passkey)))

(letrec
((new-passkey#2 2)

Sep 15 12:44 1993 urop.babyl Emacs buffer Page 10

(new-passkey#1l 1)
(passkey-checker#l (lambda (key) (}))
(passkey-checker#2
(lambda
(passkey)

(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))
((lambda

(passkey)

(1f (= passkey new-passkey#2) #T (passkey-checker#2 passkey)))
0))

12 —mmemmee

(letrec
((new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey~checker#2
(lambda
(passkey)

(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))}))
(letrec

((passkey Q}))

(if (= passkey new-passkey#2) #T (passkey-checker#2 passkey))))
13 —=m—m -

(letrec
((new-passkey#2 2)
(new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)

(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))
(letrec

((passkey 0))

(if (<<=>> 0 new-passkey#2) #T (passkey-checker#2 passkey))))
15 —=—==———-

(letrec
((new-passkey#l 1)
(passkey-checker#l (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)

(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))

(letrec ((passkey 0)) (if (<<=>> 0 2) #T (passkey-checker#2 passkey))))
16 ~=m—=—m-

(letrec
((new-passkey#1l 1)
(passkey-checker#1 (lambda (key) ()))
(passkey-checker#2
(lambda
(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))))
(letrec ((passkey 0)) (passkey-checker#2 passkey)))

Sep 15 12:44 1993 urop.babyl Emacs buffer Page 1l

(letrec

((new-passkey#l 1) (passkey-checker#l (lambda (key) ())))
(letrec

((passkey 0))
((lambda
(passkey)

(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))
passkey)))

(letrec

((new-passkey#l 1) (passkey-checker#l (lambda (key) ())))
((lambda

(passkey)
(if (= passkey new-passkey#l) #T (passkey-checker#l passkey)))
on
21 ——=m~=——-

(letrec

((new-passkey#l 1) (passkey-checker#l (lambda (key) ())))
(letrec

((passkey 0))
22 —m—————e

(letrec

,,,,, ({new-passkey#l 1) (passkey-checker#l (lambda (key) ())))
(letrec

((passkey 0))

(if (<<=>> 0 new-passkey#l) #T (passkey-checker#l passkey))))
24 ~—————-

(letrec
({ (passkey-checker#l (lambda (key) ())))

(letrec ((passkey 0)) (if (<<=>> 0 1) #T (passkey-checker#l passkey))))
25 ———=———-

(letrec
((passkey-checker#l (lambda (key) ())))

(letrec ((passkey 0)) (passkey-checker#l passkey)))
28 ——=————-

(letrec ((passkey 0)) ((lambda (key) ()) passkey))
29 ——mm———-

((lambda (key) ()) 0)
30 ——m—mmm-

()

SUB-EVAL==> quit
value-not-specified
Exiting from SUB-~EVAL...done
;Value: done

6.044J/18.423J: Computability, Programming, and Logic Handout 3
Massachusetts Institute of Technology Revised 22 September 1993

Substitution Model Examples
We begin with the usual recursive definition of factorial:

SUB-EVAL==>

(define

rec-factorial

(lambda (n) (if (<= n 0) 1 (* n (rec-factorial (- n 1))))))

rec-factorial has been defined
Now we let it run:

SUB-EVAL==
(rec-factorial 5)
==[1]==>

((lambda (n) (if (<= n 0) 1 (* n (rec-factorial (- n 1))))) 5)
==[2]==>

(letrec ((n 5)) (if (<= n 0) 1 (* n (rec-factorial (- n 1)))))
== [3] ==>

(letrec ((n 5)) (if (<<<=>> 5 0) 1 (* n (rec~factorial (- n 1)))))
== [5] ==>

QQetrec ((n 5)) (* n (rec-factorial (-~ n 1))))
=={7]==>

(letrec ((n 5)) (<<*x>> 5 (rec-factorial (- n 1))))
==[9]==>

(letrec

((n 5))

(<<*x>>

5

((lambda (n) (if (<= n 0) 1 (* n (rec-factorial (- n 1))))) (- n 1))))
==[10]==>

(<<x>>

5

((lambda (n) (if (<= 1n 0) 1 (* n (rec-factorial (- n 1))))) (<<->> 5 1)))
== [12] ==>

(<<*>> 5 (letrec ((n 4)) (if (<= n 0) 1 (* n (rec-factorial (- n 1))))))
== [14] ==>)

(<<*>> 5 (Qletrec ((n 4)) (if (<<<=>> 4 0) 1 (* n (rec-factorial (- n 1))))))

(((((T @ -) TeTrI03deJ-d01) U %) T (0 U =>) F¥) (W) ©PqueT))
[4
<<H>>)
€
<<Hd>)
4
<<H>>)
]
<<*>>)

Cum[CF] ==
CCCCCCCT T =) ((C(((T u -) TeTI03deJ-281) W &) T (0 U =>) JT) (U) epqueT))
[4
<<H>D)
(€)
UOH&OHV
€
<<xdD)
4
<<HOD)
]
<<*>>)

Cm=[Th] ==
(CCCC(T u =) TBTI0IORI-D81) T <<#>>) ((T W)) 29I38T) € <<#>>) b <<4>>)
S

<<H>>)

<mm O] ==
CCCCC((T U =) TeTI0IORF-281) U %) ((T U)) 28IIBT) € <<#>>) b <<#>>) g <<*>>)

C=m[8E] ==
(CCCCCC(T @ =) TRTI030BF-D8I) U %) T (0 T <<=>>>) IT) ((T U)) >81387)
€
<<®dD)
v
<<E>>)
S
<)

¢m=[9€) ==
CCCCCCC(T U =) TeTI03oRI-28I) U) T (0 U =>) FTI) ((T W) 2981318T) £ <<%>>)
14
<<a>>)
S
<<H>>)

Cmm[pE] m=
(T € <<->>) (((((F U -) TeT1030eJ-281) U #) [(0 U =>) JT) (W) epquel))
€
<<H>D)
4
<<H>>)

sajdurexs] [9Pojy UONNINSqNG :¢ NOPURY [EZP 81/ [FF09

S
<<H>>)

C==[ZE] ==
CCCECCT @ =) (((((v u -) TeTI0IDeJ-D81) U %) T (0 U =>) FT) (W) ©pque]))
€
<<Hd>>)
((e o))
Je1391)
4
<C>>)
]
<<xdd)

mm[1C] ==
CCCCC(T u) TRTI0IIRF-I8I) £ <<*>>) ((£ U)) 20I39T) ¥ <<#>>) § <<*>>)

<mm[6T] ==
(CC(((T U -) TeTI030RI-D81) U #) ((€ W)) 29I1BT) P <<#>>) G <<*>>)

Kmm[[T] ==

(CCCC((T T =) TeTI030%J-001) U %) T (0 € <<=>>>) JT) ((€ W)) 28118T) § <<*>>)
9

<<H>>)

<==[gT] ==
(CCC(C(T u ~) TRTI030RF-20I) W %) [(0 U =>) JT) ((€ W)) 2°I18T) b <<*>>)
9

<<*>d)

Cmm[ET] ==
(C((T ¥ <<=>>) (((((T u -) TRTI0IDRF-J8I) U) T (0 U =>) IT) (U) EpqueT))
14

<)

S

<<H>>)

C==[1T] ==
(T T =) (((((T u -) TeTI0IdeF-J0I) U %) T (0 © =>) JT) (W) epquer))
4
<<Hd>>)
((y o))
281307)
S
<<Hd>>)

<=m[07] ==
(((((T T =) Tet1035eJ-381) § <<*>>) ((¥ U)) 298I39T) § <<*>>)

K== [81]mm=
(((((T u =) TeT1030ef-301) U %) ((¥ U)) 20IIBT) § <<*>>)

Cmm[9T] mm

sojdurexq [9pojy UONNIIEANG :¢ INOPURH [EZH 81/ PPO9 z

591391)

()

®pque)
Tet1o3ovl-191T
|ut yop)
<==TVAF-4NS

‘UOISIA JAYRIAY [ensn ag) A13 am ‘IXaN

(44

Cmm[Z9] ==
(CCUT T <<#>>) T <<#>d>) £ <<#>>) b <<#3>) § <<#>>)

<==[09] ==
CCCCCCC((T T -) TeTI01DRJ-081) U #) T (0 O <<=>>>) FT) ((0 W)) uonpoam :
T
<<*>>)
4
<<¥>>)
€
<<x>>)
¥
<<®>>)
S
<<>>)

. <m=[g -
CCCCCCCQ((T T =) TRTI030RF-D8X) U #) T (0 U =>) IT) ((0 u)) uoupoﬁw o
T
<<*>>)
4
<<*>>)
€
<<®>>)
4
<<®>>)
S
<<H>>)

<==[9G]==
LT 1 <<->3)
(((((T T -) TRTI03ORI-33I) U %) | (0 U =>) JT) (W) epque))
T
<<*>>)
4
<<x>>)
€
<<*e>>)
14
<<*>>)

so[dUTeXg [9POJY MONMISqNS ig INOPURH [EZH G/ [PPO9

S
<<E>d>)

<m=[bG] ==
@ = =)
(((((1 T -) TeTI010eF-20I) U %) T (0 U =>) JT) (U) epquel))
T
AA:VVV
«(tr o))
UOHHOHV
z
<<%>>)
[
<<x>>)
4
<<*>>)
9
<<E>>)

Cmm[£q]==
(CCCCC((T w =) TeTI039®I-38X) T <<#>>) ((T W)) J9I1BT) Z <<#>>) £ <<#>>)
¥
<<x>>)
9
<<*>>)

Cmm[1q] ==

(CCCCCC(F T -) TeTI030%F-00X) U &) ((T W)) IBIIBT) T <<*>>) € <<a>>) ¥ <<a>>)
S

<<H>>)

<mm[Gh] ==
CCCCCCC((T @ =) TRTI01DRZ-28X) U #) T (0 T <<=>>>) FTI) ((F u)) uoupon !
: 4
<<*>>)
€
<<*>>)
¥
<<x>>)
S
<<®>>)

Cmm[[p] ==
C(CCCCCC((T @ =) TeTI03001-28X) W #) T (0 U =>) JT) ((T W)) J0I18T) Z <<#>>)
€
<<*>>)
| 4
<«<®d>>)
S
<<*>>)

Km=[Gh] ==
(T T <<=>>)

so[dmexg [9POJY Wolninsqng ¢ IMOpuel [LZFBI/[FFO9 4

: <==[ET] ==

((((3TNS3I U %) (] U -) I8aT) ((§ 3TNSLI) (¥ W)) 2°I38T)

((((((aTNs2T W %) (T U -) I23T) 2[NsS8I (0 U =>) FT) (ITnsel u) epquel) I831))
: 361307)

<==[1Z]==
(((((3TNSeI U %) (I U -) I83T) 3TNS_I (0 ¥ <cm>>>) FT)

((§ 3TnseI) (¥ W)

201397)

((((((aTnsax u %) (T U -) X9IT) 3I[N8aI (0 U =>) JT) (2TNSeI U) TpPqUeT) 1811))
291391)

==[g]] ==
(((((aTnsex u x) (1 U -) x01T) 1TNSSI (0 W =>) IT) ((g 3TRS8I) (¥ U)) 20118T)
((((((aTNsex u %) (f u -) ILIT) ITNSaI (0 U =>) JT) (3(nsex u) epquel) I831T))
J91381)

C==[L]]==
(((T § <<*>>)
v
((((3TNSeI U %) (I U -) Ie1T) 1TNSeI (0 U =>) JFT) (31nseI u) epquel))
(C((((3TNSeX U %) (T @ -) I91T) 3TNSSI (0 U =>) JFT) (3[NSI W) epquWel) 1931))
201387)

Allﬁ@ﬁull
((((3TNBRI § <<*>>)
14
AAAAPHﬂwOH o {v Aﬁ a Iv HOHMV jnsex AO u IVv Hﬂv APHﬁmUH ﬁv dﬂnﬁdev
((1 a1nsal1))
>91381)
((((((3TNSeI U %) (] U -) IeIT) 3nser (o =>) JT) (3TNSeI u) epquel) I931T))
2391307)

C==[g]]==
((((3atnsex u x)
(1 § <<=>>)
((((3TNS8I U #) (1 U -) Ie3T) 1TNSLI (0 U =>) JFT) (3TnseI u) epquel))
((1 3tnser) (5 Uw))
UONDUHV
((((((3TNS®I U %) (T W -) IeiT) 1TNSeI (0 U =>) JT) (ITNsel U) epquel) 1e1t))
J91207)

Cm=[]]] ==
((((3TnE8I T)
(1 u-)
((((3Tnsex u x) (1 u -) IeT) 3nsel (0 U =>) JT) (3Tnsex u) epque]))
((1 3TnsaI) (g °))
281307)
((((((aTnS8I U %) (I U -) I931T) ITNSSI (0 u =>) IT) (3TNS8I U) epqueT) I91T1))
201387)

(== Q1] ==
((((3TnS8X W %) (T U -) I93T) ((T 3TNSLI) (§ U)) 2913eT)

sopdurexs [opOyy UORNIISQNG G INOPURH [EZH 8T/ [PF09

- -

S

((((((aTnSex u %) (I u -) I93T) 21TNsal (o U =>) JT) (3TnSa1 u) epquel) I81Y))
701301)

Allmmull
(((((3Tnsex W %) (I U -) I93T) 3Tnsaa (0 § <<=>>>) JT)
((1 2TngaI) (9 1))
20130T)
((((((aTnsex U %) (T U -) 101T) 3TNSex (0 U =>) JI) (3[nsex u) epquey) 1031T))
2813017)

K==[9] ==
(((((2TNSBI U #) (I U -) I83T) 2TNSeT (0 ¥ =>) FT) ((T INS6I) (g W)) I81I8T)
((C(((aTnseI U %) (T U -) I91T) 3TNSOX (O U =>) JT) (3Tnsex u) epquey) I93T))
oe1301)

<==[G] m=
((1 S ((((atnsex 4 %) (1 @ -) 191T) 3TNELI (0 U =>) JT) (3[nsex u) epquetr))
((((((aTNSex u %) (T U -) I83T) 2[NSAI (0 U =>) J1) (3Insex u) epquel) I031T))
J81381)

<m=[p] =
(((T U ((((3TnSeX U %) (I U -) I83T) 3NSEI (0 U =>) FI) (IINs6I u) epquer))
((((((3ITNS8T U) (1 U -) I03T) I[NELX (0 U =>) FI) (I[nSal W) epquel) 103T))
J91387)
(s 1))

59110T)

Cmm[g) ==
(((1 u 203T)
(CC(((3TNSOX W %) (] & -) I93T) 3TSeX (O U =>) JT) (3TNSeI U) EPQuRT) I631))
J91201)
((s)
Jex3eT)

cmm[Z] ==
(s

(((1 u 1037)

(C((((3TN8BI W &) (} U -) I83T) 3NSLI (0 U =>) JT) (I(NSLT U) TPQURT)

1031))

281187)

(w
epquet))

Allmﬁull
(g TeTI010¥J-103T)
<==TYAT-AAS

poutzep ueeq SBY [RTI03IVF-103T

((((v u 1037)
((((((aTnsex u %) (1 @ -) 1837) 2INS8I (0 U =>) JT) (3Tnsex u) epquey)
1031))

sopdurexgy [spoy wonniIsqng g nopuvy regp81/revr0°9 9

281181)

AAAAAAuw:mwN U %) (T U -) I02T) 1INSSI (0 U =>) JT) (3Tnsex u) epquey) 1931))
29I307)

Kmm[Gh]) ==

((((3Tnsex u &) (T u -) 193T) ((09 1INs8I) (Z U)) 2813eT)

(CC(((3TnseX @ &) (T W -) 203T) 2TNS8I (0 U =>) FT) (I[NSLI U) EpqueT) I93T))
291307)

<mm[ly]a=

(((((3IN831 U &) (7 W -) I93T) ITNSSX (0 Z <<=>>>) FI)

((09 3nser) (T u))

J91391)

((((((3Tns81 U *) (T W -) I83T) NS (0 U =») JT) (3Tnssx u) mpquel) I93tr))
281397)

(== [Gh] mm
(((((3INs8X W %) (T W -) I83T) ITNSEI (0 U =>) 1) ((09 21Tnss8I) (Z U)) d0x3eT)
((((((3Tnsex U) (T W -) I83T) ITNSBI (0 U =>) 1) (3Tnsex u) wepqueyl) 103T1))
29I397)

Cmm[E] ==
(((0Z € <<*>>)
[4
((((3TN881 U) (1 W -) 1937) 3[N8e1 (0 U =>) FI) (1TNSOI U) epquer))
((((((3TNsax u #) (T ° -) 183T) 3TnE8I (0 U =>) JT) (3TNSeI u) epquel) Iear))
291307)

Cmm([ZH] ==
((((aTN88X £ <<*>>)
[4
((((3TNsex W #) (T U -) I83T) 3ITNSRI (0 U =>) FI) (I[NS8I u) epqueT))
((0Z 11nse1))
J98130T)
((((((1TMs0I U +) (T U -) 193T) 3ITNSLI (Q U =) 31) (3[nsex u) epquey) 1031))
J01381)

Cmm[GE] ==
((((3TnSe1 U)
(T € <<->>)
((((3Tnsex u) (T W -) I93T) 3TN (O U =>) 1) (3Tnsex u) wepquey))
((0Z 3Tnse1) (g W)
o9I39T)
((((((3Tnsex u ») (T u -) 193T) 3[NSer (0 U =>) JT) (3TNSex a) epquey) Ieit))
J291307)

Cmm [L] mm
((((1Tnsex U 4)
(T u-)
((((3TNS3x W #) (T U -) I83T) 3TNSBI (O U =>) 1) (3Tnsex u) epquey))
((0z 3Tnsex) (g uw))
281397)
((((((3Tns9x U #) (T U -) 102T) 3TNS8I (0 U =>) IT) (3Tnsex u) epquey) 10131))

sajdurexy [9pop woyninsqng :g ynopegy rezr81/rer09

J81187)

C==[9C] ==

((((3TN83X U %) (1 u -) 203T) ((0Z ITNEBI) (€ U)) 2813e7)

((((((3Tnsex U #) (T W -) J03T) 3ITNSOX (0 U =>) FT) (3I[NSOI u) epquwel) 1831))
o81391)

Cmm[pg]m=
(((((3Tnsex u) (T u -) x03T) INSOX (0 € <<=>>>) IT)
((0z 3tnsex) (g m))
29I3971)
((((((3TMs8x W &) (T U -) I03T) ITNSOI (0 U =>) FT) (3Tnsex u) epquwey) Iear))
J81387)

Cum(Zg]m=
(((((3Tnsex1 u «) (T W -) I923T) 3TNSeI (O U =>) 1) ((0Z aTnsex) (g u)) 2eijer)
((((((3Tnsdx u *) (T U -) I03T) ITNSLX (0 U =>) FI) (I[NSLx u) epquel) Ieir))
JeI1387)

== [0€] ==
(((S ¥ <<>>)
€
((((3Tn88x U %) (I W -) Xo3T) 3Tnsex (0 U =>) JT) (3Tnsex u) epquer))
((((((atnsex u %) (T uw -) I93T) 3TNSaI (0 U =>) JT) (3ITnNsex u) ©pquel) 1e3t))
281397)

<=w[6Z]w=
((((3Tnsex ¥ <<*>>)
€
((((3TNB®X U %) (T U -) I93T) 3ITNSSI (O U =>) J1) (3Insex u) epquer))
((S 3Tnsex))
J9x3eT)
(C((((3TNZ_X U %) (T U -) I81T) 3TNSe1 (0 U =>) FT) (3ITNSeI u) epquwe) Ie3T))
J81307)

C=m[97] ==
((((3Tnsex u «)
(1 ¥ <<->>)
((((3Tnsex u #) (T @ -) X03T) INSeI (0 U =>) JT) (3ITNSeI u) epquet))
((S atnsex) (¥ uw))
2913971)
((((((3Tnsex u +) (T U -) I93T) 3Tn881 (O U =>) JT) (3Insex u) epquel) Ie3itl))
291397)

AllH¢Null
((((3Tnsex u 3)
(u-)
((((3TNs8I W «) (T U -) I93T) 3TNS8X (0 U =>) JT) (31nsel u) epquey))
((5 3nsex) (b m)
29I397)
((((((3Tnsex u +) (I u -) 1037) 3TNs8x (0 U =>) JT) (3INSeI u) epqueT) Ieal))
J81301)

sajdurexg [)pop wonnInsqng :g ynopuEl rezr81/rvh0°9 8

)

:peugep Sutq dlITeU Y JO UONOUNS © S UOIIYIP SAISINIAI 3Y) JO £poq 2y Furd
-pIsTon Aq MIFq Ap TOIITYOP JATSINODI ® JO Supumun pajeodaz, £q st UOISINDAI puesIOpun 0} Kem 2uQ

ozt

¢mm[gL]mm
(aTnsex ((0Z1 3TnsaI)) d0118T)

<om[£L] ==
(((((aTNSBI W %) (T U -) I93T) ITNSBL (0 O <<=>>>) IT)
((0Z1 3Tnsex) (0 u)
291107T)
((((((aTNSOX U #) (T U -) 183T) 3I[NS8I (0 U =>) JT) (ITN8SI u) epquel) I1e31))
291387)

Cmm[TL] ==
((((3TnS81 U) (T W -) I831T) 2TNSSI (0 U =>) JT)
((oz1 3tnsex) (0)
291391)
((((((aTnsex u &) (T u -) IVIT) 3I[NS8I (O U =>) JT) (3TNS8X u) wpquel) 181T))
2981391)

¢mm[69] ==
(((OTT T <<*>>)
0
((((atnsex u) (T U -) I91T) 2TNSI (0 U =>) JFT) (3ITnsezx u) epquer))
((((((aTNSeX U %) (T U -) I83T) 3TNSAI (0 U =>) JT) (31nsex @) epque() 181T))
291391)

<==[89] ==
((((ITNIBI T <<*>>)
0
((((3TNS8X U %) (T U -) I8IT) 3[NSel (0 U =>) JI) (3Tnsax u) epquet))
((oz1 31nsax))
201387)
((C(((3TNS8X U &) (T U -) I\IT) 1INSGX (0 U =>) JI) (3InssI U) wpqueT) I931))
2813871)

¢==[G9] ==
AAAAGHﬁmOH u !v
(1T 1 <<=>>)
((((3TNS9I U) (I U -) 183T) 1TNS8I (0 U =>) FI) (I[NSel U) BPQueT))
((0zTT 31nsax) (1 W)
291391)
(C((((aTNSex1 U %) (T U -) I93T) ITNSGI (0 U =>) FT) (ITNSel U) BPQWET) I931))
J2913071)

(um[€£9] ==
((((aTNSeI U %)
a1 u-)
((((3TNS®I U #) (T U -) I01T) 3[NSSI (0 U =>) FI) (3I[nsel u) epqueT))
((oz1 3TNsRI) (1 W)

141 sopdurexy [PPOJY UCHNIISGNG ¢ yROPURH [EEHBI/[FHO9

281307)

((((((3Tnsex u #) (I U -) Ie3T) 3TNSeX (0 U =>) FT) (3Tnsex uU) epquel) I03T))
281397)

K==[Z9] ==

((((3TMS8I U #) (T W -) I83T) ((OTT 3TNSLI) (T W)) d0I38T)

((((((3Tnsex u %) (1 u -) I93T) 3TNS8I (0 U =>) JT) (3[NSeI u) epqweT) I03T))
s81307T)

<==[09] ==
(((((3Tn88I U #) (T U -) 183T) ITNS2I (0 T <<=>>>) FT)
((oz1 atnsex) (1 U))
s9x381)
((((((3Tngex u ») (T U -) 1947) 3T0SeX (0 U =>) JT) (3ITnsel u) epqurer) I93T))
29138T)

¢m=[89] ==
(((((aTnsex u %) (T W -) I9IT) I[NS8I (0 W =) JU)
((0zt 3tnsex) (1 1))
291187)
((((((3T0S8X U #) (T W -) I83T) 1nseI (0 T =>) JFT) (ITNSLI W) Epque]) Id31))
29.11087T)

¢un[9G] ==
(€(09 T <<*>>)
1
((((3Tnsex u) (I U -) I9IT) ITNS8I (0 U =>) JT) (2Tnsex u) epquer))
€CC(((ITnS81 W &) (] U -) I83T) 3INSSI (0 U =>) JT) (ITMsdZ u) upquel) I83T))
J013871)

<mw [§9] ==
(31088 T <<#>>)
T
((((3TNd1 U #) (T W -) 193T) 3TNS_L (0 U =>) JT) (ITNsa u) epqueTr))
((09 31nsel))
2013971)
€(((((ITNS8I U %) (T U -) 191T) 3T0S8I (0 ¥ =>) JT) (3Tnsex u) epquel) I931T))
2913197)

== [ZG] ==
((((aTngex U #)
(1 Z <<=>>)
((((3TNSBI W) (T U -) I837) 3TNSLI (0 U =>) JT) (3TN8LL W) wpqueT))
(€09 3Tnsex) (T W)
se1181)

((((((aTnsex u x) (T u -) 193T) ITN8ex (0 W =>) 1) (3[nsaI uw) epque() I81T))
s91391)

<==[09] ==
((((3Tns®I U #)
(ru-)
((((3TnS8I W %) (T U -) I93T) 3Insax (0 U =>) JT) (3Thsex u) epqueTl))
AAOO OHﬁmOHV AN ﬂvv

sepdurexyy [ppoy uonnyIIsqng :¢ jnoptey rezr'sI/Ivh0°9 01

41

(1 @) 30e7) W) T (0 u=>) JT) (u) epquer) (35®J) epquer)))
(g 1))

J81307)

C==[01]) ==
((u
CCCCCC((T u =) 29®F) uw *) T (0 U =>) JT) (U) epquer)
(CCCCC(T @ -) T#30%7) W %) T (0 U =>) FT) (W) epquer) 10eF)
AAHOHHOR Aﬂv nvns.ﬁv ﬁﬁuudwvv
UOHDOHV
((CC((T @ =) 39%F) W %) T (0 U =>) FT) (U) epquey) (3o0F) epqueT))
(CCC((T w ~) 39%3) U ») T (0 W =>) JT) (W) epquel) (1o%F) epqueT)))
(e w))
UOHHOHV

Cum[6]=m
((u
(CCCC(((T u =) 29%F) W+) T (0 U =>) FT) (u) epquer)
(CCCQQ(T @ =) 29%7) W) T (0 U =>) JT) (U) epquer)
(((10118, (W) ®pQWeT) 39%]))
201907)
%))
2e190e7)
((CC((T W -) 39%F) W x) T (0 U =>) FT) (W) ®pquer) (20e3) epquer))
(T T =) 20®7) W %) T (0 U =>) FT) (uU) epqueT) (3de7) epquwer)))
(e W)

J8I1307)

Cum[g] ==
((u
(CCCCCCT @ =) 39%3) W) T (0 © =>) FT) (u) epawer)
(((I0x10, (U) ®pquWeT) 3de}))
281797)
(CCCC(E ® =) 32eF) W x) 1 (0 W =>) JT) (U) ®pquWeT) (IoeF) epquer))
(CCCCCT @ =) 39%F) W x) T (0 W =>) JT) (W) ®pquwe() (IO%}) epqwWeT))
(CCCC(T U =) 39%F) W) T (0 W =>) FI) (W) ©PQUeT) (39e3) epquer)))
(e m)

281307)

Amu[]]==
((u
(((((a0x19, (W) ®pqueT)
(CCCC(T T -) 29%2) W ¥) T (0 U =>) JT) (U) epqwe[) (15ez) ®vpquer))
(CCC(T @ =) 19%7) U %) T (0 W =>) JT) (W) epqueT) (35eJ) ®vpquer))
((((((1 @ =) 19%7) U ¥) T (0 U =>) JT) (W) ®epquey) (19eJ) epquei))
(CCCCCT @ =) 39%7) W) T (0 @ =>) JFT) (U) ©PQWRT) (19¢F) epqueT)))
(g u))
UU.HHWHV

C==[9] ==
((u
(((((F01xs, (um) epqueyr) jopidoe;)
((CC((1 @ =) 39%3) u %) T (0 u =>) FT) (U) epquer) (3oeF) epquwer))

sopdurexs [spopy uolMINSqNS :¢ INOPURH LEZH'8T/CFP09

C(CCC((T w =) 39%F) T x) T (0 W =>) JT) (U) epqwel) (3o%J) epquer))

(CCC((T T =) I9®F) W +) T (0 W =>) JT) (U) epquweT) (3deJ) epqmer)))
(€ v))
J81387)

Cm=[G]=n
((u
(((((x0118, (U) *©pqueT) FepideF) Fepaoej)
(CCC((T T =) 39%F) W) T (0 U =>) JT) (W) ®pquey) (39%3) epquer))
(CCCC(r @ =) 30%F) W) T (0 U =>) JT) (U) ©pqWeT) (10e}) ©epqueT)))
(e m)
%91381)

Cam(h]u=
((u
(((((x0118, (uU) ®epquer) jopide}) JFopadeg) zepaoe})
(CCCC(T @ =) 39%7) W) T (0 U =>) JT) (U) epquer) (20%F) ©pqueT)))
(g @)
J81107)

Cum[g]mm
((@ (((((x0x18, (W) ®pquWey) Fepidey) jepaoej) Jopaoey) jepaoeyl))

(€ o))
201307)

(mm([Z] ==
(e
((T (((((30118, (U) epquel) Jopade}) Jopaoe}) Fopade]) Jepadey)) (u) epquer))

Cmm{]]mm
(€ €3°%})
<==TYAT-€NS

pautzep ueeq sey gideg

(T (((((F0118, (u) epqWeT) Fop3Idoey) Jopadey) Jepioey) jepase)) (u) epquer)
gioeg

sut yop)
<==TYAT-40S

‘uonde Ut 3097 jo s[durexs uw §19[‘| 0} enbos 10 ueq) ss9] sjuomnIre
O [el0%0%))Y §30¢ YoIyM dInpaoold e SpPRIA 030%F 03 Fepacey JuA|ddy g oy fenbs o wey §89] §jAW
-N3re Uo [LI0JOR] AISINDAI SYY BJ0€ IIYM ‘0IORF 3N [T€d ‘ompasoid e sppLs Sunphue 0y zepadey Jufiddy

peurjep ueeq sey epioeg

(CCCCC(T @ =) 29%7) W) T (0 W =>) FT) (W) epqwe) (3d%}) epquer)
JepaoRy

sut zep)
<==TVAZ-GNS

WQ~QEMNQ [PPON :C.GEQ.:WQEW ‘¢ jnopuey 5”NV®~\§.V$Q@ ol

ST

(CCCC(T W =) T#30%F) W %) T (0 U =>) JT) (W) ©PAWeT) Z#IO®F)
((x0xI9, (U) ©PQUeT) T#I0%F))
2981381)

<= [HT] ==
CCCCEE & =) (((((F U =) €439%F) U %) T (0 U =>) JT) (W) BPQWED)) € <<4>>)
(g)
291397)
CCCCC((T U =) Z#39%F) W %) T (0 U =>) IT) (U) ©pqueT) £#19%F)
CCCCC(T U =) T#39%F) U %) T (O U =>) JT) (U) ©pquel) Z#Ido®])
((x0110, (W) ©pquUET) T#31°%]))

201107)

Kmm[ET] ==
(C(((T T =) 39RBF) € <<*>>) ((€ W)) 29813197)
(CCCC((1 T =) €#39%F) W %) T (0 U =>) FT) (W) ®pQuWeE]) 12%])
((C(((T U =) Z#319F) U %) T (0 U =>) FT) (U) ©PqueT) £#12%])
(CCC((r U =) T#398F) U) T (0 U =>) FI) (W) ©PqWeT) Z#3Id%F)
((X0119, (W) EpqUeT) T#1I°¥F))

s91307)

<wm[1T] ==
((C((1 u =) 39eF) u %) ((€ W) 2°I138T)
(CCCC((T T =) €#398F) U %) T (0 U =>) JFT) (W) ©pqwel) 1o2J)
((C(((Tv w =) Z#3doeF) U x) T (0 U =>) JT) (u) epquey) £#1de})
((CC((T T =) T#32%3) W %) T (0 U =>) 1) (W) epqueT) Z#10%F)
((a0110, (U) TpqWeT) T#12%]))

99.1397)

K==[G]] ==
(T @ =) 39F) U %) T (0 £ <<=>>>) FT) ((€ W)) 281187)
(CCCCC(T @ =) E#39%F) U %) T (0 U =>) JT) (W) EPqWRY) 32eF)
(CC(((T u =) T#IoRF) @ %) T (0 U =>) JT) (W) ©pquWeT) €#I°%F)
CCCCC(T T =) T#398) W %) T (0 U =>) JFT) (W) ©PQWeT) Z#IDTF)
AAHOHHO. Aﬂv dvnﬂﬂﬁv ﬂOPUdev

UOHPOHV

<s=[L]]==
CCCCC(T w =) 22%3) W %) T (0 W =>) FT) ((€ W) 20I38T)
CCCCCC(T w =) E439%F) T %) T (0 U =>) FT) (W) ©pqueT) 32%j)
(CCCCT U =) Z#3I9RF) U %) T (0 U =>) FT) (W) ©°pqueT) E#I2%F)
(CCCC(T @ =) T#39%F) U %) T (0 U =>) FI) (W) ©PQWeT) Z#I0%J)
AAHOHHO. Aﬂv GUAEHHV A‘PUNHVV

5813087)

<=x[97]==
((E ((C((F u =) 39%F) W %) T (0 U =>) JT) () EPAWET))
(CCCCC(T @ =) E#30RE) T %) T (0 W =>) JT) (W) epquel) 12¢F)
CCCCCCT T =) Z#39%F) T %) T (0 U =>) FI) (W) ©pquel) £43°%F)
(CCCC(T U =) T#3983) U %) T (0 U =>) JT) (W) ©PqUET) Z#I2E])
((x0119, (u) epqueTr) T#310%]))

Uwhpva

sajdurexsy [9po UOHNINSqNS :¢ INOPURH LEZH S/ LFFO"9

K=u=[g]]} ==

(€
(CCC((T @ -) 39%3) @ %) T (0 U =>) FT) (W) ©PQUeT)
(CCCC((T T =) €#398F) U %) T (0 U =>) 3FT) (W) ©°pqueT) 3°%F)
(T @ =) Z#I0BF) U %) T (0 © =>) IT) (u) epqueY) £#I°%})
CCCC((T U =) T#39%F) U %) T (0O U =>) FT) (U) ©PQWET) Z#I°%F)
AAHOHHO. Aﬂv nvnﬁdﬁv AOHUUHVV

UOHHOHVV

<mm[p]]==
((a
((CC((T & =) 39%F) U %) .T (0 U =>) JT) (W) BPQUET)
CCCCC((T T =) €4390F) W %) T (0 U =>) JT) (W) ©PpqueT) 35%F)
(CCC((T U =) Z#I2eF) T x) T (0 U =>) JFT) (U) ePqUET) E£#439%F)
(CCCCCT W =) T#30%]) U %) T (0 U =>) JT) (W) epquey) Z#1Io°F)
((z0110, (W) epqme]) T#Id°]))
291381))
((e 1)
291387)

Cmm[ET]mm
((u
(CCCCCT @ =) 39%F) W #) T (0 U =>) JT) (W) ®PAWRT)
CCCCCCC(T @ =) 29B3) T) T (0 T =>) FT) (W) ®PAWRT)
(CCCC((T w =) ZT#I9F) T #) T (0 U =>) JT) (W) ©PAWET) I%J)
CCCC((T u =) T#32e3) U) T (0 U =>) JT) (U) BPQURT) Z#IdF)
((I01x9, (W) ©PqQUET) T#3I2%]F))
201387)
39%]))
581391))
(e M)
J91307)

‘gum[T]] ==
((u
CCCCCCCT T =) 39%F) T %) T (0 U =>) JT) (T) ®PQWRT)
(CCCC(T T =) Z#IDRE) U %) T (0 U =>) FI) (U) ®pquel) 3o%F)
(CCC((T T -) T#3903) W %) T (0 U =>) FT) (U) ©PQUET) ZT#3IZ®})
((10110, (U) ®pQuWeT) T#I0EJ))
291387)
(CCC((T T =) 29%F) W %) T (0 U =>) JT) (W) BPAWeT) (IVeF) TPAWRT)))
(g 1))
s81397)

Kss[[]]==
((u

(CCCCCT @ =) 39RZ) W) T (0 U =>) FT) (U) ©PqURT)

CCCCCC((T m =) 39%F) W) T (0 U =>) FI) (W) ®pqueT)
CCCCCCCT U =) T#190F) U) T (0 U =>) FI) (W) ®pawe() 32eJ)

((I0o1xe, (W) epque) [#I0%]))
2813087)

1)

o81387)

sajdurexsy [3pojy UoIINIsqNG ¢ JNOPUCH LEZH 8I/IPPO9 1

LT

J01381)

. <mm[09) ==
CCCCCCC((r o -) T#30%F) u #) 1T.(0 @ =>) JT) ((0 W)) 28I18T) [<<#>>) T <<#>>)
€
<<#>>)
(((F0119, (W) ®pquer) T#1deF))
UOHBOHV

<==[gh]) ==
(CCCEET T <<=>>) (((((T U =) T#39%F) U %) T (0 U =>) FT) (W) epqmer))
1
<<*>>)
4
<<xd>)
€
2<e>>)
(((10119, (U) ®pquer) T#Idel))
291387)

C==[9}]) ==
CCCCCCET @ =) ((((CT @ =) T#39%7) U #) T (0 ® =>) FT) (W) BPQWET)) T <<#>>)
v w)
J01387)
4
<<xd>Y)
€
<<x>>)
(((10119, (W) ®pquel) [#i1dey))
J201397)

== [GY)=m
CCCCCCT @ -) Z#aoey) T <<wdd>) ((1 W) 98118T) Z <<*>>) € <<*>>)
(CCCCC(T @ =) T#30%7) W %) T (0 W =>) FT) (u) epquer) Z#aoey)
((10119, (U) epqmel) Tgadey))
281387)

Cmm[E}] ==
(CCCCC(T # -) Z#ao®Z) U %) ((T Ww)) de13e7) Z <<E>D) € <<>D)
CCCCCCCr u =) T#30%3) W %) [(O U =>) J1) (U) epquey) zgadej)
((I0110, (W) epquer) T#1deJ))
sex307)

Cmm[1p] ==
CCCCCCC(T U =) Z#ad®y) W %) T (0 1 <<m>>>) 3T) ((T W) 98118T) T <<*>>)
€
<<x>>)
(CCC(((T u -) 1g30%3) u *) T (0 U =>) 1) (U) °pquWeT) Z#ioeJ)
((10118, (U) epquel) [#1d%)))
J91307)

,Allhmmull
(CCCCC(T T =) Z#a0®Z) W ») T (0 U =>) FT) ((1 W) 28I138T) T <<#>>) € <<#>>)

sojdwrexy [opojy uonnypsqng ¢ ynopueyy r5er81/rP90°9

C(CCCC(CT T =) 1#20%7) U %) 1 (0 U =>) JT) (U) ©pquWer) Z#1oey)
((x0118, (W) ®pquel) [g1dey))
201391)

Kz=[/C] ==
(CCC(T T <<=>>) (((((T ® -) Z#39%F) U) T (0 U =>) JT) (U) BPQWRT)) T <<#>>)
. €
<<*>>)
(CCCC((T T =) T#39%]) W %) T (0 U =>) FT) (U) epqWey) Z#idoej)
((aI0x10, (W) epqWey) Tgidey))
uwhpwﬁv

Cmm[GE] mm
CCCCCCT @ =) (((((T @ -) Z#adey) U %) T (0 U =>) JT) (U) ®PQWRT)) Z <<*>>)
«Z o)
29I1301)
€
<<H>>)
(CCCC((T T =) T#39%]) W %) T (0 U =>) FT) (U) epquey) Z#3o%})
((10110, (U) epqWer) T#30e]))
J913071)

(mm HVNHII
(CCC((T T -) E#I2RI) T <<*>>) ((T U)) 28I38T) € <<ad>>)
(CCCC((T T =) Z#3d%]) W «) T (0 U =>) JT) (U) epque[) ggidey)
(CCC((T U =) T#3I9°F) W %) T (0 U =>) JT) (U) epquwey) Z#3dey)
((z0110, (U) epqWel) Tg1de}))

J8I381)

Cwm [ZE]) ==
(T U =) E#39%2) T #) ((Z W) 20230T) € <co>>)
(CCC(((T T =) 2T#I9RZ) W #) T (0 U =>) 3T) (u) *pawer) c4a0ey)
(((CC(T ® -) T#39%2) W %) [(0 W =>) 3T) (u) *paWer) zgaoey)
((10110, (u) ®pQuWeT) 1#30%F))
581307)

<=n[0] ==
CCCCCC(T ™ =) E#30RF) W %) T (0 Z <<=>>>) JFI) ((Z U)) 281387) € <<#>>)
(CCCCC(T T ~) Z#IdR]) W %) T (0 U =>) JI) (U) ©pquey) g#1doey)
(CCCC(T U =) T#39%F) W %) T (0 T =>) FT) (W) epquey) z#3d%3)
((I0118, (U) vpquey) Ig1deJ))
J91301)

<==[8Z) ==
(CCCCC(T T =) E#39RF) T) T (0 U =>) FT) ((T U)) 29I38T) € <<*>>)
(CCCCC(T T =) Z#3d®3) U +) T (0 U =>) JFI) (U) ©pqueY) £gadoe])
(CCC((T T =) T#39%F) W %) T (0 U =>) JT) (uU) epquel) Z#1doej)
((a0110, (W) epquey) [gidey))

J01381)

<=m[9Z] ==

(C((T € <<=>>) (((((T ® -) e#308]) W %) | (0 U =>) JI) (U) Bpquer)) ¢ <<*>>)
(CCCCC(T T -) Z#Ideg) U) T (0 U =>) JFT) (U) epque]) £#a0ej)

So[dureXy [9pojy WOININSGNG iG INOPWEH [EZH BI/[FH0°0 91

61

CCCCCC(T U =) T#I9RI) W %) T (0 U =>) FT) (W) epquel) 31deJ)
((a0118, (U) ©BPAWeET) #310%]))
29.1107)
19e}))
29130T)
(CCC((T T =) 30RF) U %) T (0 U =>) FT) (W) epquel) (I2e]) epqumeT)))
((8 1))
29110T)

<=m[QT] ==
((u
CCCCCLCCE @ =) 39e]) U %) [(0 U =>) FT) (U) ®pqueD)
CCCCC((T U =) T#39¢F) W %) T (0 U =>) JT) (U) =pquey) 9%y)
((I0118, (U) epPQWeT) I#1>e]))
201307)
((CC((T T =) 39%F) W %) T (O U =>) FT) (U) °pquel) (39e]) epquel))
(C(C((T T =) 39eF) W +) T (0 W =>) JT) (U) BPqueT) (3oeJ) epquel)))
((8 1))
2013987T)

<mm[6] ==
((u
CCCEEC((T @ =) 39%F) U %) T (0 ¥ =>) JT) (W) ©pawe])
CCCCCCC(T @ =) 39%F) U %) T (0 W =>) FT) (Y) =pqueT)
(((F0119, (U) epqwel) 12e}))
201307)
19eJ))
201307)
(CCC((T U -) 39%F) U x) T (0 U =>) FE) (U) ©PQWeT) (I9BF) epqueT))
(CCC((T @ =) 39®F) U *) T (0 U =>) FI) (W) °pamer) (3d%F) epqueT)))
(8)
201387)

<==[g]==
((u
CCCCCCCCCT @ =) 39%F) W +) T (0 U =>) JT) (U) ®PQURT)
(((Io11e, (u) epquel) 315%F))
59139T)
(T u =) 19%F) U +) T (0 ¥ =>) FT) (D) epque() (3°%F) epquel))
(CCC((T U =) 30RF) W) T (0 U m=>) FI) (U) ®pquwel) (I2®F) ©pawel))
(CCC((T U =) 19%F) W %) T (0 U =>) FT) (U) BPqQwWeT) (32%F) ©PAWRT)))
(8)
20139T)

<==[[]==
((u
(((((a0119, (U) ©PqueET)
(CCCC(T @ =) 39%F) W) T (O U =>) FT) (W) ©°PAuWeT) (32%}) epquel))
(CCCC(T @ =) 39%F) U) T (0 U =>) FT) (W) ePqueT) (39ey) °pAmWel))
CC((T @ =) 39eF) W %) T (0 U =>) FI) (U) epqWel) (3°eF) epquet))
CCCCC(T ® =) 30%F) W *) T (0 U =>) FT) (W) ©pquel) (12eF) ®PAWLT)))
(8 W)
UWHHOHV

sojdurexg [9poy UOININISGNS G INOPURH LT 8T/LFYO9

Cum[9] ==
((u
(((((0110, (W) epquWeT) FOPIdLJ)
CCC(((T @ =) 39%F) U %) T (0 U =>) JT) (u) epquel) (3I2eF) epquel))
CC(CC(T T =) 39%F) U %) T (0 W =>) JT) (W) epque) (3I2e) epqureT))
CCCC(T | =) 998F) U %) T (O U =>) JT) (W) °pquel) (32%}) ©pquel)))
(8 o))
J81319T)

Cum[G] ==
((u
(((((10119, (U) epqueT) JopideJ) JOpiIdrR})
(CCC((T @ =) 39BF) U %) T (0 W =>) FT) (W) ©PqWeT) (32®}) epqure))
(CCCC(T @ =) 39%F) U %) T (0 U =>) FT) (W) ©pqueT) (I2%F) epqueTt)))
(8 W)
291307)

(mm[f]mm
((u
(((((10118, (U) epquel) jJopadeJ) JOpIde]) JOpPIoe})
QT & =) 39%F) W %) T (0 U =>) JT) (W) ©pquel) (32%}) BPAMRT)))
(8 o))
291307)

Cmz[E]==
((u (((((10118, (U) epquel) Jopidoey) Jopidej) JoP1IOR}) JOPIOe}))

(8 M)
201997)

AIIHNHII
(8
((@ (((((I0119, (U) ©pqWeT) FopPiIoeJ) JOPIOR]) Jopaoez) Jepaoej)) (U) ®pquer))

Cum[]] ==
(8 €3°0])
<==TYAI-4NS

:juamm@re we a3re[0oy 09 pardde st gadeg waym suaddeq jem 81

9

(==[}G] ==
(((T T <<x>>) T <<*¥>>) € <<*>>)

(== [ZG] ==
CCCCCCCCCT & =) T#398F) U %) T (0 0 <<=>>>) FT) ({0 W) 29I3°T) 1 <C*>>)
4
<<xd>>)
€
<Cxd>>)
(((T0118, (U) epPqueT) T#30®J))

sojdexy [opOJy UOINIISGNG G INOPUEH [ETHSI/IPP09 8T

1T

Je13e1)

<==[97] ==
((((T 8 <<->>) (((((T u =) E#30%]) U %) T (0 u =>) ¥T) (U) epquer)) g <<*>>)
(CC(C((T u -) z#ade]) u *) T (0 U a>) Jr) () epquel) £gIoe])
((((((r u -) tga0ez) u *) T (0 U =) jr) (W epquey) zgioe])
((z0118, (uU) epquer) [g3Ide}))
281381)

C==[}Z] ==
(CCCCr T =) (((((T u-)eeadey) us) 1 (O u =>) JT) (W) ©PqWRT)) g <<*>>)
(8 o))
Jo8x387)
CCCCC(T U =) Z#32®I) W) T (0 U m>) FT) (W) epquer) c#ide])
(CCCC(T U =) T#39%7) uw x) T (0 U =>) JT) (W) epquwey) zgaoe])
((a0118, (W) ®epquey) [#I0®}))
281387)

K== (£7) ==
(C(((r @ =) 33e]) g <<x>>) ((8 W)) dex307)
(CCCC((T @ -) €430%) U %) T (0 uw =>) FT) (U) epqueT) 3oeJ)
(CCCC(T @ -) z#3dey) W #) T (0 U =>) JT) (W) epamey) gyasez)
(CC(((T 1 -) 1$30%7) uw *) 1T (0 u =>) JT) (W) ®epquer) Z#10%])
((T0119, (W) epquel) Tgade]))
J91387)

Kmm[1Z] ==
((C((1 u =) 30e3) w %) ((8 w)) dex38T)
(CCCC((T U =) €#30%F) W ») T (0 U =>) JT) (o) epquer) 3oe])
(CCC(T @ =) Z#aoe]) uw x) T (0 U =>) g1) (W) epqueT) £#3de])
(((C(((T u-) 1#30) U) [(D u =>) 1) (u) epquwer) zgioej)
((z0210, (W) Tpquet) [#Ioe}))

J81397)

K==[61] ==
(CCCC(T @ =) 39%7) w) T (0 8 <<m>>>) FT) ((8 W) Jex3e7)
CCCCCC(T T -) £830°1) W *) T (0 w =>) FT) (W) epquet) 3oe))
(CCCC(T W =) Z#30o®]) U %) T (0 U =>) FT) (W) epqueT) c£#10e])
(CCCCCT T =) T#30%7) W %) 1 (0 U =) F1) (W) epque() Zgioej)
((I0118, (U) epquer) 1#300]))
Jo8x3a7)

C=m[L]]=n
(CCCC(T ® =) 19%1) uw %) T (0 U =) FT) ((8 W) J981397)
(CCCCC(T T =) e#adeg) W #) T (0 u =>) FT) (W) epquey) 30v))
(CCC((r U -) Z#39%]) U %) T (0 w =») 71) (W) ®BpquUeT) £#31oe])
(CCC((T U =) T#39%F) U %) | (0 U =) JFT) (4) epquwel) Zgioe)
AANOHH@. Aﬂv ﬂvnﬂdﬁv ﬁQHudev

281397)

Aulﬁwaulu

((8 ((CC(T w =) 13e3) w*) T (0 ua) 1) (W epquret))
(CCCC((T U -) €830%F) W %) 1 (0 U =>) JT) (u) epquer) adej)

sspdurexyy [ppopy monninsqng :g Mmopury rEZH 81/ b9

(CCCC(T @ =) z#20%F) ¥ ») T (0 W =>) FI) (W) ®pqueT) gg3oeF)
(CCCCCT U =) 1#39%]) W x) T (0 ®w =>) FI) (U) epquer) zgioej)
((Z01xe, (u) epquer) 1g310ez))
281337)

<a=[G]]==

(8
(CCCC(T T =) 39%) w#) T (0 & =>) 1) () epquel)
(CCCCC(T @ =) €439%F) W %) T (0 W =>) FT) (W) epquwer) 32%])
(CCCC(T @ =) Z#I9®]) W %) T (0 W =) JT) () epquwer) ggader)
(CCCC(T U =) T#10%]) W) | (0 U =>) 1) (u) epquer) zgioeJ)
((F0119, (U) ®pquer) Tg3oef))

UOHHOHVV

AIIHVﬁuII
((u
C(CCC(CT @ =) 30%3) wx) T (0 W =>) JI) (W) epquer)
(CCCCC(T U =) e#39®F) W) T (0 U =>) FT) (U) epquel) 30e))
CCCCC(T @ =) Z#30%1) W) 1 (0 W =>) FT) (u) epqmer) £#10%])
(CCCCCT @ =) T#30%F) W) T (0 U =>) FT) (W) epqmer) Z#I00])
((Toxxe, (u) epqmer) [g#31de]))
UOHHOﬁvv
(8 M)
20I1387)

Cmm[E]]m=
((a
((CC(T u =) 39ex) w) T (0 w=>) FT) (u) epquet)
CCCCCCC(E T =) 30%)) w %) T (0 U =) 1) (W) ©pqueT)
(CCCCC(T T =) Z@aoey) u ») 1 (0 @ =>) JT) (W) epqmer) oex)
(CCCCCT ™ =) T#30%]) W) T (0 @ =>) 1) (W) epquey) zgioeJ)
((F0119, (U) ®pqwer) T#300]))
29I13187)
30%)))
281397))
(8 0))
291397)

Cum(T]] ==
((u
(CCCCC(T ® -) 39%F) W) T (0 W =>) 1) (u) epquer)
((CCCC(T u =) Z#30®I) W %) T (0 U =>) F1) (u) epquer) o))
(CCCCCT @ =) T#30%F) W %) T (0 w =>) JT) (W) epquer) Z#10e])
AAHONNO~ Anv ﬂﬂnﬂﬂﬁv ﬁ*uudwvv
281397)
(CCCC(T @ ~) 30%7) w) T (0 @ =>) 1) (U) epquer) (31de}) wpquel)))
((g8 O))
Uwhpwﬁv

Cmm[1]] ==
((u
(CCCC(r @ -) 39%3) W) T (0 W =>) 31) (W) epquet)
CCCCCCC(T T =) 29%3) W ») T (0 W =>) JT) (u) epqurer)

sajdurexy [Ppo uonnIIsqng (¢ nopuey rezr8L/rvvo9 0%

L

<<*>>)

8
<<x>>)
(((101109, (U) ©PQUET) 1#30%}))
29.13971)

Allﬁomulu
CCCCCCCCCT U =) T#398F) U %) T (0 U =>) JFT) ((§ U)) 20I18T) 9 <<*>>) L <<¥>>)
8
<<*>>)
(((10118, (W) ®pquWel) I#3I°%F))
291387)

¢==(gh] ==
CCCCCCT 9 <<=>>) (((((T T =) T#I2eF) T x) T (0 U =>)) (W) nvnaaavw
<<®>>)
L
<<x>>)
8
<<E>>)
(((x0118, (U) ®pQUET) T#32%F))
o91387)

Cmm[QY] ==
CCCECET T =) (((((T @ =) T#39%F) W) [(0 U =>) FT) (W epquey)) wﬁﬂw.nwW
o91387)
L
<<*>>)
8
<<x>>)
(((10119, (W) ®pQWeT) T#Ide]))
2913187)

Cmm[Gh] ==
CCCCCC(T U =) ZRIDRF) 9 <<w>>) ((9 W) J9IIBT) L <<#>>) B <<#>>)
(CCCCC(T U -) T#398F) © %) T (0 W =>) FT) (U) ®Pquwel) Z#I%J)
((a0118, (W) epqueT) 1#19%]))

Je1391)

K== (£}] ==
CCCCCC(T @ =) Z#IDRF) U %) ((9 W) 29II8T) L <<#d>>) B <<¥>>)
CCCC(((T T =) T#3I9%F) U +) T (0 U =>) JT) (U) TpQWeT) Z#1I0%F)
((30118, (U) epqurel) [#39%F))

2913017)

Kmu{1{] ==
CCCCCCC(T T =) Z#30RF) W %) T (0 9 <<=>>>) JFT) ((9 W) 29138T) L <<*>>)
8
<<*dD>)
(CCCCCT @ =) T#30RF) U %) T (0 U =>) JT) (u) epquel) Z#IOe})

€2 sajdurexy [9POJN UOIININSqNG G InOpUTH rezy81/rvv0°9

((x01x9, (U) epquel) T#31de}))
2929T)

K=m[6L] ==
CCCCEC((T B =) Z#I2EF) W) T (0 U =>) FI) ((9 W) 20133T) L <<H>D>) B <<%>>)
(CCCCC(T @ =) T#I9=F) U %) T (0 ¥ =>) FI) (U) ®PAUWRT) T#10%J)
((I01I8, (U) ©PQWRT) [#1I0%}F))
2913987)

Cmm HNMH ==
CCCCCT L <<=>>) (((((T U =) T#I2eF) T #) T (0 U =>) FT) (W) ®PAWED)) L <<¥>>)
8
<<H>>)
(CCCC((T T =) T#39%F) U &) T (0 @ =>) FI) (U) ©PAWET) Z$Id®J)
((xoxze, (W) ©pQUeT) [#10%]))
UUHUOHV

Cmm[GE] ==
CCCCCCT @ =) (C((T @ =) Z93dRF) U %) T (0 U =>) JFT) (W) ®PQWERT)) L <<*>>)
(L o))
381187T)
8
<<x>D>)
(CCCCC(T W =) T#I9°F) W %) T (0 U =>) FI) (W) epquel) Z#1°%F)
((I0x18, (U) epqWeY) I#1deJ))
291397)

<m=[pE] ==
CCCCC(T T =) ERIDRF) L <<xd>>) ((L W) 28IIBT) 8 <<*>>)
CCCCC((T @ =) Z#30EF) U %) T (0 U =>) FI) (W) TPAWET) E#3ID%F)
(CCC(T T =) T#39%F) W %) T (0 W =>) FT) (W) TPAWRT) Z#Id®F)
((10119, (U) ©PqWET) T#Id%}))
2913987)

<mm[ZE] ==
(T @ =) E#IORF) W %) ((L W) 20I38T) 8 <<#>>)
CCCCCC(T T =) Z#30%F) U %) T (0 U =>) FT) (W) TPqUET) £#30%F)
((CC((T @ =) T#39%F) U %) T (0 U =>) JFT) (U) WPAWET) Z#I2%F)
((x0xx09, (U) epqueT) T#3°0]))
29x3187)

{mm HOMH -
(CCCCC(T U =) E#30RF) W x) T (0 L <<=>>>) 3T) ((L) 29118T) 8 <<*>>)
(CCCC(CT T =) Z#I0RY) W %) T (0 @ =>) FT) (W) epquWet) €#30%F)
(CCCC(T @ =) T#IORF) W %) T (0 U =>) FT) (W) epquUeT) Z#I0®F)
((I01Ie, (U) ©pqueET) T#I0%]))
281387)

<= [BZ]==
(CCCECCT @ =) £#398F) T %) T (0 W =>) FT) ((L W) 29I38T) 8 <<¥>>)
(C(CC((T & =) T#I9RF) W #) T (0 W =>) FT) (U) ¥PAWT) £430¢F)
(CCCC(T T =) T#39%3) T %) T (0 & =>) FT) (W) WPQWET) T#30®J)
AAHOHHO. Aﬁv MUDEHV ﬁﬁuuﬂhvu

sajdurexy [ppPojy uonniisqng ‘¢ ynopuvy rezy's1/ryr0’9 44

14

peutjep useq seq 312ey-£

CCCCCCCC(T @ -) 39%F) u ») T (0 U =>) JT) (W) epquwey)
((((z (x 1)) (2) ®epawey) 3Io%]))
201307)
(CC(((z (x X)) (2) epquey) j) (X) epquwel) X))
28138T7)
(CCCCCC(T @ =) 32®) W &) T (0 U =>) JT) (U) epquey) (3de]) epqwey) 7))
281307)
1oeg-£
eutyep)

C=m[9])==
(CC(((z (x X)) (Z) epquer)
(CCCC(T @ =) 39%1) w &) T (0 U =>) FT) (U) ©pquWeT) (30%J) epquey))
(C((((z (x x)) (Z) epqmeT) J) (X) ®epqueT) X))
291307)
(CCCCC(T @ =) 39%7) U ») T (0 W =>) JT) (W) ®pquel) (32eJ) epquey) 3))
sex3eT)
aoeg-£
eurjep)

Cmm[q) ==
((((((z (x X)) (2) =pquer) J)
(CC(((z (x X)) (Z) epqWeT) J) (X) epqueT) X))
291307)
(CCCCCC(T @ =) 39%) @ %) T (0 U =>) JT) (W) epquey) (3deJ) epqwey) F))
201387)
1oeg-£
eutjyep)

C==(p]wm
(CC((((z (T X)) (Z) epqmey)) (X) epquey)
((((z (x 1)) (2Z) epqueT) J) (X) epqmer))
(CCCCC((T @ =) 39%7) W %) T (0 U =>) JT) (U) epquey) (3deJ) epqwer) J))
Jex3eY)
3oez-£
eutjep)

C==[g] ==
(CCCCC(T w0 =) 39%F) u %) T (0 U =>) JT) (W) epquey) (3o®J) epquey)
((C(((z (x X)) (Z) epquwey) J) (X) epquer)
((((Zz (x X)) (2) epquwey)) (X) epquer))
(€3]
epquet))
1oez-4
eutzep)

Cmm [Z] ==
((Fopadey
(C(C(((z (x 1)) (2) epquey) F) (T) epquer)
((((z (x 1)) (2) epquer) F) (I) epqumer))

so[durexq [opopy wonmameqng :g ynopuey rezh81/IF50°9

(€3]
epqueT))
qoez-£

sutzep)

Cm=[T] ==
((zoparoey £) 1d0ez-£ eut yep)
<==TYAT-4NS

‘sferore] sayndwod goigm 3oeg-4
ampasold ® palf [im [eL00R] JO UOTIINYIP JAISINIAT B3 JO £poq aY) 03 loyerado jurod poexy oyy Suk[ddy

peutjep ueeq seq £

(((C(((z (x 1)) (2) epqmweT)) (X) epque)
((((Z (X X)) (2) ®epqme[)) (X) epqmer))
(€3]
=pqureT)
£
eurjep)
<==TYAZ-G0S

:10yerado { ayy pafqe2 osfe 81 10je1ado
jatod paxy oyj} suosesl [edL0ISIY 104 '2IN3OA[UE 18je] AYMm 88NSIP {reys am l10jesado jusod pazyf ® paqred st
ampadoid siqy, Aressadou se sowsyy Auewr se UpWIMEN B3 N0 SOLIIRD YOIGM ampadoxd we suyep wed ap

*ed£3 3201105 ega 30U sT!
‘Ardrarnm-z08equt 03 jueumBre puooes egy se pessed ‘Iroire 1oe(qo eqyr!

((((T0XTB, G <<*>>) 9 <<CDD) L <<H>D>) B <<#dd)

‘Kmm[69] »=
(CCC(T § <<->>) (I0119, (W) BPQWRT)) § <<*>>) 9 <CHDD) L <<43>) B <<>>)

<=m[/G]) ==
(CCCC((r @ -) (I0x10, (W) BPQWRT)) § <<*>>) ((§ UW)) 28I38T) 9 <<H>>) L <<#>>)
8

<<e>>)

<m=[9G]) ==
(CCCCCC(T @ -) T#39%F) G <<#>>) ((9 W)) 20IIBT) 9 <<#>3) L <<#>>) B <<#>>)
(((30110, (U) ®PQUWeT) [#IdeF))

2e1187)

<==[{G]) ==
CCCCCCC(T @ =) T#I0%7) T) ((§ U)) 28II8T) 9 <C>D) L <<#>>) 8 <<ad>>)
(((x0x1x9, (U) EpPQUWeT) [gIOeR]))

Je1187)

(== [ZG]) ==
CCCCCCCCCT @ =) T#39%F) U #) T (0 9 <<=>>>) FT) ((§ U)) J8118T) 9 <<4>>)

so[durexs [apopy wonnINsqNg g IOPURY LEZHRL/LEFO9 e

(CCCCC((T w =) 39%F) W) T (0 ¥ =>) JT) (U) epqueT) (3I2%J) ©PquWey) j))
J81387)

Cmm[L]]==

(((((z (x X)) ((¥ Z)) 20118T) § <<*>>)

((((((z (x x)) (Z) epquey) JF) (X) ©pqWeT) X))

201307)

(CCCCC((T u =) 39%F) W %) T (0 U =>) JT) (@) ©pqwer) (%) ©epquwel) J))
J81397)

(== [g]] ==

(C(((T § <<->>) ((Z (X X)) (Z) ©pqueRT)) § <<*>>)

((((((z (x %)) (Z) epquel) JF) (X) epquel) X))

201397)

(CCCCCC(T U =) 39BF) W %) T (0 U =>) JT) (W) epquel) (32%}) epquel) J))
J81307)

Kmm[E]] ==

(T T =) ((Zz (X X)) (Z) epquel)) g <<*>>) ((§ U)) d01387)

((((((Zz (x X)) (Z) ®pawe]) J) (X) ©pquwey) X))

0081309T)

(CCCCC((T T =) 3oe3) W *) T (0 U =>) JT) (U) epquel) (Id%]) ©pquel) J))
281387)

Cmm(Z]] ==
(CCCCCCT T =) 39®F) § <<*>>) ((§ u)) d81397)
((((z (x x)) (Z) ®paue]) 3Id%]))
981307)
((((((z (x x)) (Z) epqueT) J) (X) °pquwel) X))
581387)
(CCCCC((T T =) 39%]) @) T (0 W =>) JFT) (W) epquel) (I9%]) epquWel) J))
20I130T)

<==[0]] ==
(CCCC(T w =) 39eF) w *) ((§ W) 20139T)
((((z (x x)) (Z) =paweT) 15®J))
981307)
((((((z (x X)) (Z) epquel) F) (X) epquel) X))
28I1397)
(CCCCC((r @ =) 39%F) W *) T (0 U =>) FI) (W) ®©pque[) (3I2%]) epquel) J))
291107T)

K== (Q] ==
CCCCE(T @ =) 39%F) T #) T (0 § <<=>>>) FT) ((3 @)) d811eT)
((((z (x x)) (Z) ®paweT) 1de]))
>91301)
((((((z (x x)) (Z) epquel) J) (X) ©pquwel) X))
2081307)
(CCCCC((T u =) 39%7) U) T (0 U =>) FT) (U) ®pquel) (I9%}) epquel) J))
291307)

Cmm[9] ==
CCCCC(((T uw =) 39%F) W %) T (0 U =>) JT) ((S u)) 2e1387)

k4 sajdurexy [3popy wonnIIEqNG :g INOPUCH LEZH IT/THP0°9

)

((((z (x 1)) (2) ®PQUWET) 3I5%]))

201307)

((C(((z (x X)) (Z) epqmel) J) (X) ©pquel) I))
2013097)
CCCCCCC(T U =) 39%F) W *) T (0 U =>) FT) (U) epquel) (I2eF) =PqueT) J))
28139T)

(== [G] ==
(CC(S (((((F u =) 32e]) U x) [(0 U =>) FT) (U) epque))
((((z (2 1)) (Z) ®PQUET) 1ID%]))
29x307)
((((((z (x X)) (Z) epquweT) J) (X) ©pquel) I))
001387)
(CCCCCCCT u =) 29%F) W) T (0 U =>) FT) (W) ®pauwel) (I9eF) ®pqwel) J))
081367)

Ko (] m=
(s
(C(C((T =) 39%F) W &) T (0 U =>) JT) (U) ©pqueY)
((((z (x X)) (%) =pauwe]) 312%]))
9813187))
((((((z (x X)) (Z) epqweT) J) (X) ®pquel) X))
29x187)
CCCCCC((r u =) 20%F) @ %) T (0 U =>) JT) (W) epqwel) (3d%F) ®pque() j3))
20.1307)

Cmm[g] mm
(s
- (CCCCC(T @ =) 32%F) U) T (0 T &) JT) (U) TPQUET)
((((z (X X)) () epaWeT) 39¢3))
201307)
€z (x X)) (Z) ®pquwel) J) (X) ©pqueT) X))
20138T))
CCCCCCC(T @ =) 20%F) W %) T (0 U =>) FI) (W) ®epquel) (39¢F) ¥pqwel) J))
201301)

Kmm(Z] ==
(s
CCCCCCCT @ =) 39%F) W x) T (0 U =>) JT) (T) ®PAWRT)
((((z (x 1)) (Z) =pqueT) 39¢]))
281307)
((C(C(Z (x X)) (Z) ®wpqwe) F) (X) ¥PQWeT) X))
J20x39T)
(CCCCCCCT @ =) 32%7) W) T (0 U =>) JT) (U) ©pqwe) (39%F) ®PQURT) J))
29139T))

Cmu[1]mm

(g 3oez-£)
<==TYAT-GNS

131 189) ED 3M MON

sajdurexs [spopy UOMMINSANG G WMOPUTH [EZH 81/ [PH09 92

62

291387)

S

<<*>>)

CCCCCQ((r T =) 29%F) U) T (0 U =>) JT) (U) epque() (3I2e}) epquey) J))
281307)

== [97] ==
CCCCCCQU(T T =) 39eF) U %) T (0 U =>) JT) ((¥ W) 20I187)
((((z (x X)) (2) =pquel) I2e]))
J91197)
((((((Z (x X)) (Z) =pque() J) (X) epquel) X))
201307)
S
<<H>>)
(CCCCC(T @ =) 30®F) U %) T (0 U =>) FT) (u) epque() (3Ioe]) epquel) J))
20138T)

(== [GZ] ==
QP (((((T T =) 29%]) U %) T (0 U =>) JT) (W) ©BpqWe]))
((((Z (X X)) (2) =PQWeT) 39%F))
291307)
((((((z (x X)) (Z) =pquwel) J) (X) ©pquel) X))
2013187)
S
<<x>>)
(T @ =) 39®]) W %) T (0 U =>) FT) (W) ®pqueT) (I9%]) ©pqueY) J))
2813187)

me [(T] ==
€4¢¢/
((((((T T =) 29®]) U x) T (0 U =>) JT) (W) epque])
((((z (x X)) (Z) ®pquel) 3d%]))
201207))
((((((z (x x)) (%) ®pqueT) J) (X) epquel) X))
2901387)
S
<<x>>)
CCCCCCC(T @ =) 39%]) U «) T (0 U =>) JT) (W) ®pqwe]) (3Ide}) epquel) J))
291381)

K== [E£Z] ==
(¥
CCCCCC(r T =) 39%F) @ ») T (0 U =>) JT) (U) ©pquey)
((((z (X X)) () epamwe1) 3%J))
J8I1387)
((((((z (x x)) (z) ®pauwel) J) (X) epquey) X))
281381))
S
<<*>>)
CCCCCCC(T @ =) 39%F) T) T (0 U =>) JT) (W) epquel) (IdeF) epquey) J))
291387)

AIIHNNHII

sojdwexy [9PON uonNINEqNG ¢ INOPUR LEZF8I/[PFO'Y

((z
(CCCC((T @ =) I9%]) U %) T (0 U =>) JFT) (U) ®epquey)
((((z (x X)) (2) ®pawe) 19e]))
201307)
((((((z (x X)) (2) ®pquel) J) (X) epquel) X))
291307))
(¥ 2))
%01791)
9
<<*>>)
(CCCCC((T u =) 39%]) U %) T (0 W =>) JT) (W) epquey) (Id®}) epquel) J))
: 201397)

<=a[1Z]a=
((((z
((((z (x X)) (2) epque])
((((((? @ =) 3°%]) U %) T (0 U =>) JT) (U) °pqWeT) (3Id°]) epquey))
((((((z (x X)) (Z) epquel) J) (X) epquel) X))
381397))
(¥ 2z))
581387)
9
<<H>>)
CCCCC((T u =) 39%]) W %) T (0 U =>) JT) (W) epque]) (3Id>e]) epquel) J))
281187)

K== [QZ] ==
(((z
((((z (x X)) (Z) =pame]) J)
((((((z (x X)) (2) =pqmeT) JF) (X) ®epquel) X))
201787))
v 2)
201387)
9
<<H>D)
(CCCCCC(T ® =) 29%F) W *) T (0 U =>) JT) (W) ©pque() (3I2®}) ©pquel) J))
201307)

Cwex [GT] ==
(((z
(((((z (x X)) (Z) epquey) J) (X) epquey)
((((Z (x X)) (Z) epque]) J) (X) epquel)))
v z))
UGHUOHV
9
<<CHD>>)
(CCCCEE(T ® =) 30%) U %) T (0 U =>) JT) (U) epquey) (Id®]) ©pquel) J))
UOHUOHV

Cum[gT] ==
(CC((Z (X ((((Z (X X)) (2) =PAWET)) (X) TPQWRT))) ((b Z)) 28IIOT) § <<#>>)
(C(((((Z (X X)) (Z) TpqueT) J) (X) ePqueT) I))
UOHHOHV

sojdurexyy [opoy uonnInsqng :g ynopueH £eZp'81/I¥r0'9 8T

(2
((((z (x X)) (Z) ®pquel)
(((C((r u =) 39e) U %) T (0 U =>) JT) (U) epqmey) (3>eF) epquel))
((((((Z (x x)) (Z) epquel) F) (X) epquel) X))
UQHHQHVV
(e 2))
UOHHWHV
4
<C*>d>)
S
<<E>>)
(CCCCC((T T =) 39%]) O #) T (0 W =>) JT) (U) epquwey) (3Ioe}) epquel) J))
UWHHOHV

Cam[0p] ==
(((((z
((((Z (x X)) (Z) ®pquel) J)
((((((Zz (x X)) (Z) epqueT) J) (X) epqueT) X))
2913871))
(g 2))
291397)
4
<Cxdd>)
S
<<*>>)
QT @ =) 39%F) W #) T (0 U =>) JT) (U) epque]) (315eF) epquer) J))
28I1391)

Cum[6€] ==
(=
(((((Z (x X)) (Z) epqweT) F) (X) epquey)
((((z (x X)) (Z) epque() F) (X) epquey)))
(g 2))
UOHBOHV
2
<<*>>)
]
<<xD>D)
CCCCCC((T @ =) 3o%eF) U ») T (0 U =>) JT) (U) ®pquey) (32vF) epquel) J))
29I397)

K==[8C] ==
(2 (X ((((2 (X X)) (Z) =pqmeT) J) (X) epque())) ((€ Z)) 99I1397)
4
<Cxd>>)
((((((z (x X)) () =pqueT) J) (X) epquweT) X))
s8x301)
S
<<xd>>)
CCCCCC((T @ -) 39eF) U %) T (0 U =>) JT) (W) epqueT) (3Def) epquel) j))
J281301)

Allmhmull

1€ sajdurexy [opoN wonymsqng :g MopueH LEZy8I/IFH0°9

((((((z (X X)) ((£ 2)) 2°11T) b <<*>>)
((((((z (x X)) (2) epquer) }) (X) epquwel) X))
20130T)
S
<<*>>)
CCCCCC(T T =) 20ef) U &) T (0 U =>) JT) (U) ©pquel) (3I2¥]) epquel) J))
201197)

Cmm[GE] ==
(T 7 <<->>) ((Z (X X)) (Z) ©BPAWRT)) b <<*>>)
((((((z (x X)) (Z) %pqme]) J) (X) ®epquwe]) X))
291397)
9
<<Edd>)
CCCCQEC(T w =) 3deF) U ») T (0 U =>) JT) (W) ©pqueT) (39%F) epquel) J))
UOHBQHV

Kmm[CE] ==
CCCCCT T =) ((Z (X X)) (Z) BPquRT)) b <<*>>) ((¥ U)) 20I1397)
((((((z (x X)) (Z) epquwel) J) (X) ®pque]) X))
201301)
S
<<*d>>)
(CCCCC((T T =) 39%F) w #) T (0 U =>) JT) (U) epquel) (32e}) epquel) J))
291397)

(== [Z€] ==
CCCCCCCCT T =) 19R) ¥ <<*>>) ((¥ W) d0I119T)
((((z (x x)) (Z) epqueT) 3de}]))
2913871)
((((((Z (x x)) (Z) epquel) J) (X) epquel) X))
291387)
]
<<*>>)
(CCCCCCCT T =) 29%F) U) T (0 U =>) JT) (U) epquel) (3oe}) epquer) J))
2ex38e7)

Kmm [O€] m=
(T T =) 29®F) U ») ((p U)) 291387)
((((z (x X)) (2) epqueT) 3Ide}))
58139T)
((C(((z (X X)) (2) vpquweT) J) (X) epquel) X))
s91381)
|
<<x>>)
CCCCCC((T @ =) 39%]) T +) T (0 U =>) JT) (W) epquwel) (3IO¥) epquel) }))
28139T)

Cmm[gT] ==
CCCCCCCCCT T =) 29®]) U %) T (0 & <<=>>>) JT) ((¥ U)) 298x387)
((((z (x X)) (2) epqueT) 3de}))
J81397)
((((((z (x X)) (Z) epqueT) J) (X) epquweT) X))

sadurexyy [ppopy uonnirisqng :¢ IMOPUeH rezp8I/rEr0'9 0g

£¢

((((((z (x X)) (Z) epquweT) J) (X) epquel) X))
J81397)
14
<<e>>)
S
<<>>)
(CCCCC((T u -) 20%)) W %) T (0 U =>) JT) (U) epque]) (3I>e}) epquel) JF))
s81387)

<==[0§] ==
CCCCCCC(T T =) 32R]) W &) ((€ U)) d01307)
((((z (x X)) (z) epquwe) Ide}))
081307)
((CC((Z (x X)) (Z) epquweT) F) (X) ®epquwel) X))
281307)
v
<<*>>)
g
<<H>>)
(CCCCC((T T =) 30%F) T %) T (0 U =>) JT) (W) ©pPqQWe) (3Ioe}) epquel) JF))
d81301)

<mn[gh] ==
CCCCCCCCC(T T =) 30e]) W ») T (0 € <<=>>>) JT) ((€ u)) d>81387)
((((z (x x)) (Z) epquel) 12e}))
Je17907)
((((((z (x X)) (Z) epaweT) J) (X) epQWeT) X))
298.131087)
14
<<*>>)
S
<<xd>)
(CCCCC((T @ =) 30eF) W ») T (0 @ =>) JT) (U) epquey) (3deJ) epquey) J))
J013971)

<==[9Y] ==
CCCCCCCC(T @ =) 30eF) W %) T (0 U =>) FT) ((€ u)) 20x397)
((((z (x x)) (%) epquweT) 3d>eJ))
UGHHOHV
((C(((z (x X)) (2) epque]) J) (X) epqueT) X))
UOHPOHV
14
<<x>>)
S
<<x>>)
(CCCCC((T @ =) 2%®F) @) T (0 U =>) JT) (W) epquweT) (3de]) epquwel) J))
UOHPOHV

<==[Gh]==
(CCCC(e (((((T @ =) 39%]) W %) T (0 U =>) JT) (U) ©PqQueT))
((((Z (x X)) (Z) epawel) 312%]))
Je1197)
((((((z (x X)) (Z) epqueT) J) (X) epquwel) X))

sopdurexy [opojy uoNNINSANG ¢ INOPUEH LEZH 8T/ [FPO'9

J0I387)
v
<<*>>)
S
: <<*>>)
CCCCCC((T @ =) 39%)) U %) T (0 U =>) FI) (U) epqueT) (3oe]) epqmel) J))
s813071)

Cum [ph] ==
(e
(CCC((T T =) 20®]) U) T (O W =>) JT) (u) epque])
((((z (x X)) (Z) epquey) 30%}))
2913981))
(((C((z (x X)) (Z) ©pquel) J) (X) epqwel) X))
281307)
v
<<H>>)
]
<<E>d)
CCCCCCC(T @ =) 30®F) W &) T (O U =>) JT) (W) epquey) (20€}) epquer) J))
091397)

Cmu[Ef] am
(e
CCCCCC(T T =) 39%F) W) T (0 U =>) JT) (u) epquel)
((((z (x X)) (2) epquel) 3d%}))
°9813197)
(C((((z (x X)) (Z) epque]) J) (X) epquel) X))
291391))
v
<<E>>)
g
<<x>D)
(CCCCC((T @ =) 32®F) W ») T (O U =>) JT) (U) epquwer) (3d>e}) vpquWel) jJ))
2981397)

AIIHNvuII
(z
(CCCCC(T T -) 39%F) W %) T (0 ¥ =>) FI) (U) epquel)
((((z (x X)) (2) =pqueT) 3I2%}))
5813097)
((C(((z (x X)) (2) ®wpque) J) (X) epquel) X))
281391))
(g 2))
581307)
14
<<x>>)
S
<<>>)
CCCCCC((T @ =) 39%) T %) T (0 U =>) FT) (u) epquwel) (37e) epquel) J))
J81307)

Kmm[1p] ==

sojdurexyy [opopy UOHRINEQNG ¢ JNOPWRH LLZP ST/ LFH0°9 e

<<*>>)
4
<<x>>)
g
<<x>>)
CCCCCC((T u =) 3oeF) w x) T (0 U =>) JT) (U) ©pqweT) (3de}) ©pquel) JI))
UOHHOHV

<=m[19]) ==
ez
((((z (x X)) (2) wpameT)
((CCC(T u =) 39%F) U #) T (0 U =>) FT) (U) ©pqwey) (19e) ©PqueT))
((((((Z (X X)) (Z) EPQueT) J) (X) epquel) X))
s81301))
«z 2))
2017091)
€
<<x3>)
4
<<x>>)
S
<<#>>)
(T @ =) 32%]) & %) T (0 U =>) JT) (U) ®pquey) (Id®]) e®pqwWeY) J))
2913971)

<==[09] ==
ez
((((z (x X)) (2) epauel) 3)
((((((z (X X)) (2) epawel) F) (X) ©Pquel) X))
281397))
(@ 2))
s81397)
€
<<xd>)
4
<<%x>>)
S
<<xd>)
(CCCCCC(T @ =) 39%F) W #) T (0 U =>) JT) (W) ®PQuWeT) (30%F) epaweT) J))
se139T)

Cmm[§G] ==
((((((z
(((((z (x x)) (Z) epquel) J) (X) epquel)
((((z (x X)) (Z) epquel) J) (X) epquel)))
oz z))
UOHHOHV
€
<<xd>>)
14
<<x>>)
S
<<xd>>)

SE sajdurexs] [spojy Uonyn3Isqng :g ynopuel reZr 81/I¥r0'9

CCCCC(r ®w =) 30%7) U %) T (0 U =>) JT) (W) epquwel) (IDe]) ©pquel) J))
s8130971)

<==[8G]==
(CCCCz (x ((((Z (x X)) (Z) =pqueT) J) (X) =pqueT))) ((Z Z)) 28138T)
€
<<x>>)
((((((z (x x)) (Z) epquel) J) (X) epquel) X))
291387)
1 4
<<x>>)
9
<<x>>)
(CCCCCC(T u =) 3°e7) W %) T (0 U =>) JFT) (U) ®pquwey) (3I2®]) ®pquel) j))
) 591397)

| <mm[1g]==
(((C(((Z (X T)) ((Z 2)) 291I8T) € <<*>>)
((((((Z (x X)) (2) ePAWRT) J) (X) ®PQWRT) I))
J81397)
1 4
<<x>>)
S
<<x>>)
(CCCCC((T @ =) 39%F) W) T (0 U =>) FT) (U) ©pQWe[) (39¥3) ©pawel) 7))
s913097)

<==[3g) ==
(CCCCCCT € <<=>3) ((Z (X X)) (Z) BPQWET)) € <<#>>)
((C(((Z (X X)) (Z) WPQWET) J) (X) EPQuET) I))
se1381)
1 4
<<x>>)
9
<<x>>)
(CCCCCC(T @ =) 99%F) W #) T (0 W =>) JFT) (U) WPQWe[) (319%F) EPqueT) J))
UOHHOHV

<um[g£G] ==
(T @ =) ((2 (X X)) (Z) ®Bpquel)) € <<*>>) ((€ U)) d981387)
((((((Z (x X)) (Z) ®pquel) J) (X) epque]) X))
s913087)
1 4
<<x>>)
S
<<x>>)
CCCCCC(r T =) 30e) U %) T (0 W =>) JT) (W) wpquey) (3Iov}) ©pquwel) F))
J813097)

<om[ZG]mm
(CCCCCCCCT | =) 39RF) € <<a>>) ((€ W) 28138T)
((((z (x X)) () epauel) 39e3))
591397)

sapdurexy [PPOJN UOTINIIIEqNG ¢ INOPUCY LLZH'8T/L¥FO°9 ve

LE

<<#>>) (C((((z (x x)) (2) ®pquer) J) (X) epqwey) X))

(CCCCC((T u =) 39e37) U %) T (0 U =>) JT) (u) epqwel) (IdvF) ®pquel) j)) o913087)
UOHHOHV [
N <<*>3)
<==[0L) == 4
CCCCCCECC(T @ =) 39%F) W &) ((Z W)) 281187) <<H>>)
((((z (x x)) (2) epquel) 12%])))]
281387) <<®>>)
((((((z (x X)) (Z) epqmweT) J) (X) BPQURT) X)) CCCCC(r @ =) 29%7) W %) T (0 ¥ =>) JT) (U) epquey) (32%7) epawer) J))
201397) 2813181)
€
<<xd>>) <mm[H9] ==
4 €4qq(¢A
<<*>>) (CCC((T @ =) 39%) T ») T (0 U =>) FT) (U) epquer)
8 ((((z (x x)) (z) ©pquer) 3°V]))
<<H>>) 28138T))
(CCCCC((r o =) 39%1) W) T (0 W =>) JT) (W) epqueT) (319e]) Tpqwel) J)) ((((((Z (x x)) (2) ®pqueT)) (X) ©pqueY) X))
UOHHOHV UOHHOHV
€
<m=[89] == <<*>>)
CCCCCCCCCC(r @ =) 29%F) U %) T (0 T <<=>>>) FT) ((T W)) 281381) v
((((z (x X)) (2) epquey) 310%])) <<H>>)
UOHHOHV [+]
((((((Zz (x x)) (2) epque) J) (X) epquWel) X)) <<H>>)
J81387) CCCCCCC(T @ =) 39%7) T 4) T (0 @ =>) JT) (W) ®PqWeT) (39%J) epqwel) J))
€ 2813187)
<<#>>)
14 C=m[£9] ==
<<x>>) €€4¢¢1
8 (T @ =) 39%) W &) T (0 U =>) JT) (W) epquel)
<<*>>) ((((z (x x)) (2) epquel) 3o%]))
CCCCCC((T 1 =) 29%7) U %) T (0 U =>) JT) (U) epqwel) (319eJ) epquer) jJ)) 281187)
J81387) ((((((Z (x x)) (z) °pqueT) J) (X) ®pquel) X))
201287))
. <=m[99]m= €
CCCCCCCECC(T T =) 39%F) T &) T (0 U =>) FT) ((T W)) d8I381) <<H>>)
((((z (x X)) (Z) ®pquey) 2D®})) 4
281387) <<k>>)
((((((z (x X)) (2Z) epquweT) J) (X) epquwel) X)) 9
28118T) <<#>>)
€ (CCCCCC(r m =) 20%]) W %) T (0 W =>) JT) (U) wpquWe[) (3Id®F) epquwel) J))
<<*>>) 281387)
v
<<H>>) <=n[Z9] »=
S €€€44¢]
<<*>>) (CCCC((T T =) 39%]) U «) T (0 W =>) FT) (W) epquel)
CCCCCCC(T @ =) 19e3) U %) T (0 U =>) JT) (U) epqwel) (3o%F) vPQWeT) F)) ((((z (x X)) (Z) ®pquel) 1°¥]))
- se13071) 2811871)
((((((z (x X)) (2) epqwel) j) (X) ®©pquey) X))
<==[g9] == 581181))
CCCCCCE (CCC(r T -) 39®F) U &) T (0 U =>) JT) (U) epqmel)) «z z)»
((((z (x x)) (2) epquey) 32e])) 58118T7)
UOHHQHV . [

sojdurexy [opopy wonnINsSqng :g INOPURH rEZPSI/PP0'9 sajdurexg [apopy UolnInsqNg ¢ INOPURY LEZHSI/[FH0'9 9¢

6¢

<<*>>)

S

<<E>D)

CCCCCCC(T U =) 39%F) U &) T (0 U =>) JT) (W) epquey) (31de}) epquer) J))
J91307)

. K== [08] ==
(=
((((Zz (x T)) (Z) ®=pqueT) J)
((((((z (X X)) (2) epaweT) 3) (X) epquel) X))
UDHHOHVV
«r 2)
UQHHOHV
Zz
<<A>>)
€
<<>>)
4
<<H>>)
S
<<>>)
(CCCC(((T @ =) 30v1) W *) T (0 U =>) JT) (W) epquweT) (3Id>eJ) epquer) J))
J91307)

<mm[6L] ==
ez
(((((z (x 1)) (Z) epquweT) J) (X) epque])
((((Z (x X)) (Z) epquel) J) (X) epquel)))
(1 z)
291307)
Zz
<<#>>)
€
<<>>)
4
<<H>>)
g
<<AD>)
CCCCCCC(T @ =) 3de3) u ») T (0 U =>) JT) (u) epquweT) (3d>e}) epquwer) jJ))
s91307)

<=={gl]==
CCCCCC((Z (X ((((z (x 1)) (Z) epquel) J) (X) epquwel))) ((T Z)) d>8I1387)
z
<<*>>)
((((((z (x X)) (Z) epquwel) J) (X) epque]) I))
581197)
€
<<*>>)
14
<<*>>)
S
<<*>>)

sojdurexy [2pojy uonninsqng g Nopuey 1Ly 81/r¥40°9

CCCCCC((r T =) 32%F) U) T (0 U =>) JFT) (U) ©pqWeT) (3Ide]) epquel) J))
291397)

Cum())] ==
(CCCCC(Z (2 X)) ((T Z)) D8IIBT) T <<*>>)
((((((z (x 1)) (Z) epquer) J) (X) ®pquel) X))
201307)
€
<<*>>)
4
<<*>>)
]
<<*>>)
(CCCCC((T T =) 3d®y) U %) T (0 U =>) JT) (U) epque[) (3I2%)) epque) jJ))
59.13097)

<mn[GL) ==
(T T <<=>>) ((Z (X X)) (Z) BPQURT)) T <<*>>)
((((((z (x 1)) (Z) ®pque]) J) (X) epquwe]) X))
>81397)
€
<<>>)
14
<<>>)
9
<<>>)
(T =) 3d®%3) U %) T (O U =>) JT) (U) epqwe[) (3d°J) ®°pquel) J))
5913097)

Con{€)] =
T o =) ((Z (X X)) (Z) BpauRT)) T <<*>>) ((Z T)) 291387)
((((((z (x 1)) (Z) epquwe]) J) (X) epquey) X))
J91307)
. €
<<*>>)
4
<<*>>)
S
<<*>>)
CCCCCC((T T =) 39%F) U #) T (0 U =>) JT) (U) epquwe[) (Id>e}) epquwel) J))
J91307)

<mm[ZL] =
CCCCCCCCCCT u =) 39%]) Z <<*+>>) ((T W)) d01387)
((((z (2 X)) (Z) epquel) 312%]))
201397)
((((((Zz (x X)) (Z) ®epquwel) J) (X) epquel) X))
281387)
€
<<*>d>)
2
<<*d>>)
]

sajduwrexy [9PO UOHIINSANG G MMOPUCH [EZH 81/IF50°9 8¢

w

(T @ =) 39%]) @ x) T (0 U =>) FT) (U) epquel) (1de}) ®pquwel) J))
se13187)

(==(98] ==
CCCCCCCCQU(T @ =) 10'F) W %) T (0 U =>) JT) ((T uU)) 20I118T)
((((z (x X)) (2) epquel) 1d>e1))
o81387)
((((((z (x X)) (2) epqmeT) }) (X) epquel) X))
2981187)
z
<<*>>)
€
<<*>>)
14
<<HdD)
g
<<H>>)
CCCCCC((T @ =) 3o%) U x) T (0 W =>) JT) (U) epquel) (1>eF) epquel) j}))
J81197)

<mm (98] ==
COCCCCECT (CCC(T @ =) 32%F) U %) T (0 U =>) JT) (U) epquel))
((((z (x X)) (Z) epquel) 1de]))
UOHPOHV
((((((z (x X)) (2) ®=pqmeT) J) (X) ®pquel) X))
UOHPOHV
4
<CH>D)
€
<<H>D)
4
<CR>D>)
9
<Cx>>)
CCCCCCE(T T =) 3d2eF) W %) T (0 U =>) JT) (U) ©°pqueT) (39%)) epquel) jJ))
se1187)

Cum[$8) ==
e
(CC((T @ =) 35eF) U x) T (0 U =>) JT) (U) epquey)
((((z (x X)) (2) epqueT) 15%}))
281108T))
((((((Z (X x)) (Z) epqmeT) J) (X) epquwel) X))
291391)
4
<<Hd>>)
€
<<x>>)
v
<<*>>)
S
<<*>>)
(CCCCC((T T =) 39%F) W %) T (0 W =>) JT) (u) epquwe) (1d>eJ) epquel) J))

sajdurexy [spopy uonmnsqng :g nopury [eZp 81/rPr0°9

d813e1)
<mm{gg] ==
[€44444
(((((((T @ =) 3oe7) W) T (0T =>) FT) (U) epquWeT)
((((z (x X)) (2) =pqmel) IOe}))
291187)
((((((z (x X)) (Z) epquel) F) (X) epquel) X))
s91307))
z
<<*>>)
€
<<*>>)
14
<<>>)
9
<<>>)
(T @ =) 1de3) W %) T (0 U =>) JT) (U) epqmel) (Id%]) ©pquWeT) j))
29118T)
Cu={7g) w=
(=
((CC(((T T =) 3deF) W) T (0 U =>) FT) (U) ©pqueT)
((((z (x X)) (2) epPqueT) 19%}))
2911071)
((((((z (x X)) (Z) ®epqueT) F) (X) epqmel) X))
291181))
«r z)
dse1191)
z
<<ad>)
€
<<x>>)
14
<<x>>)
9
: <<¥>>)
(T @ ~) 39%3) uw &) T (0 U =>) JFT) (U) ®pquel) (3Id%}) epquwel) J))
281191)
C==[1g) ==
ez
((((Zz (x X)) (Z) =pquwel)
(CCC((T T) 39%]) W %) T (0 U =>) JT) (W) epquWeT) (1d®F) epquel))
((((((Z (x X)) (Z) ®pque]) J) (X) ®pquel) X))
J291381))
(r z))
s91197)
z
<<x>>)
€
<<H>D)
4
se[durexsy [opojy ©OIINIIEGNG i JNOPURY LEZP 81/[PP09 oy

144

((((((Z (x x)) (=) epquel) F) (X) epqwe]) X))
UOHHGHV
14
<<*>>)
€
<<*>>)
4
<<*>>)
9
<<®>>)
CCCCC(((T T =) 39%F) U %) T (0O U =>) JT) (W) epquwel) (32%F) epquwel) J))
UOHuﬂdv

<==[16]==
OOz (x 3)) ((0 2)) D28I38T) T <<*>>)
((((((z (x X)) (Z) epqueT) J) (X) ©pqueT) X))
J01387)
14
<<*d>)
€
<<*>>)
4
<<*>>)
S
<<ed>>)
(CCCCC((T T =) 39%]) W ») T (0 U =>) JT) (U) epquwel) (3I2e}) epquel) J))
J0I1387)

<==[g6]) ==
CCCCCCCC(T T <<=>>) ((Z (X X)) (Z) =paumel)) 1 <<»>>)
((((((z (x X)) (Z) epqueT) JF) (X) epquwey) X))
J01380T)
4
<<*>>)
€
<<*>>)
4
<<*>>)
9
<<x>>)
(CCCCCC(T T =) 30%]) uw) T (O U =>) JT) (U) epquey) (3Ide]) epquey) jJ))
Je1397)

. == [£6] ==
CCCCCCCCE(r w =) ((Z (x X)) (Z) epqweT)) T <<*>>) ((I uU)) de13e7)
((C(((Zz (x X)) (Z) epquel) J) (X) ©PQWEY) X))
Uwhuwdv
z
<<*>>)
€
<<*>>)
4
<<*>>)

sopdurexsy [PPOW UOIIMIIISqNG :G IMOPUCH [EZH 8T/[HH0'9

S

<<x>>)

(T u =) 30®F) U) T (0 U =>) JT) (U) epque]) (3Id%]) ®pquel) J))
J81381)

<==[Z6])==
CCCCCECCC(T u =) 30-E) T <<#>>) ((1 U)) dexzer)
((((z (x X)) (2) epquel) 3I0%]))
291387)
(CCC((Z (x X)) (Z) epquel) J) (X) epquwel) X))
291387)
z
<<H>>)
€
<<*>>)
¥
<<x>D)
9
<<*>>)
(CCCCC((T uw =) 30eF) U %) T (0 U =>) FT) (U) epquel) (3de)) epqwel) J))
J01301)

<==[0§] ==
CCCCCCCCC((T u =) aoex) u) ((T u)) d8I139T)
((((Zz (x X)) (%) =pqwey) 30%]))
201387T)
((CCC(z (x X)) (Z) epquel) J) (X) epqmel) X))
J0I1307)
T
<<*>>)
€
<<*>>)
4
<<ed>>)
9
<<>>)
(CCCC((T T =) 393) W) T (0 U =>) FT) (W) epquwel) (3Id>%]) ©pquel) J))
J8I1307)

(== [§8] ==
CCCCCCCCCC((T T =) 3oeg) Wa) T (0 T <<=>>>) JT) ((T u)) der3eY)
((((z (x X)) (Z) ®=pquer) 32%]))
J8I1307)
(C(((Z (x X)) (Z) =pquel) J) (X) epque]) X))
201397)
4
<<*>>)
€
<<*>>)
4
<<*>>)
9
<<x>>)

gopdurexyy PPOW UONMINSYNG G INOPURH LEZH'ST/LFPPO°9 A 4

P4

<==[€0T] ==
(o
(CCCQ((T u =) 398F) w %) T (0 W =>) FT) (u) epquer)
((((z (x T)) (2) ®pquel) 3I°®]))

UONQQHV
((((((z (x X)) (Z) ®pquweT) J) (X) epquel) X))
UQNQOHV v
T
<<x>>)
[4
<<k>>)
€
<<x>Y)
4
<<E>>)
g
<<E>>)
(CCCC(((T @ =) 30®3) U &) T (0 W =>) FT) (U) epquel) (3I>eF) epqmel) J))
281381)
Cmm(Z0T] ==
ez
(CC((((1 u =) 30e7) uw &) T (0 U =>) FT) (W) epquey)
((((z (x X)) (2) epquel) 3Ioe}))
201387)
((((((z (x x)) (2) °pquel) J) (X) epquel) X))
581397))
(o 2))
J81301)
T
<<H>>)
[4
<<x>>)
€
<<x>>)
4
<<*>>)
g
<<*>>)
(CCCCCC(T T -) 30%3) u %) T (0 U =>) JT) (W) epquwe[) (3oe]) epquel) j))
UOHQOHV
<m={10]] ==
(=
((((Z (x X)) (2) =pqueT)
(CCC((1 @ =) 30%3) W «) T (0 U =>) FT) (U) epquwe]) (3oe]) epquer))
((((((z (x X)) (2) epqwe]) J) (X) epquwer) X))
291301))
((0 2))
UGNQ@HV
T
' <<H>D)
[4

sojdurexy [opojy wonnynsqng :¢ nopuer gy 81/rrr0’9

<<x>>)
€
<<H>D>)
14
<<x>>)
S
<<H>>)
QT @ =) 39%]) W) T (0 W =>) JT) (W) ©PqWeT) (22®}) epque() jJ))
Je1387)

<==[00T] ==
(=
((((z (x X)) (2) epquey) })
((((((z (x X)) (2) epquwel) J) (X) epquel) X))
291397))
((© 2))
Je1397)
T
<<x>>)
[4
<<E>>)
€
<<x>>)
4
<<x>>)
g
<<*>D>)
QT w =) 39®7) U ») T (0 W =>) FT) (W) ©paWe[) (1deJ) epquey) J))
ds01387)

C==[66] ==
(=
(((((z (X X)) () =PAWET) J) (X) ®pqmWer)
((((z (x X)) (2) =PAWRT) J) (X) EpqwWeT)))
0 2))
J29I1307)
T
<<E>>)
[4
<<*>>)
€
<<x>>)
4
<<x>>)
S
<<x>>)
CCCCCCC(T ® =) a9'7) w %) T (O U =>) FT) (W) ©pquWeT) (35eF) epqwel) jJ))
J91387)

<==[86] ==

CCCCCE(z (@ ((((2 (X X)) (Z) epqueT) F) (X) epauel))) ((0 2)) d0I3°T)

1
<<x>>)

sajdurexy [spopy wonn3isqng :¢ INOPUTH rezh 81/IF09 142

FA 4

zh))

()
epquet)
1oeJ-1837-4
" erzep)
<==TYAI-490S

‘Juipuimun £q rewo)oe] aanelayl o) 108 wed am 3L YHM

peurjep ueaq sey z&

(((((((Zz 1z (x X)) (ZZ 1Z) ®pquel) J) (X) epquey)
((((2Z 12z (x X)) (TZ 1Z) epquer) J) (X) epquer))
(€3]
epquet)
z4
eurJep)
<==TVAZ-4NS

'S[RULIOJ OM] [JIM SUOIHIUYIP SAISINIAI 10] papaau st 1ojelado juiod paxy jaalsyip APYSNs v

ozt

<mu{0TT] ==
(CCCCT T <<#>>) T <<#>>) € <<#>>) b <<*d>) § <<#d>>)

<=={g801] ==
COCCCCCCCCC((T u =) 39®F) U %) T (0 O <<=>>>) FT) ((0 u)) dex3ey)
((((z (x X)) (2) ®pquel) 3Id°]))
291391)
((((((z (x X)) (Z) epquel) J) (X) epquel) X))
291391)
T
<<*>>)
z
<<*>D>)
€
<<x>>)
4
<<*>>)
S
<<*>D>)
(CCCCC((T u =) 39%F) U «) T (0 U =>) JFT) (U) epque() (3Io%}) epquel) J))
UWNHOHV

<=={901]==
CCCCCCCCCC(((T T =) 39%]) U ») T (0 W =>) JT) ((0 U)) d0I38T)
((((z (x x)) (2) epawel) 33%]))
2913097)
((((((z (x X)) (2) epqueT) J) (X) ©pquel) X))

sojdurexqy [opopy uolnInsqng :g INOPUEH LEZHRI/IHH09

UONHOHV
T
<<E>>)
4
<<>>)
€
<<>>)
14
<<x>>)
S
<<*>>)
(CCCC((T ' =) 35%]) U %) T (0 U =>) JT) (U) epquwel) (3d%}) epquer) J))
%981107)

AllﬁmOﬁull
CCCCCCCCCO (((((T u -) 32%]) U *) T (0 U =>) JT) (W) ©epquey))
((((z (x x)) (2) ®pqueT) 31de}))
U@HP@HV
((((((z (x X)) (2) epquel) J) (X) ©°pqueI) X))
29139T)
T
<<*>>)
z
<<¥>>)
€
<<H>>)
14
<<x>>)
9
<<H>>)
(OO U =) 39%F) W #) T (0 U =>) JT) (W) °PqUWeT) (Ide}) TPqWR) J))
2813097)

C=u[H0T] ==
(o
(((C((F @ =) 32%]) U %) T (0 W =>) JI) (U) epque])
((((z (2 T)) (2) ®pqwer) 3d%}))
%291307))
((((((z (2 X)) (2) ®pqueT) }) (X) ®pquWel) X))
201397)
T
<<*>>)
4
<<*>>)
€
<<*>>)
4
<<x>>)
9
<<k>>)
(T @ -) 29%]) U %) T (0 U =>) JT) (U) ®pque() (IdI°]) RpqueT) J))
%91307)

sopdurexy [Jpopy uonmINsSqng :g IMOPUeH rEZH'81/rFFO°9 L4

6%

(CCCC((atnsax u %) (T u -) I93T) ITAS3I (0 U =>) FI) (ITNSAI W) ©pquWey)
’ ((((ZZ 1z (X X)) (TZ 1Z) epquel) Ie3r))
J01307)
(C((((2Z 1Z (X X)) (TZ 1Z) TPAWe) J) (X) ©paweT) X))
J0I1701)
((CCC((aTnsex u) (T U -) I93T) ITNSEI (0 U =>) JT) (3ITnsel U) epquel)
(2031)
epqueT)
$9))]
2e1397))
«s)

J01397)

Cnm[l] ==

o1
u

(((((Zz 1Z (X X)) (TZ 1Z) epqmwey)
(((((aTnsdx U ») (T U -) I103T) 3ITNS6I (0 U =>) FT) (3ITNSSI U) epquerl)
(z011)
epqueTl))
((((((zZ 12 (X X)) (ZZ 1Z) °PQWRT) 3) (X) ®PQUET) X))
d20I1389T)
((C(((aTnsax u %) (T W -) I9IT) 3TNSSI (0 U =>) JI) (IINSOX U) epquer)
(1931)
epquet)
)
J81391))
(g o))
2981387)

Kmu[9]) ==
o1
u
(((((zz 12 (* X)) (TZ 1Z) ®pquel) jJ)
(((C((zZ 12 (x X)) (TZ 1Z) epawel) J) (X) epquwel) X))
281387)
((C((((aTnsex W %) (] U -) I81T) 3TNSSI (0 U =>) JT) (3ITNSSI U) epquey)
(1931)
epquet)
)
2813871))
(s 1)

Je1397)

<mn[g) ==
(€4
u
((((((zZ 12 (X X)) (2% 12) ®=pquel) }) (X) ©pquel)
((((2Z 1Z (x X)) (TZ 1Z) epqwel) J) (X) epqwer))
(CCC((((3Tnsdx T %) (T U -) I23T) 3IINSOI (0 U =>) JFT) (3ITNSSI U) epqueT)
(2031)
epquret)
)

gajdurexs [9pojy uonninsqng :¢ ynopuel reZh8I/Ir50°9

281308T))

(s m)
29I1397)

Cz=[{]) ==
«r
u
(C((((aTnsex u %) (] U -) X93T) ITNSSI (0 U =>) JI) (3[NSOI W) epquel)
(1031)
epqueTt)
((((((@z 12 (X X)) (TZ 1Z) epqmer)) (X) epquer)
((((2Z 12 (X X)) (TZ 1Z) ®pquweT) J) (X) epquer))
« (€3]
epquet)))
(s w))

201308T)

Coxm [£]
o1
u
((((((3Tnsex u ») (T U -) IBIT) 3ITNS8X (0 U =>) FI) (I[NSOI U) epquel)
(1931)
epqueT)
(Z9))]
(g m)
291391)

Kmu[Z]u=
(s
o«
u
((((((aTnsex u ») (T U -) I63T) 3TNSI (0 U =>) FI) (I[NSLI U) epquer)
(1937)
epquer)
T ozhy)
(m
epqueT))

Cum[]]mm
(9 1oez-1031-£)
<==IYAZ-9NS

:31 189} UED am puy

peur jop ueeq Sey 30eF-I1831-£

o

u
((((((3Tnsex u %) (T U -) I63T) 2TNSaI (0 U =>) JT) (ITNSSI U) epquel)
(1931)
epqueT)

so[dureXxy [opopy uonnINSqUg :g MMOPURH LEZHRI/IHP0'9 8v

20x19T)
(CCCC((atnsax u #) (T U -) I83T) I[NS6I (0 W =>) JT) (ITNSSI U) VPQWR)
(xe11)
‘epqueT)

)

J81197)

<==(f]])==
(CC(((3TN8BI U) (T U -) 203T) ((1 3ITNSLI) (§ W)) 28I3°T)
((((2z 1z (x X)) (TZ 1Z) ©pqwel) Io1l))
291387)
(CCC((2z 1z (x X)) (TZ 1Z) epquey) J) (X) epquel) X))
291187T)
(CCC(((3Tnsex U %) (T U -) X9IT) ITNSSI (0 U =>) FI) (3ITNSex U) epquey)
(1017)
epqueT)
)
o0x3197)

<m=[G]]==
(CCCC((ITNSex U #) (T U -) I93T) ITNSAX (0 § <<=>>>) FT)
((1 3nsex) (g w))
ELEETY §)
((((2Z 1z (x X)) (TZ 1Z) epquel) 101T1))
Je1107)
(CCC((zz 1z (x X)) (TZ 1Z) epque() J) (X) ©pquWeY) X))
J291397)
((C((((3Tnsex U #) (T U -) XBIT) 3I[NS8I (0 U =>) JT) (ITngex u) epqumey)
(1011)
epqmeT)
)
ELEET))

Allmm«ull
((CCC((aTnsex @ x) (1 @ -) I93T) ITNSX (O U =>) JT)
((1 3tnsex) (g W)
2813087)
((((2Z 1z (x X)) (TZ 1Z) epquel) 1e11))
J813181)
(CC(((2Z 1Z (X X)) (TZ 1Z) ®pPqWeT) J) (X) epquel) X))
oe1187)
(CCC(((ITNS_I T %) (T U -) X9IT) 3[NSAX (0 U =>) JT) (I[NS6X U) epque()
(2e31)
epqueT()
13))
2e179T)

K== ([Z]] ==
{qqq’
S
((((3TNSBI W #) (] U -) I03T) 3NELI (0 U =>) FT) (ATNSOX U) EPQEET))
((((ZZ 1z (x X)) (TZ 1Z) epquel) I°1T))
291107)

18 so[durexy] [apopy UolynInsqng G Inopury reZh81/FF0'9

((((((zz 12 (X X)) (2Z 12) epquel) J) (X) epamer) X))
Jex1e1)
(((((((3TnSeX u #) (I W -) I93T) 1TNSOI (0 U =>) JT) (ITNSSI W) EPqWeY)
(2021)
epqueT)
)
201187)

Cum[]]] ==
444
S
(((((3Tnsex u %) (T W -) X93IT) 3ITNseX (0 U =>) FT) (IINS6I U) uwpquey)
((((2Z 1z (x X)) (2Z 1Z) ®=pqueT) Ieal))
2901307))
((((((zZ 1Z (X 1)) (ZZ 12) wPQUET) F) (X) wpqQWeT) X))
28x101)
(CCC(((aTNsex U %) (T U -) IB8IT) [NSSI (0 U =>) JFT) (ITNSSX U) ®pquey)
(x0171)
epquet)
)
20x197)

<==[0]] ==
o1
)
((((((atnsex u %) (T U -) X81T) IINSSI (0 U =>) JT) (I[NS6I U) epquel)
(€(((2Z 12z (X X)) (TZ 1Z) epquel) I81T))
o81187)
(CCC((2Z 1Z (x X)) (ZZ 12) ®epquWel) J) (X) Epquel) X))
2911087))
(C(((((aTnsex u ») (1 U -) I93T) IINSSI (0 U =>) JT) (ITNS6I U) Epqwer)
(1031)
epqureT)
)
20x197)

<mm[E]==
«a
9
(((((((aTnsex U &) (1 U -) ILIT) 3I[NS_X (0 U =>) FT) (I[NS1I U) epquey)
((((2Z 12 (x x)) (TZ 1Z) ©pque]) Ie1l))
29118T)
((C(((2z 1z (X X)) (TZ 1Z) ®*pqwe]) J) (X) ®epquwe() X))
08I10T)
((CC(((3Tnsex U #) (T W -) I81T) I[NSSX (0 U =>) JT) (I[NELI U) epquey)
(1027)
epquet)
)
2911817))

<= 8] =
«

ua

sojdurexy] [2popy uONRINSqNG :G MOPURY LETH 8T/ [VFO9 0S

€9

)
201309T)

<w= [0E] ==
(((zz
1z
((((zZ 12 (T T)) (2Z 1Z) ®paweT)
(((((aTnsex u %) (T u ~) I93T) 3INSAX (0 U =>) JFT) (3[NSeI U) epqueTl)
(19311)
epqueT))
((((((zZ 1z (x 1)) (ZZ 1Z) =pQWeT) J) (X) €pquel) I))
2913107))
(3 22) (¥ 12))
J8x991)
(((((((aTnsex u %) (T U -) I\BIT) I[NSOI (0 U =>) JFI) (3[NSOI U) epquey)
(1031)
epquer)
)
20a1387)

K== [6Z) ==
(((z2z
1z
((((2Z 12 (x X)) (T2 12) ®pquel) })
((((((2Z 12 (x x)) (TZ 12) ®PqQWeT) J) (X) ®pquel) I))
o8x3971))
(s 22) (¥ 12))
. o8I1381)
((C((((3TN82I W %) (I U -) I93T) 3TNSLI (0 U =>) FT) (I[NSLI U) wpquel)
(19311)
epqueT)
0
281391)

Km=[gZ] ==
(((zz
12
(((((2Z 12 (X X)) (TZ 12) epquel) }) (X) epquel)
((((2z 1z (x X)) (22 12) epquel) J) (X) epauweT)))
(s 22) (v 12))
J81307)
(CCC(((3Tn=ex u) (] & -) I8aT) 2TNSLI (0 U =>) JT) (ITNSeI u) epquey)
(1031)
epqueT)
)
Je1397)

<=={)T]==
((((2z 12 (X ((((Zz 12 (X X)) (ZZ 1Z) ®pquel) J) (X) ®©pquer)))
(5§ 22) (¥ 12))
281387)
((((((TZ 12 (X X)) (TZ 12) epquweT) J) (X) ®pquey) X))
29139T)

sodurexg [spopy uolnysqng :g ynopuet] rEgh 81/Pr0'9

AAAAAAAPHﬂmOH u lv Aﬁ u Iv Hwﬂﬁv jnsex AO u HVv Hﬂv APH=mWH Ev dﬂﬂEde
(z011)
epquer)

)
J91307)

<mm[9Z] ==
((((22 12 (X 1)) ((§ 22) (¥ 12)) d81301)
((((((2Z 1z (X X)) (TZ 1Z) epauweT)) (X) epque) X))
281707)
((CC(((3TNSOI U %) (I © -) I93T) 3NS®I (0 U =>) JT) (ITNSEI U) epquey)
(1011)
epqueT)
)
20139T)

Cun [HT) ==
((((T 8 <<*>>) ¥ ((2Z 12 (X X)) (22 12) epquel))
((((((2z 12 (x X)) (TZ 12) ®pqueT) }) (X) epqwel) X))
UOHPOHV
(((C(((3Tnse1 U %) (T ¥ -) I931) 3[NSaI (0 U =>) JT) (ITNSI U) epqweT)
(3931)
epquer)
)
UGHPOHV

Cmm [E7]m=
(((((3Tnsex g <<*>>) ¥ ((TZ 1Z (X X)) (ZZ 12) ®paweT)) ((T 3ITNSeI)) 28I397)
((((((2Z 12 (X X)) (TZ 12) ®*pauwel) J) (X) epque() X))
J011071)
(CC((((3Tnse1 u) (7 U -) I83T) 3[NSSI (0 W =>) JT) (ITNSeX U) ©pquey)
(z831)
epquer)
)
J01397)

<K==[0Z] ==
(((((3tnsex u x) (T § <<->>) ((ZZ 1z (X X)) (TZ 12) epqweT))
((T 3Tnsex) (g u))
J81381)
((((((2Z 1z (T 1)) (TZ 12) ®pqweT) J) (X) epque() X))
s81307)
((C((((ITNS8T U %) (] U -) I93T) 1INSeX (0 U =>) JI) (3ITNSOI U) epqueT)
(2031)
epquet)
)
%9813017)

Cm=[g]]) ==
(((((3Tnsex u #) (1 ¥ -) ((TZ 12 (X X)) (T2 12) ®epquel))
((1 3Insex) (g U))
29139T)
((((((zZz 1z (x 1)) (TZ 12) ®pqwe]) J) (X) ®PQWET) X))

so[durexy [apopy UORMINSGNS ¢ INOPUTH [LZH 8I/[FF0'9 [AY

$s

281397)
((CCCC(aTsax u x) (T T ~) I93T) 3NS6I (0 U =>) JI) (ITNSSI u) epquer)
(1e31)
wpque)

)

291397)

<mm[GE] ==
AAAAAAAFHQWOH u lv Aﬁ u lv .NOH,.HV jTnssx AO -2 AAIVVVV H.nv
((g 1Ins8x) (% uU))
UONHOHV
((((Z% 1z (x X)) (TZ 1Z) epquey) 103T))
UO.NHOHV
((((((2Z 1z (X X)) (TZ 1Z) ®pQWe]) J) (X) epquel) X))
UONHOHV
AAAAAAAFHSMOH u lv A.n u Iv HOHMV aTnsex AO u IVV H.nv AHHQWQH ﬁv HVDEMHV
ANO&MV
epqueT)
)
201307)

<m=[9f] ==
((C((((aTns2x u) (T U -) I83T) ATNSOI (0 U =>) JTI)
((g 2Tnse1) (% W)
J91387)
((((ZZ 12 (X X)) (TZ 1Z) epquel) Ie31))
291307)
(C((((ZZ 12 (X X)) (ZZ 12Z) ©pQWeT) J) (X) ®PQUET) X))
Je1397)
((C((((3Tns2x W #) (T U -) X83T) ITNSSI (0 W =>) JI) (2[NSLI u) epqurer)
(1031)
epqueT)
)
2013917)

(mm[GE] ==
€4¢¢:
4
((((3TN8_X U %) (T U -) 193T) 3NS8I (0 U =>) JI) (3[NS6I U) epquer))
((((2z 1z (x X)) (ZZ 1Z) ®pquel) Iear))
J81307)
((((((2Z 1z (x X)) (2Z 1Z) ©PqWRY) J) (X) ®epqWel) X))
J91307)
(((((((3Tns8X W ») (T U -) IeaT) 3NSSI (0 U =>) JT) (2[NSLI W) epquer)
(1031)
epquer)
)
Je1387)

<mm[pE] m=
(s
4
(((((3Tnsex U &) (T U -) I83T) 3[NS8I (O U =>) JI) (3[nsex u) epquer)

sajdurexg [apoj onmINsqng :g INOPUeL] LEZHST/LFPO9

o

((((TZ 1z (X X)) (TZ 1Z) ©epque]) 1911))
28110T))
((((((zZz 1z (X X)) (TZ 1Z) ®pquel) J) (X) ®©pqwel) X))
28138T)
((CCC((3Tnsex T %) (T U -) I9IT) 3[NSSI (0 U =>) FT) (3ITNS8I U) epquer)
(1031)
epquer)
)
J01287)

(m=[EL] ==

(s

4
((((((3TNsex u #) (T U -) X93T) 3INSOI (0 U =>) JI) (ITNSeI u) epquer)
((((zZ 12 (X X)) (ZZ 1Z) Epque() Ieal))
J813e7)
((((((zZ 1z (X X)) (2Z 1Z) ®PAWeT)) (X) ©Pquer) X))

J981381))
((CCC((3TNs8x U %) (T U ~) I93T) 3[NS8X (0 U =>) JT) (ITNSOI W) epquer)
(2031)
epqueT)

)

J8I397)

K== [ZE] ==
(((zz
4
((((((3TNSex U %) (I W -) I93T) ITNSSI (0 U =>) FT) (I[NSeI U) epquer)
((((2Z 1z (X X)) (TZ 1Z) ®epquey) I19311))
2011071)
((((((2Z 1z (x X)) (TZ 1Z) ®pawel) J) (X) ®pquel) X))
581397))
(3 22))
J91307)
((CC(((3Tnsex u %) (T U -) I93T) ITNSSI (O U =>) JI) (3T0hSI U) epquer)
(z031)
epqueT)
)
J81181)

AIIH.HMH -
(((zz
1z
((((((3Tns®x U ») (T U -) IelT) 3TNSeI (0 U =>) JFI) (ITNSSI U) epquer)
((((2Z 12 (x X)) (TZ 1Z) epquel) Ie3T))
J81387)
(CCC((2Zz 1z (x X)) (TZ 1Z) ®©pquel) J) (X) epquel) X))
J2013017))
(9.22) (v 12))
291397)
(CCC(((3TNS®I W 4) (1 W -) IeaT) 3[NSeI (0 W =>) FI) (3[NSeI u) wpquel)
(z011)
epquel)

sojdurexg [opoy UonnIsqNgG :¢ INOPUTH rEZH 81/ LFHO'9 ¥s

19

(0T T2) (€ 12))
s9x397)

((C(C((ITnsex U %) (T U -) I91T) 3TNSAI (0 U =>) JFT) (3[nsel U) mpqueT)
(101T)
epqueT)

)

J9138T)

<==[ZG]==
ez
1Z
((((2Zz 1z (X X)) (TZ 1Z) ®pquel) J)
((((((2Z 1z (x X)) (TZ 1Z) ®pquel) J) (X) epquWe) X))
291307))
(0T 22) (£ 12))
28I3871)
(((({((3Tnsax1 U %) (1 U -) I91T) 3ITNSeI (0 U =>) JT) (ITNS8X U) ®pqwWeT)
(1031)
epqueT)
E9))
29119T)

Allﬁwmull
(((z
1z
(((((TZ 1z (x X)) (TZ 1Z) epquwel) J) (X) epquer)
((((TZ 1Z (x X)) (TZ 1Z) ®epquwel) J) (X) ®©pquer)))
((0Z 22) (£ 12))
291101)
(((((((3Tnse1 @ &) (T U -) I33T) ITNS3X (0 U =>) JT) (ITnSax u) epqwey)
(x011)
©pqueT)
13))
Je13eT)

<==[0G] ==
((((ZZ 12 (X ((((ZZ 1Z (X X)) (TZ 1Z) EPQWRT)) (X) EPAWET)))
((0Z 22) (¢ 12))
28I13187T)
((C(((2Z 1Z (X X)) (ZZ 12) wpqWe]) J) (X) TpqWeT) X))
28x38T1)
(C(((((ITNSBL W #) (T U -) I83T) IINSBI (0 U =>) JT) (ITNSeI W) epqwer)
(1811)
®pqueT)
)

J8118T)

<mm[Gh] ==
((((@Z 1z (x 1)) ((0Z TZ) (E 1Z)) d3118T)
((((((ZZ 1Z (X X)) (TZ 1Z) ®pqmeT) J) (X) ®©pquel) X))
29X391)
(((((((3TN83x U %) (T U -) I21T) ITNSOX (0 U =>) JT) (I[NS3X uU) epquel)
(1231)

sapdurexd [9pojy uonymsqng ¢ INOpUeH [EZF'81/FP0'9

epqueT)
)

Jex3eT)

<=m(Lp] ==
((((S ¥ <<¥>>) € ((2Z 1Z (X X)) (22 1Z) ®pqueT))
((((((ZZ 1Z (X X)) (zZ 1Z) *pquel) J) (X) BPqWeT) X))
391391)
(((((((3Tnsax U %) (] U -) I23T) 3TNSa1 (0 U =>) JT) (3TNSeIr U) epquer)
(x031)
=pqueT)
1))
J8I1307)

Cmm[9F] ==
(((((aTnsax ¥ <<*>>) € ((TZ 1Z (X X)) (TZ 12) epque()) ((g 3I[hssr)) deI13eT)
((((((2Z 1z (x X)) (TZ 1Z) ®epquwel) J) (X) epquel) X))
28X3197T)
(((((((aTnsex U ») (T U -) I83T) 3TNSSX (0 U =a>) JT) (3INSAX u) epquWer)
’ (1911)
epqueT)
E9))
291187T)

Alle¢ull
((((atnsex u &) (1 ¥ <<->>) ((TZ 1Z (X X)) (TZ 1Z) epqueT))
((s 3nsex) (¥ 1))
28130T)
((C(((2Z 1z (x X)) (TZ 12Z) ®epqwel) J) (X) epquel) IX))
29X387T)
((C((((ITnsax u ») (T U -) I9BIT) ITNSBI (0 U =>) JI) (ITN9aX u) epquer)
(1831)
epqueT)
:)
281397)

Cwn(Th] a=
(((((ITNS8x W %) (T U -) ((TZ 1Z (X X)) (ZZ 1Z) ®epquel))
((S 3nsax) (% W)
2913197T)
(((€((2Z 1z (x X)) (TZ 1Z) ®TPQWET) J) (X) ©pqueT) X))
2013197)
((CCC((atnsex u «) (] U =) 183T) 3ITASSI (0 U =>) JI) (I[NSOX U) epqueT)
(x011)
epqureT)
15))

391391)

<==[0¥] ==
(CCC((aTnsex U %) (T U -) I93T) ((S 3ITNSOX) (% U)) 29I18T)
((((zz 1z (X X)) (TZ 1Z) epquel) I83T))
28x1307)
((((((2z 1z (X X)) (TZ 1Z) ®PqWET) J) (X) ©PqWe]) X))

sopdiuexyy [opojN UONMINSANG ¢ INOPURY [E7P 81/ [PFO°Y 99

69

201387T)
((((((2Z 12 (X X)) (TZ 1Z) ®pquel) J) (X) ®pquel) X))
20x30T)
(((((((atnsex u &) (T U -) IO3T) I[NSLI (0 U =>) JT) (3ITNSeX U) wpqmeT[)
(F031)
epqueT)
)
291397)

Cmm Hmmu -
(CCC((aTn8aI U %) (T W -) X93T) I[NS8X (0 U =>) JT)
((0Z atnsex) (g u))
591307)
((((2z 12 (X X)) (TZ 1Z) ®pquel) I81Y))
201397)
((((((2Z 1z (x X)) (TZ 1Z) ®epquey) J) (X) ®pqmeY) X))
20x130T)
(((((((3TNs8x W %) (T U -) I93T) 3TNS8X (0 U =>) JT) (I[NS6X U) epquwey)
(2011)
epquer)
)
291397)

<==[89] ==
((((oz
€
((((3Tnsex U x) (T U -) I03T) 3TNS8X (0 U =>) JTI) (1[NSex uU) epquwel))
((((2Zz 1Z (x X)) (2Z 1Z) ®epquel) I811))
seI1307)
((((((2z 1Z (x X)) (TZ 1Z) ®pquWeT) J) (X) ®pquel) X))
50x307)
(((((((31nsex @ x) (T @ -) I93T) I[NS3I (0 U =>) JT) (2[NSl U) epquey)
(1017)
epqueT)
)
J8x187)

<==[lG] ==
(((oz
€
(((((3TNsex U &) (T U -) I93T) 3TNSLX (0 U =>) JT) (I[nsSex U) epquer)
((((ZZz 1Z (X X)) (TZ 1Z) epquel) I81T))
20110T7))
(C((((2z 1Z (X X)) (TZ 1Z) ®pqwel) J) (X) epauel) X))
5eI1197)
(((((((3TNsex U %) (T U -) X837) 3TN88X (0 U =>) JT) (3I[NS8I U) epquey)
(29371)
epqueT)
)

58119T)

<==[9G] ==
(oz

so[dwexy [2pOpy uolInyIsqng g 1nopuweH [EZp 81/ IFH0°9

€
((((((atTnsex u %) (I U =) X93T) 2TNS_I (0 U =>) JT) (3TNSeX U) epquer)
((((ZZ 1z (X X)) (ZZ 1Z) ®epqueT) I931))
2501301)
((((((ZZ 1z (x X)) (TZ 1Z) ®epquel) }) (X) ®pquey) X))
291107))
((CC(((ITnsex U %) (T U -) I937) 3INSeX (0 U =>) JT) (I[NSeX u) epqwel)
(z011)
epqueT)
L))

281197)

<=={9q] ==
(((zz
€
((((((3TNSdx U %) (T U -) X03T) 3NSOI (0 U =>) JT) (3TNSeX u) epqwey)
((((ZZ 1Z (X X)) (TZ 1Z) epquwe]) I81T))
20X397)
((((((ZZ 1Z (X X)) (TZ 1Z) ®pquWe]) }) (X) ®pquwe[) X))
2913187))
oz zz))
50x307)
((CC(((aTnsdx U %) (T U -) I03T) 3TNS_X (0 U =>) FT) (ITNSeI U) epquel)
(1911)
epqueT)
)

se130T)

<= [pq]==
(((zz
1z
((((((3TNsS8eI U %) (I U -) I831T) 3TNSBI (0 U =>) JT) (3I[NSOX U) epquel)
((((TZ 1z (x X)) (TZ 1Z) ®pPqWE]) I81T))
281197)
((((((zz 1z (X X)) (TZ 12) epque]) J) (X) ®PQuUeT) X))
201107))
((0Z 22) (€ 12))
291310T)
(CC((((ITNSeX U ¥) (T U -) I8T) 3[NS6X (0 U =>) JT) (ITNSX U) ewpqueT)
(1911)
epqueT)
)
201107)

Cxm[£9] ==
(((zz
12
((((Tz 1z (X X)) (TZ 1Z) epque])
(((((3TNsex U x) (T U -) Ie1T) 1TNS8X (O U =>) FT) (3TNSeI u) epquer)
(3031)
epqueT))
((((((ZZ 12 (X X)) (TZ 1Z) epquel) }) (X) epquel) X))
291181))

sopdwexy [SPOpy WOIMIIISqUG G INOPUH [LZb'81/IVh0°9 8¢

19

((((((2z 1z (X X)) (ZZ 1Z) ®epquwel) J) (X) epquel) X))
J91307))
((09 22) (T 12))
' oe13er)
((CCC((aITnsax u x) (T U -) I93T) 1TN88X (0 U =>) JT) (3Insel u) epquey)
(1931)
epqueTt)
)
2013181)

C==[pL]==
(((z=z
1z
(((((Zz 1z (x X)) (ZTZ 1Z) ®°pqueT) J) (X) epquer)
((((ZZ 1z (x X)) (ZZ 1Z) epqwe() JF) (X) ©pqmeT)))
(09 z2) (T 12))
291307)
(CCC(((3tnsax w %) (1 @ -) I237) 3ITNSSI (0 U =>) JT) (I[NSLI U) epquey)
(2031)
epqueT)
D)
J91187)

Km=[C)] ==
((((22 12 (X ((((2Z 1Z (X X)) (2Z 12) epamey) J) (X) epqweT)))
(09 Z2) (Z 12))
291397)
((((((2Z 1z (X X)) (ZZ 1Z) epquel) J) (X) epqmwel) X))
J91307)
(((((((3tnsax u %) (T U -) 183T) 3INF8I (0 U =>) JT) (3ITNSLI U) epqmey)
(2031)
epquer)
)
Js913071)

<mm[ZTL]==
((((TZ 1z (x X)) ((09 TZ) (T 1Z)) 281397)
((((((Zz 1z (X X)) (TZ 1Z) epquel) J) (X) ®epquweY) X))
J81381)
(((((((3TNS81 W) (T W -) I83T) 3ITSLI (Q U =>) JI) (ITNSSI U) epqmer)
(1031)
epquet)
)
J901301)

<C==[0L]) ==

(((0Z € <<*>>) T ((TZ 1Z (X X)) (ZZ 1Z) ®epque))

((((((2z 12 (x X)) (ZZ 1Z) epquel) }) (X) epquel) X))

291397)
(CCC(((3IIN8dI T %) (T U -) I93T) ITNSBI (0 U =>) JT) (3TNSAI U) epquer)
(1031)
epqureT)

)

so[durexy [apopy uonnyIsqng :g INOPUCH rEZHBI/LEPOY

J9118T)

<==[69] ==
(((((3Tn88X € <<x>>) T ((ZZ 1Z (X X)) (ZZ 1Z) ®pqmeT)) ((0Z IINSLI)) 8138T)
((C(((ZZ 12 (X X)) (ZTZ 1Z) °pquel) F) (X) epquWeT) X))
J01101)
(CCC(((aInsax U %) (T w -) I8IT) IINS8X (0 U =>) JI) (ITNSOI U) epquer)
(1011)
epqueT)
19))
s81397)

<=n[99] ==
(((((3TnS8x W) (1 € <<->>) ((ZZ 1Z (X X)) (Z2 1Z) ®epqueT))
((0T ansax) (¢ u))
J91387)
(CC(((2Z 12 (X X)) (TZ 1Z) epqWeT)) (X) epquel) X))
J91181)
(((((((3Tn88x W x) (I U -) I83T) I[NSEI (0 U =>) JT) (ITNELI U) epquer)
(10371)
epqmeT)
)
J91387)

<an[}9] ==
(((((atnsax T %) (T U -) ((2Z 1Z (X X)) (TZ 1Z) ®epquey))
((0T 3Tnsax) (¢ w))
: 291307)
((((((ZZ 1Z (X X)) (TZ 1z) epqueT) J) (X) epquer) X))
28131087)
(CCC(((3Tnsax @ ») (T u -) F031) 3I[NSex (0 U =>) JT) (3I[NS8I U) epqmeT)
(1831)
epqueT)
)
281387T)

<an[£9] ==
((((((3TN88I W %) (T U -) I03T) ((0Z 3ITNSLI) (¢ W)) d0I38T)
((((2Z 1z (x X)) (ZZ 1Z) ®epqueT) 1831))
Je178T)
(((C((ZZ 1Z (X X)) (ZZ 12) ®pqueT)) (X) epquel) X))
J81387)
((C((((3Tnsex W %) (I W -) I93T) 3TNS8I (O U =>) JT) (IINSSI U) epquer)
(z011)
epquret)
¥))
J91307)

C=m[]9] ==
(CC(C((atnsax U %) (T U -) I83T) 3TNBBI (0 € <<=>>>) 1)
((0T 31nsax) (¢ u))
J91307)
((((€Z 1z (x X)) (TZ 12) epquel) 131))

sopdurexs] [PpOW UORMINSANG G INOPURY rEZH'R1/IPFO'9 09

€9

2913971)
((((ZZ 1z (X X)) (TZ 1Z) TPQWeT) 103T))
29x301)
((((((zz 1Z (X X)) (zZ 12Z) epquel) J) (X) ©PGEE]) X))
2819971)
(((((((aTnsax u %) (T U -) I8IT) 3INSeX (0 U =>) JT) (3I[NSPI U) TpqueT)
(10371)
epqureT)
)
2013871)

<==[18] ==
(((Co9
[4
((((3Tnsex U ¥) (1 U -) I83T) 3TNS6X (O U =>) JI) (3ITNSOX U) ©PqueT))
((((TZ 12z (X X)) (TZ 1Z) epquel) Ieil))
29x307)
(C((((ZZ 12 (X T)) (ZZ 1Z) epQueT) §) (X) TPAWRT) X))
2019971)
(((((((aTnsex u x) (I & -) Xe1Tr) 3INs6l (0 U =>) JI) (3[nseX u) epquer)
(x031)
epqure)
m
2019971)

<m= {08] m=
(((o9
[4
(C(((3TNSeX U %) (1 U -) IeaT) 3[USLX (O U =>) FI) (ITNSeX U) epquer)
((((2Z 12 (x X)) (zZ 12) wpawel) 1831))
201307))
((((((ZZ 12 (X D)) (22 12) TpauweD) H) (T) WPAUST) 1))
781191)
(C(((((3TNSeX U #) (T U -) I2aT) 3TNSel (0 U =>) FI) (I[NSeX U) epqueT)
(x0831)
epqueT)
£9))
201381)

<=m{g)]==
(09
z
((C(((3TN88X U %) (] U -) X93T) 3TNS8X (0 U =>) JFI) (3ITNSeI U) epque])
((((2z 1z (X X)) (TZ 1Z) ®pquel) 1831))
UOHPOHV
((((((ZZ 1Z (X X)) (TZ 1Z) ®epquel) J) (X) ©PAWeT) X))
UOHPOHVV
AnnnnnnuﬁSNOH u lv A« u Iv HOPMV 1Insex AO u le Hﬂv APHSmOH ﬂv dﬁnﬁdﬁv
(x931)
epquweT)
)

20I1101)

sojdurexy [opopy Uolyn3sqng :¢ nopuwel Ly 8I/IPh0'9

Kmm Q)] ==
(((zz
[4
(C((((ansex u %) (T U -) I93T) 3INS8X (O U =>) JT) (3Tnsex u) epqurey)
((((zz 1z (x X)) (TZ 1Z) ePqUET) Ie1Y))
) J01301)
((((((zZ 12 (X X)) (ZZ 1Z) TPQUED) J) (X) ®TPAER) X))
2811071))
(09 22))
J91901)
(((((((3TNs®x U %) (T U -) 1e3T) 3INS6I (0 U =>) JT) (3Insex U) epquer)
(1031)
epquet)
)
20131071)

Km={))]==
(((zz
1z
((((((3TNS8X U %) (I U ~) I03T) 3[Nsex (0 U =>) JFI) (ITNSeX U) ©pque()
((((2Z 1z (X X)) (TZ 1Z) ©PQWRT) 103T))
UOHPOﬂv
(C((((ZZ 12 (X X)) (ZZ 1Z) ®PQUeT) J) (X) *PQEeT) X))
20x3071))
((09 22) (T 12))
20x307)
(CC((((atnsax u %) (T W -) I81T) 3INsS6X (0 U =>) JT) (3INSexX W) epqureT)
(2031)
epqueT)
F9))
201301)

¢==[g)]==
(((zz
1z
((((Z2 1Z (X X)) (TZ 1Z) ®pquRY)
(((((3Tn8eI U %) (I U -) X93T) 3[nsex (0 ¥ =>) JT) (3[nsex u) epqueT)
(I931)
epquel))
((((((ZZ 12 (X X)) (TZ 1Z) epquWeT) J) (X) ®PQWET) X))
Je1381))
((09 22) (T 12))
UOHPOHV
AAAAAAAPH=QOH u lv A« u lv HOPﬂv j1Tnsex AO u IVV Hﬂv Aﬂﬁﬂmoh ﬂv ﬂﬂnﬂdﬁv
(x017)
epqureT)
)
281307)

Kmm[GL]==
(((zz
1z
((((2Z 1Z (X X)) (TZ 1Z) ®PQURT) J)

sopdurexsy [9pOy UOBNISANG G JROPURH (EZF'81/[PP0'9 a9

<9

1z
(((((Zz 12 (x X)) (ZZ 1Z) epquel) }) (X) epquey)
((((2z 1z (x X)) (TZ 1Z) ®epquel) }) (X) epquer)))
ozt Z2) (1 12))
J813017)
(CCCC((aTnseax u %) (1 U -) I93T) I[NSSI (0 U =>) JI) (3Tnsex W) epquer)
AHOHﬂv
epquet)
)
J81387)

K==[96] ==
((((2Z 12 (= ((((2Z 1Z (X X)) (ZZ 1Z) ®pqQWel) J) (X) epquer)))
ozt 2z) (1 12))
281387)
((((((22 12 (X X)) (ZZ 1Z) ®pQwel) J) (X) ®©pqueT) X))
201387)
((CC(((3TnSex w #) (I W -) 183T1) 1TNS2ax (0 W =>) JI) (3[NSex W) epquer)
(x811)
epqueTr)
)
J81387)

Cm=[G6] mm
((((2Z 1Z (x X)) ((021 ZZ) (1 12)) 20138Y)
(C(C((2z 12 (x X)) (2 12) ©pqWeT) J) (X) ®pqweT) X))
J201197)
(CCCC((ATNS2T T &) (T W -) I93T) 3[NSBI (0 W =>) JT) (3TNE6I W) wpquer)
(102T)
epqueTt)
)
201197)

Cum[€6]) =n
((((09 Z <<*>>) T ((ZZ 12 (x X)) (TZ 1Z) epqwel))
((((((2Z 12 (x X)) (ZZ 12) ®pqwel) J) (X) epquel) X))
2913817)
((CC(((atnsex @) (T @ -) I93T) 3ITNSLX (0 W =>) JT) (2TNS6X U) epquey)
(1031)
epqweTr)
)
291307)

Cum([Z6) ==
(((((3TN88X Z <<*>>) T ((22 1Z (X X)) (TZ 12) ©pqwe)) ((09 3ITNSSI)) 291387)
((C(((2z 12 (x X)) (TZ 12) ®pqueT) J) (X) epquel) X))
281307)
((CCC((aTRSex W %) (T U -) I23T) 2TNSOI (0 U =>) JI) (3[nsex a) epquey)
(x011)
epqueT)
)
2e1307)

sojdurexdq [9pO Uonninsqng :g INOPURY rezp S1/CHH0'9

Cmn[68]) ==
(C(((3Tns8X U #) (I T <<->>) ((ZZ 1Z (X X)) (ZZ 1Z) wpquey))
((09 1Tnsex) (Z W)
J017097)
(CC(((2Z 1Z (X X)) (ZZ 1Z) ®=pquwel) J) (X) ®pqueT) X))
Sa13e1)
((CC(((3Tnsex U ») (T U -) I217) 3[NSaX (0 U =>) JT) (3[NSex u) epquey)
(z011)
epquet)
)

%01191)

== (18] ==
((€((3TNS8I W %) (T W -) ((ZZ 1Z (X X)) (ZZ 1Z) ®pqwel))
((09 3Tnsex) (Z W)
Je1381)
((((((ZZ 12z (X X)) (2 12) wpqmel) F) (X) wpquey) X))
381301)
((€C(((ITNB8I W ») (1 U -) I03T) 3TNSLI (O U =>) JT) (ITNELI T) wpqWeT)
(2031)
epqueT)
E9))

J81101)

K== [98] ==
(C((((3Tnse1 W) (T U -) I83T) ((09 ITNSLI) (Z U)) 291387)
((((ZZ 12 (X X)) (ZZ 12) wpquwey) I811))
J8I1381)
((C(((2Z 1z (X X)) (ZZ 1Z)-°pqwer) J) (X) vpqwer) X))
28I1387)
(CCC(((aTRs8I W &) (T W -) I83T) 3I[NsSeX (0 U =>) JT) (3ITNSeI u) epquer)
(z031)
epqueT)
)
20I1387)

<mm[pQ] ==
((CC(((3Tnsex U *) (T U -) I01T) 2TNSSI (0 Z <<=>>>) JT)
((09 3tnsax) (z w))
201187)
((((2Z 1z (X X)) (2Z 1Z) epquel) Ieir))
38I1381)
((((((2Z 12 (X X)) (ZZ 1Z) epquey) J) (X) ®=pquel) X))
UOHPOHV
AAAAAAAHHﬂwON a lv Aﬁ a Iv HOPﬂv gnsex AO u IVV Hﬂv AHHﬂNOH ﬂv dﬂﬂﬂddv
(1031)
epquweT)
)

281307)
Cmm[Z8]=m

(CC((((aTnsex T %) (T U -) I93T) 3TNS8X (0 U =>) FT)
((09 atnsex) (T uW))

sepdurexzy [spojy uounyIsqng :g InOpuel [LZy 91/ LHH0°9 ¥9

ozt
T
((((ansax u *) (T U -) I81T) 3TNSAI (0 U =>) JT) (2[NS6I U) epquer))
((((2z 1z (x X)) (ZZ 1Z) epquel) 1831))
J281387)
((((((2Z 12 (x X)) (ZTZ 1Z) ®pquel) }) (X) ©pquel) X))
29.1397)
(CC(((aTnsax U ») (T U -) I3T) 3TnssI (0 U =>) JT) (ITNSSI U) epqumey)
(1931)
epqueT)
)
201381)

C==[E€0T] ==
ozt
T
(((((3Tnsax uw &) (T W -) I937) 3I[NSSI (0 W =>) JT) (I[NS8I U) BpqueT)
((((2z 12 (T X)) (TZ 1Z) ®©pquel) I83l))
sex307))
((((((2Z 12 (X X)) (TZ 1Z) ®pquwel) J) (X) ©pque]) X))
2913071)
(CCCC(CaITNe®I U %) (T U -) IB3T) ITNSSI (0 U =>) J1) (3I[NESI U) epquel)
(1021)
epqueT)
)
UOHHOHV

<==[Z01] ==
((ozt
1
((((((3Tnsax W +) (T U -) I93T) 2[NSOI (0 U =>) JT) (2[NSSI U) epquel)
((((zz 1Z (X I)) (TZ 1Z) ®epquel) I031))
UOH»Oﬁv
((((((TZ 1z (x X)) (TZ 1Z) epque]) JF) (X) epquel) X))
UOHPOHVV
(CCC(((ITns®x u %) (T T -) I63T) 3[NSSI (O U =>) JT) (3ITNSSI W) epquel)
(1031)
epquer)
£9))

201387)

<==[T0T] ==
@z
T
(CC(((aTN86I W #) (T W -) I93T) I[NSSI (O U =>) JT) (I[NSSI U) epqueT)
((((2z 1z (x 1)) (TZ 1Z) ®epquey) I931))
2813971)
((((((Z2z 12 (X I)) (TZ 1Z) ®pquel) J) (X) epquey) X))
201387))
((ozt 22))
28130T)

(((((((3TNS®I W #) (I W -) I93T) ITNSSI (0 W =>) JT) (3TNSOX u) epquer)
(1011)

19 sopdurexs] [spojy UonNINSqNG :¢ JNOPUEY LEZH §I/IPFO9

epqueT)
)

201397)

<=={00T]==
(e
1z
((((((3TNS6I U) (T U -) I93T) 3ITNSLI (0 U =>) FI) (ITNSeI U) Epquer)
((((2z 1z (x X)) (TZ 1Z) BPQWRT) Ie11))
291397)
((((((ZZz 1z (X X)) (ZTZ 1Z) ®pqueT) J) (X) ®©pque() I))
20I1387))
ozt zz) (1 12))
291391)
((CC(((aTnsdx W #) (T U -) I93T) I[NSSI (0 U =>) JT) (ITNSSI U) Tpquel)
(1031)
epquet)
0

s81307)

Cm=({§6] mm
(((zz
1z
((((2z 1z (X X)) (TZ 1Z) ®pamwe])
((CCCaTns®exI U %) (T U -) I83T) 3TNFSI (O U =>) JT) (I[NS\LI U) epqueT)
(1831)
epqueT))
((C(((ZZ 1Z (X X)) (TZ 1Z) ©pquel) J) (X) epquey) I))
J281387))
((oz1 2%) (1 12))
291387)
((CC(((aTneax u #) (T U -) I8IT) INSDI (0 U =>) JT) (ITNSel U) ®vpque])
(1031)
®pqueT)
1))

5813087)

Allﬁmmull
(((zz
1z
((((2Z 1z (X X)) (TZ 12Z) ©pquel) J)
2z 12 (X X)) (ZZ 1Z) ®°pquel) J) (X) epquey) X))
201187))
ozt 22) (1 12))
2913087)
((C((((aTns®I u %) (T U -) I83T) 3TNSESDI (O U =>) JTI) (ITNSeIl uU) epquey)
(1031)
epquey)
M
2013917)

Allmhmull
((zz

sa[durex;y [spojy UOIRINSQNG i INOPURH LEZP'GT/LPFO'9 99

69

((((zZ 1Z (X ((((ZZ 12 (X X)) (ZZ 12) wpqwel) F) (X) ©PquWeT)))
((0zT 22) (0 12))
281997)
((((((2Z 12 (X X)) (2Z 12) =PqueT)) (X) wpdwel) X))
se11eT)
(C(C(((3Tns81 U %) (T U -) 193T) ITNS8L (0 U =>) FT) (3I[AS6I U) epqweT)
(1931)
epquet)
1)
UOHMOHV

C==[8T1] ==
((((2z 1z (x X)) ((0TT TZ) (0 1Z)) d°138])
(C((((TZ 12 (X X)) (TZ 1Z) ®=pqQueT) J) (X) ®PqWeT) X))
J9131097)
((CCC((aTnSex U %) (T W -) I93T) 2ATNSeI (0 W =>) JTI) (3a[nsex u) epquey)
(1031)
epqueT)
)
J91397)

C==[911] ==
(CCCOZT T <<*>>) 0 ((ZZ 1Z (X X)) (ZZ 1Z) ®epquel))
((CC((zz 1Z (X X)) (TZ 1Z) ©pqueT) J) (X) epquel) X))
J2811097)
(CCCC((aTNsex U %) (T U -) I93T) 3TNS8I (0 U =>) JI) (3[NSSI u) epquey)
(Ie31)
epqueT)
)
291101)

<==[GT1]==
(3881 T <<x>>) 0 ((TZ 1Z (X X)) (TZ 1Z) =pque])) ((OTT 3INS8I)) d01187)
((((((@z 1Z (X X)) (TZ 1Z) ®°pquel) }) (X) ®pquel) X))
s81907)
((CC(((aTnsex U ») (T U -) 183T) 3NS8I (0 U =>) JI) (I[NSal W) epquey)
(10317)
epqueT)
)
s81187)

K==[ZT1]==
(((((3TNs81 T) (T T <<=->>) ((TZ 1Z (X X)) (TZ 1Z) ®pquel))
((oZt 3Tnsex) (1 u))
2801107)
((((((zZ 1z (X X)) (ZZ 1Z) PpqQuWeT) J) (X) ¥PqWeT) X))
201187T)
(((((((3TNS81 u #) (I U -) 2831) ITN8_L (0 U =>) FI) (I[NS6I W) epquel)
(1031)
=pqueT)
E9))
UQHDOHV

so[durexy [oPOJy wolnI3sqng ¢ INOPUCY [ETH 8T/ [FF09

<==[0T]]==
(CC((atnsex T ») (T w -) ((Z2Z 1z (X X)) (TZ 12) ®©pquwel))
((ozt atnsax) (1 u))
2913087T)
(CC((2Z 1z (x X)) (2Z 1Z) TpqWeT) J) (X) ©pquWel) X))
%91387T)
(((C(((aTnsax u *) (T U ~) I93T) I[NS2X (O U =) JT) (I[NSOX U) epquel)
(1931)
epqueT)
)
5913897)

<==(60T]==

(((C((atnsax u *) (T U -) 183T) ((OZT ITNSa1) (I U)) doI138)
((((TZ 1Z (X X)) (TZ 1Z) epqueT) I931))

J81397)

((((((2Z 1Z (x X)) (ZTZ 1Z) ®pquel) }) (X) ®pquel) X))

29131987)
(CCCCCCaTnsex @ &) (T ¥ -) 1931) 3[OS6X (0 U =>) JTI) (I[NS86X U) epqweT)
(1231)
epqueT)

)

591307)

C==[L0]] ==
(CC((((3Tnsex u) (T U -) 183T) ITNSAI (0 | <<=>>>) JT)
((oZ1 3nsel) (1 W)
, J913971)
((((2Z 1z (X X)) (TZ 1Z) ®pqwe) 1911))
2911987)
((((((2Z 1z (X X)) (ZZ 1Z) epquel)) (X) ©pquwel) X))
291397)
(((((((aTNS@1 u %) (T U -) I93T) 3TNS8X (0 U =>) JT) (I[NSAI U) epqueT)
(1911)
epqueT)
)
591397)

<==[Q01] ==
((CC(((aTnsex U) (T W -) 183T) IINSer (0 U =>) JT)
((0Z1 3rnse81) (1 u))
s91391)
((((2z 1z (x X)) (TZ 1Z) ®pqueT) 1911))
291187)
(CCC((2Z 1z (X X)) (TZ 1Z) ®pqwel) J) (X) Epque() X))
591187)
(CCCC((aTnsdx u) (T @ -) 193T) 3IINS8I (0 U =>) JT) (3ITNS4I U) TPqueT)
(3031)
epqueT)
)
59199T)

<==[{0T] ==

so[dureXy] PO WOYNINSqNS G MOPURH [EZh 81/[PP0°9 89

<a=[9T1] ==
((cozt
-0
(((((aTnsax U %) (T U -) I93T) 3[NSLX (0 U =>) JFI) (ITNSSI U) epqueT)
((((zZ 1z (X X)) (TZ 1Z) ®epque]) I81T))
: J81381))
€2z 1z (x X)) (TZ 1Z) ®epqueT) J) (X) ®pqEeT) X))
291397)
(C(((((aTnsax u %) (T U -) I81T) ITNSeI (O ¥ =>) FT) (3TN U) epqueT)
(10371)
epqueT)
)
UOHDOHV

Cm=[GZ1] ==
(cozt
o]
((((((aTnsex u %) (T W -) I037) ITNSX (0 U =>) FT) (ITNSEI U) epqueT)
((((Zz 12 (X X)) (TZ 1Z) ®°pqueT) I81t))
291307)
((((((TZ 12 (x X)) (TZ 1Z) ®©pqueT) J) (X) epquey) X))
381387))
(((C(((aTnsex u x) (T U -) I83T) 3TNSeI (0 U =>) FT) (I[Nl u) epquer)
(1031)
epqueT)
)
201307)

<xm[HTT] ==
(((zz
0
((((((aTNsex U %) (T U -) I23T) ITNSOI (0 U =>) JT) (3TNSdX uU) ®pquel)
((((ZZ 1Z (X X)) (ZZ 1Z) ®PqQUeT) I01T))
2913197)
((((((2Z TZ (X X)) (TZ 1Z) =Pqwel) J) (X) ©PQUET) X))
291397))
ozt 22))
981187T)
((((C((aTnsex U x) (T U -) I93T) 3TNEBI (0 U =>) JT) (3[Ngex u) epquel)
(1031)
epqureT)
¥))
291397T)

<==[£Z1] ==

(((zz

¢4
((((((aTnsex u %) (T U -) X03T) 3TNSOI (O U =>) FT) (3[NSSI u) epquwel)
((((2Z 12 (x X)) (2Z 1Z) ®epquel) I91T))
2913197T)
((((((2Zz 1Z (x X)) (TZ TZ) ®pqueT) j) (X) ©PqWeT) X))

281397))

1L sopdurexy [9pojy UonnINsqng ¢ ynopuwel rEZh 81/PF0°9

ozt zz) (0 12))
981397)
(((((((a1nsex U ») (T U -) ILAT) 3ITNSOI (0 U =>) FT) (3TNSeIX U) epquey)
(19371)
epqueT)
)
2813871)

K=m[ZT1] ==
(((zz
14
((((2Z 1z (x X)) (TZ 1Z) epque])
(((((3aTnsex U %) (T U ~) I93T) ITNSeI (O U =>) JT) (ITnsex u) epquey)
(1837)
epqueT))
((((((2Z 1z (X X)) (TZ TZ) ®epquel) }) (X) epquel) X))
9913871))
((ozT 2Z) (0 12))
20130T)
(C(C(((aTneex U %) (T U -) ISAT) 3ITNSSI (O U =>) JFT) (3ITNsex u) epquer)
(1011)
epquer)
)
9613197)

<==[1Z1]==
(((zz
1z
((((2Z 12 (X X)) (22 1Z) ®pawel) 3)
((((((2Z 1Z (X X)) (TZ 12) *paWeD)) (X) TPAWRT) X))
201307))
(0Tt 22) (0 12))
UOHPOHV
(C(((((3TM8BI W %) (T U -) I03T) 3INELI (0 U =>) FT) (ITNEGI W) epqueT)
(1031)
epquer)
n)
90I13197)

<==[0Z1)==
((zz
1z
((€((TZ 1z (x X)) (TZ 1Z) ®pqQWe)) (X) ©pqwel)
((((ZZ 1z (x X)) (TZ 1Z) ®pquel) F) (X) ®©pquel)))
((ozt zz) (0 12))
28139T)
(((C(((aTNsex u %) (T W -) I93T) I[NESI (0 U =>) JT) (ITNSSX u) epquer)
(1911)
epquet)
£9))
28138T)

Cm=[6TT]==

sa[durex] [opopy WOLNINSGNG ¢ JNOPURH LEZH§1/IFH0'9 0L

<==TYAT-GNS
0ozt

<an{ZE€T]u=
(3Insex ((0ZT I3TNSOI)) 20I30T)

<um{0€T] mm
(C((CC(3TNsB2 U) (T W -) 203T) IINSOI (0 0 <<=>>>) JI)
((0Z1 3TNsRX) (0 UW))
UONnOHv
((((ZZ 1z (x X)) (ZZ 1Z) epquer) xe31))
29Ix13871)
€2z 1z (x X)) (ZZ 1Z) BPqQWeT) J) (X) wpqwer) X))
J8131071)
(((CC((3TMBBX U #) (T W -) I83T) I[NSOI (0 U =>) FI) (3TNSOX u) epquer)
(I911)
epquwet)
D)
UONHOﬁv

Cum{gZl]u=
(CCCCC(3TNseT W) (T W -) 103T) ITNSLL (0 U =>) JIT)
((0Z1 31nsex) (0 U))
J91307)
((((2Z 1z (x X)) (ZZ 1Z) epquer) xe1r))
291307)
(CC(((2z 1Z (X X)) (ZZ 12) epqweT) J) (X) wpqwer) X))
© 2ex3e1)
(((({((3Tn881 W x) (T U -) 183T) 3ITNSBI (0 U a>) FI) (3TNSeIX u) epquer)
(3931)
epqueT)
)
201197T)

<==(LZ]] ==
(((ozr
[
((((3Tnsex uw %) (T u -) 193T) aTmsex (0 T =>) JT) (3Insex u) epquer))
((((2Z 1Z (x X)) (ZZ 1Z) epqueT) I83T1))
J8I1307T)
(C((((2Z 1Z (X X)) (ZZ 12Z) ®pqweT) J) (X) epquer) x))
28X39T7)
(CCCC((3TNs81 T x) (T u -) T93T) 2[NSEL (0 W =>) JT) (ITNS®I W) epquer)
) (T011)
epquer)
)
2013197)

sodurexy [spopy uonmninsqng :¢ nopuey LETH8I/r¥¥0°9 142

6.044]/18.423J: Computability, Programming, and Logic Handout 6
Massachusetts Institute of Technology Revised 22 September 1993

Substitution Model: Formal Definitions

by Albert R. Meyer, Justin Liu, and Brian So

1 The Functional Kernel of Scheme

1.1 Syntax

We follow the grammatical conventions of the Revised* Scheme Report, using z, y, z to denote variables,
and M, N, B to denote expressions. We use * to indicate zero or more occurrences of a phrase type and *
for one or more occurrences.

(system-constant) ::= identifiers of the form <<-.->> that are not (scheme-constant}’s

(keyword) ::= (binding-keyword) | (nonbinding-keyword)
(nonbinding-keyword) ::= if
(binding-keyword) ::= lambda| letrec
(exp) = (if (exp) {exp) (exp))
| (exp)™)
| (lambda ((formals)) {(exp))
| (letrec ({bindings)) (exp))
| {constant)
| (var)
(bindings) ::= ((var) (exp))” (all {var)’s must be distinct)
(formals) ::= {var)" (all {var)’s must be distinct)
(constant) ::= (numeral) | (boolean) | (scheme-constant) | (system-constant)
(numeral) ::= 0| -1| 3.14159] ...
(boolean) ::= #t| #f
(scheme-constant) ::= (built-in) | (rule-defined)
)
)

(var) ::= identifiers other than (constant)’s or (keyword)’s

The (scheme-constant)’s correspond to familiar Scheme procedures and are listed in Table 1. The constants
in the first group of (built-in)’s in Table 1 correspond to basic operations on numerals as specified in the
Revised* Scheme Report. To eliminate some uninteresting steps in evaluations, we also introduce a second
group of (built-in)’s. These could have been omitted, since their behavior is definable by simple {exp)’s using
the other constants. The (system-constant)’s correspond to other procedures which may be added to the
system by loading external code.

1.2 Extended Syntax

To shorten the description of the Substitution Model, we have left out of the kernel syntax some convenient
and familiar Scheme constructs. For example, we want the Substitution Model to handle additional {(exp)’s
specified by the following extension of the grammar.

6.044J/18.423J Handout 6: Substitution Model: Formal Definitions

(built-in) 1= << +>> [<< =>>| <C*>>[<LC/D>>[K =>>[K < >>[<< > >> | << <=>>
| <<>=>>| << expt >>| <<round >>| <<gcd >>| <<max >>| <<min>>
| <<exp>>| <<log>>| <<s8in>>| <<log>>| <<tan>>| << asin>>
| <<acos>>| <<atan>>| <<quotient>>
(rule-defined) ::= << boolean? >>| << number? >> | << procedure?>>
(built-in) = ... | <<zero?>>| <<positive?>>| <<negative?>>| <<o0dd?>>| <<even?>>
| <<abs>>| <<1+>>| << -1+>>| <<sqrt>>| <<not >>

Table 1: Scheme Procedure Constants

(nonbinding-keyword) ::

... | and| or | begin| cond

(binding-keyword) ::= ... | let| define
(exp) ::= ... | ({nonbinding-keyword) {(exp)") (except for cond)
| (cond ({exp)(exp))” (else (exp)))
| (et ((bindings)) (exp))
| {define)” {exp) (all defined {var)’s must be distinct)
(define) ::= (define (var) (exp)) | (define ((var) (formals)) (exp))
(built-in) ::= ... | <<display>>| <<newline>>| <<error>>

(For simplicity, this grammar does not show the constraints on numbers of subforms a nonbinding keyword
may have, i.e., if may have only three or two subforms and begin must have at least one subform.)

It’s easy to extend the Substitution Model to handle these extensions directly, and indeed our implementation
does so (see the Appendix). However, another easy way to understand these extensions is by thinking of
them as abbreviations for kernel expressions. For example,

(let ((.’121 Np)--) B)

can be understood as an abbreviation for

((lambda (z;---) B) Ny--+).

Similarly,

(define z; Np)...(define z, N,) M

can be understood as an abbreviation for

and

(letrec ((z; Ny)...(zn N,)) M),

(cond (M; Np) (M N3) ...(else N,))

can be understood as an abbreviation for

(if My Ny (if My Ny ... (@Gf M,y Nno1 Np).JJO)).

So we can define the evaluation of extended-{exp)’s by translating them into kernel-{exp)’s prior to evaluation
by the (kernel) Substitution Model. This translation is linear-time, one-pass, and yields a kernel-{exp) of

6.044J/18.423J Handout 6: Substitution Model: Formal Definitions 3

size proportional to the original extended-{exp). Real Scheme interpreters and compilers typically carry out
such translations. The Revised* Scheme Report describes the above translations and others for and, or,
begin, (define (({var)(formals)) (exp)) and several further forms.

Actually, a begin expression is pointless in a truly functional language since (begin N; ... N,) has the
same value as N,. Nevertheless, we include it to control side-effects by calls to operations like display, etc.,
which do not affect the value returned by an evaluation.

1.3 Functional Values

The purpose of evaluating an expression is to obtain its “value.”

(lambda-val) ::= (lambda ((formals)) (exp))
{letrec-free-val) ::= (lambda-val) | {constant)
(value) ::= (letrec-free-val) | (letrec (((var) (letrec-free-val))™) (value))

The (letrec-free-val)’s will play a particularly important role in specifying Scheme’s evaluation rules. We let
V,V1,... denote (letrec-free-val)’s.

2 Free and Bound Variable Occurrences

We define the free and bound occurrences of variables in an expression M.

(1) M is a (constant}.

FreeO(M) =0

BoundO(M) =0

(2) Mis«z.
FreeO(M) = {the occurrence of z in M}
BoundO(M) =10
(3) Mis (key Ny) or (Ny--).
FreeO(M) = FreeO(Ny,---)
BoundQO(M) = BoundO(Ny,---)
where key is a (nonbinding-keyword).
(4) M is (lambda (z;...) N).
FreeO(M) = { 0 € FreeO(N) | 0 is not an occurrence of one of zy, ...}
BoundO(M) = {0 € FreeO(N) | o is an occurrence of one of zj, ...} UBoundO(N)

(5) M is (Qetrec ({(z; Ny)--)B).

FreeO(M) = {0 € FreeO(B) U FreeO(N;) U - -- | 0 is not an occurrence of one of z, ...}
BoundO(M) = {0 € FreeO(B) U FreeO(N;) U - - - | 0 is an occurrence of one of zy, ... } U
BoundO(B) U BoundO(N;) U - - -

A variable is free in an expression if it has a free occurrence in the expression. It is free in a set of expressions if
it is free in any of them. We write FreeV (M) for the set of variables free in M similarly for FreeV({My,...}).

4 : _ 6.044J/18.423J Handout 6: Substitution Model: Formal Definitions

3 Substitutions

A substitution, o, is formally defined to be a total function whose domain is a finite set of {var)’s and whose
range is a set of (exp)’s.

Any substitution o determines an inductively defined function from (exp)’s to {exp)’s. We write Mo for the
result of applying this function to M. More precisely, Mo is defined by induction simultaneously on the
structure of M and the size of domain(o). The base Case (1) of the definition ensures that the function on
expressions determined by o acts the same on variables in domain(s) as o itself.

(1)
0 = {a(z) if z € domain(o),

T otherwise.

(2) If domain(s) = @, then
Mo=M

For any set, F, of (var)’s, we write o [F for the restriction of o to F N domain(s).

(3)
Mo = M (o | FreeV(M))
Thus, if FreeV(M) = 0, then Mo = M.
(4)
(Ny Yo = (Nyo --+)
(key Ny ---)o = (key Nyo---)

where key is a (nonbinding-keyword).

Scheme is specified to obey the “static” scoping conventions of familiar mathematical notation. This means
that when M has binding constructs, free variables in expressions being substituted into M should not get
bound by binding constructs in M. Such unintended binding is prevented by selectively renaming bound
variables in M to be “fresh” variables. (Substituting without renaming would model the “dynamic” scoping
of pre-Scheme Lisp dialects, leading to notorious “false capture” or “funarg” problems.)

A renaming is defined to be a substitution which maps the variables in its domain to distinct (var)’s. A
renaming, 7, is fresh with respect to a set of expressions and substitutions if none of the variables in its
range have free or binding occurrences in any of the expressions or domains and ranges of the substitutions
in the set. When the relevant set is clear, we simply say that 7 is a fresh renaming.

For substitutions o, 7, the extension of 7 by o, written 7 + o, is the substitution combining & and r, with
T given priority where the domains overlap. That is,

_ f7(y) if y € domain(r),
(r+0)(y) = {a(y) if y € domain(s) — domain(r).
Note that in general 7+ 0 # o + 7.

The next cases in the definition of Mo are simplified by assuming that domain(o) C FreeV(M). By Case (3),
there is no loss of generality in this assumption.

6.044J/18.423J Handout 6: Substitution Model: Formal Definitions 5

(5)
(lambda (z; z2---) N)o = (QQambda (217 z27---) N(t +0))
where 7 is a fresh renaming whose domain is {z, ...} N FreeV(range(c)).
(6)
(letrec ((z3 Np)---) B)o = (letrec ((zy7 Ni(7+0)) ---) B(T+0))

where 7 is a fresh renaming whose domain is {z, ...} N FreeV(range(c)).

4 Rewrite Rules

In Revised* Scheme, only #f counts as false in conditional expressions. Other values such as numerals and
procedures count as true.

{false-value) ::= #£

o IF
N; if V is a (false-value),

(it VN N;) — {Nl otherwise.

To capture the Revised* Scheme behavior of {(built-in)’s, we introduce a partial function, System-Eval from
(exp)’s to {exp}'s.
o CONST: built-in and system constants

(cnst (letrec-free-val)*) — System-Eval ((cnst (letrec-free-val)*))

where cnst is a (built-in) or (system-constant), and System-Eval ((cnst (letrec-free-val)*)) is defined.

For example,
System-Eval ((<<+>> 3 -7.1 9)) =4.9

Errors are somewhat messy to incorporate into the Substitution Model, so we take System-Eval to be
undefined in cases where Revised* Scheme specifies errors. For example, an expression such as (<<+>> #t)
which generates an immediate Revised* Scheme error will not match the lefthand side of any rewrite rule.

System-Eval also handles {system-constant)’s generated by calls to external code which return procedures.
This allows the Substitution Model implementation to interface with real Scheme code.

o LAM-APP: lambda-application

((lambda (zy...) B) Nj...) — (letrec ((zi7 N1)...) B7)

where 7 is a fresh renaming whose domain is {z;,...} N FreeV({Ny, N,,...}).

We write {z «— M} for the substitution whose domain is {z} and which maps z to M.

6 6.044J/18.423J Handout 6: Substitution Model: Formal Definitions

e letrec

INST: letrec-instantiation

(letrec ((bindings) (z V)---) B{z «z}) —
(letrec (({bindings) (z V)--.) B{z < V})

where B has exactly one free occurrence of z.

OUT: letrec-out:

(M; ... M; (Qletrec ({bindings)) B) My ... Mp) —
(letrec ((bindings}) (21 ... 2k B Zk41 ... 2n))0

(key My ... M) (letrec ({bindings)) B) My ... M,) —
(letrec ({bindings)) (key 2z ... zx B zk41 ... 22))0
where ¢ is the substitution whose domain is a set {zi,...,2,} of fresh variables, ¢(2;) = Mj, and key
is a (nonbinding-keyword).
FLAT: letrec-flatten:

(letrec ({bindings), (z (letrec ({bindings),) Bo)) (bindings),) B) —
(letrec ((bindings), ({bindings),) (z Bor) (bindings);) B)

where 7 is a fresh renaming whose domain is F, N (Fy U {z} U F3 U FreeV(B)) and F; is the set of
binding variables in (binding),.

e BOOL? —

(<<boolean?>> V) —s #t if V is #t or #£,
#f otherwise.

e NUM?
__, [#t ifVis a (numeral),

(<< number?>> V) .
#f otherwise.

e PROC?

#t if V is a (lambda-val), (scheme-constant},
(<<procedure?>> V) — or (system-constant),
#f otherwise.

5 Garbage Collection Rules

(letrec () B) — B
(letrec ((z; Ni)---) B) — (letrec ((z;; N;)---) B)

where {i1,%2,...} = {¢ | . is not a live-variable or N; is not a value}. These live variables are defined in-
ductively by the conditions:

(1) all variables in FreeV(B) are live, and

(2) if z; is live, then all variables in FreeV(XN;) are live.

6.044J/18.423J Handout 6: Substitution Model: Formal Definitions

-1

6 Contexts and Rewriting

A context is an (exp) with exactly one occurrence of a designated variable referred to as the hole. If C is
a context, we write C[M] for the expression that results from replacing the hole in C by M without any
renaming; the hole itself is written [].

If M; = C[N,] and My = C[N,] for some context C, and “N; — N," matches any rewrite rule above, then
we say M rewrites in one step to M, written

M1_>M2.

rew

In particular, when “N; — N;” matches one of the garbage collecting rules, we write

We say M rewrites to N, written M —* N if either M = N, or else
rew
M—M —...—N

rew rew rew .
for some expressions M, ...; similarly for —bv". An expression, M, is a normal form when there is no N
Erbg

such that M — N. For example, according to the above rules of our Substitution Model, all {constant)’s
rew
and (var)’s are normal forms.

In general, an expression may have many distinct normal forms reflecting the different ways rewrite rules
might be applied to it. Despite this, numerical normal forms are unique:

Theorem (Determinacy). If an expression M has a normal form which is a numeral, then that
numeral is the only normal form of M.

Determinacy implies that in calculating a numerical value of an expression, there is no need to consider
where and which rewrite rules to apply. This is a fundamental property distinguishing the functional kernel
of Scheme from the fuller language with side-effects.

The Determinacy Theorem is far from obvious, and considerable ingenuity is needed to prove it.

7 Correctness

The initial global contexrt, Cinit, is defined to be the context in which variables are bound to all the corre-
sponding constants, viz.,

Cinit ::= (letrec ((+ <<+>>)... (sqrt <<sqrt>>) ... (apply <<apply>>) ...) []).

Let Numval(M) denote the unique numeral, if any, which is the normal form of Cin;:[M]. Numval(M) is
undefined if M has a normal form which is not a numeral, or if M has no normal form.

Correctness Claim. Let M be an (exp) without scheme- or system-constants whose value in
the initial environment is specified in Revised* Scheme. If the specified value is a numeral, then
Numval(M) is defined and equals the numeral. Conversely, if Numval(M) is defined, then it
equals the value specified in Revised* Scheme when M is evaluated in the initial environment.

Note that the Claim leaves open the possibility that Numval(M) may be defined in cases when M does not
have a specified value in Revised* Scheme.

We hesitate to call this Claim a “Theorem”, because the Revised* Scheme specifications remain somewhat
imprecise, especially about the specification of equal?. We believe the Claim is a Theorem for {(exp)’s which
do not contain equal?. Proving such a theorem connecting the (denotational semantics) specification in
the Revised* Scheme Report with the rewriting rules of our Substltutlon Model requires sophisticated proof
methods from programming language theory.

8 6.044J/18.423J Handout 6: Substitution Model: Formal Definitions

8 Order of Evaluation

Evaluation conterts, are used to define where and which rewrite rules Scheme would apply to subexpressions
of an expression being evaluated.

(eval-context) = []
| ((letrec-free-val)* [] (exp)®)
| (Letrec (((var) (letrec-free-val))* ((var) []) (bindings)) (exp))
| (letrec (((var) (letrec-free-val))*) [])
| Gif [] (exp) (exp))

If M; = E[N,] and M2 = E[Nz] for some evaluation context E, and “N; — N;” matches a rewrite rule,
then we say M, evaluates in one step to M2, written

M, — M,.

eval

Also —l> is defined similarly to —»
eva.

Actually, there is one further technicality in the definition. The letrec-rules are written in a general form that
leaves many ways that a lefthand side might match an entire expression. To pin down how the letrec-rules
should match an expression in the hole of an evaluation context, restricted forms of the rules are required
to be used in the above definition of one-step evaluation. Namely,

Restricted letrec rules:

o letrec-reduce: The (bindings) in the rule must bind variables to (letrec-free-val)’s.
o letrec-out: The expressions M; ... M; preceding the (bindings) must be (letrec-free-val)’s.

o letrec-flatten: The (bindings), in the rule must bind variables to (letrec-free-val)’s.

We remark that rules for call-with-current-continuation can also be defined nicely using evaluation con-
texts. For example, if M has no free variables, then we define E[(call/cc M)] to evaluate in one step to
(M (lambda (2) E[z])) where z is fresh.

An expression M is stopped when there is no N such that M — N. For example, (lambda-val}’s are stopped.

eval

In contrast to rewriting, there is only one way to do a non-garbage-collecting step in the evaluation of an
expression. This can be verified straightforwardly from the definition of one-step evaluation, though there
are a lot of cases to check. It is also straightforward to check that where a sequence of evaluation steps stops
doesn’t depend on when and where garbage-collecting rules are applied. In particular, the garbage collection
rules commute with the other rewriting rules: if M; — M, and M, —b> M3 where My # M3, then either

rew

M, — M3, or there is an M, such that Ms — M, and M; o Mjy. See Figure 1. This implies that
grbg grbg

Fact. If M —» N and N is stopped, then N is the only such stopped expression. We call NV
the result of eval’uatmg M.

Let Eval(M) denote the (value), if any, which is the result of evaluating Cinit[M].

Theorem (Completeness of evaluation rules). Let M be an expression without system-constants.
If Numval(M) is defined, then Eval(M) = Numval(M).

M,
rew w
M, M3
AN /7
AS P
b Tew
B8\ &
M,y

Figure 1: Garbage-collection commutes

An expression M has garbage if it is of the form E[N] for some evaluation context E and subexpression N
which matches the lefthand side of one of the garbage collection rules of Section 5. It is easy to check that

Fact. Let M be a value. Then M is stopped iff it does not have garbage.
If there is a result of evaluating Cinis[M] and it is not a value, then evaluation of M in Revised* Scheme causes

an error. The converse may not be true however. For example, in Revised* Scheme (letrec ((foo foo)) 0)
will cause an “unassigned-variable” error, but

(letrec ((foo foo0)) 0) - (letrec ((foo foo)) 0)

50 in our Substitution Model it will rewrite forever without getting stopped. (The implementation will in
fact detect this runaway behavior and report the error.)

9 Lists
We extend the functional kernel grammar with:
(keyword) ::= ... | quote

(exp) = ... | {(symbol) | OO
(symbol) ::= (quote (nonconstant-identifier))

If M is a (symbol) or (), then

FreeO(M) =0
BoundO(M) =9

In particular, by Case (3) of the definition of substitution,
(quote z)o = (quote z).

It is not equal to (quote zo)—Case (4) does not apply because quote is a keyword which is neither
nonbinding nor binding,.

In MIT Scheme, the boolean #f is identified with the empty list, (), and #f always prints as (). To
accomodate this regrettable situation in our model, we define the behaviour of conditionals so that the
empty list is treated as a false value.

(false-value) == ... | O

10 ' 6.044J/18.423J Handout 6: Substitution Model: Formal Definitions

(rule-defined) ::= ... | <<cons>>| <<1ist>>| <<car>>| <<cdr>>| <<apply>>| << symbol? >>
| <<pair?>>|<<1list?>>| <<equal?>>
(built-in) ::= ... | <<null?>>| <<append>>| << reverse>>| <<map>>| <<list-ref>>

| <<list-tail>>| <<delete>>

Table 2: Scheme Procedure Constants for Lists

On the other hand, following Revised* Scheme, our Substitution Model maintains the distinction between
lists and booleans, so (equal? () #f£), for example, evaluates to #f.

The initial global ‘context is extended so the variable nil is bound to (). We also include the additional
constants given in Table 2.

9.1 List Values

yu=... | O] (pair-val)
) 1= (<<1ist>> (letrec-free-val)*) | (cons-val)

(cons-val) ::= (<< cons>> (letrec-free-val) (nonlist-letrec-free-val))
) ::= (constant) | (lambda-val) | (symbol) | (cons-val)

(letrec-free-val
(pair-val

|

(nonlist-letrec-free-val

9.2 List Rules

¢ CONS
(<<cons>> N ()) — (<<1list>> N;)
(<<cons>> N; (<<1list>> Np---)) — (<<1list>> N; Np---)
o list
(<<1list>>) — ()
o CAR
(<<car>> (<<cons>> V (value))) — V
(<<car> (<<list>> V (value)*)) — V
¢ CDR
(<<cdr>> (<<cons>> (value) V)) —V
(<edr>> (<<list> ¥V} V,...)) — (<<1list>> V5 ...)
(<<edr>> (<<1list>> V)) — ()
¢ APPLY

(<<apply>> V (<<1list>> V;.-.)) — (V V;---)
(<<apply>> V (O) — (V)

6.044J/18.423J Handout 6: Substitution Model: Formal Definitions 11

¢ SYMB? st iV is a (symbol)
<symbol?>> V t i is a (symbol),
(<<symbo) — {#f otherwise.
e PAIR? st iV is a (pair-val)
<<pair?>> V i is a (pair-val),
(<«<pair) — {#f otherwise.
e LIST?

(<<1ist?>> V) —» {#t if V is () or of the form (<<1ist>> (letrec-free-val)*),
#f otherwise.

EQUAL?

(<<equal?>> V V) — #t
(<<equal?>> V} V5) — #f

where V| and V; are distinguishable. Other cases of equal? are unspecified.
The distinguishable pairs of values are defined inductively by the conditions:

(1) Each (boolean), (numeral), (symbol), and () is distinguishable from all other (letrec-free-val)’s,

(2) two (letrec-free-val)’s with different phrase types among (boolean), (numeral), (symbol), (lambda-val),
(pair-val), (cons-val) are distinguishable,

pair-val)’s with different numbers of subforms are distinguishable,

(3) (
(4) (pair-val)’s are distinguishable if their corresponding subforms are distinguishable.

By the definition above, for example, the result of (equal? null? not) and (equal? + -) is unspecified
in the Substitution Model, while

Eval((equal? (lambda(x)x) (lambda(x)x))) = #t

In MIT Scheme, on the other hand, these expressions respectively return #t, #f, and #f.

Ezercise. Define
(simple-val) ::= (numeral) | (boolean) | (symbol) | ()

Explain why the Correctness Claim of Section 7 implies the slightly stronger Claim obtained by replacing
Numval by Simpval. Then reformulate the Claim so it also holds for

(printable-val) ::= (simple-val) | (<< 1ist>> (print-val)*) | (<< cons >> (print-val) (print-val))

Finally, discuss the possibilities for extending the Theorem to (letrec-free-val)’s and (value)’s.

10 Remarks on the Implementation

Evaluation of top-level define’s results in extensions of the global context, as in underlying Scheme. Top-
level expressions are automatically evaluated in the global context. This context is usually not displayed to
avoid cluttering the printout. System-Eval generates errors following the underlying Scheme.

A somewhat fuller syntax of Scheme expressions is supported in the implementation: conditionals and
if’s with no alternative branch, named let’s, strings, etc. At present, vectors and quoted lists are not
supported, nor are sequences of expressions in lambda and cond bodies—sequences can only appear within
explicit begin’s. Internal (defines) are buggy, to it is prudent to use (letrec) directly instead.

Beware, the MIT Scheme printer prints (quote foo) as ‘foo.

12 6.044J/18.423] Handout 6: Substitution Model: Formal Definitions

Acknowledgements

The authors are grateful to Derek Lindner, who proofread several drafts of the formal Substitution Model, —
especially checking for consistency with the implementation; to Daniel Otth who made numerous valuable
suggestions for defining this formal model to maintain rewriting theory properties such as confluence; and

to David M. Jones who provided his masterful IATEX skills.

Appendix: Direct Rules for the Extended Syntax

These rules are included as a guide for implementations supporting extended-(exp)’s rather than translating
them in to kernel-exp’s.

o let
If Mis (et ((z; Ny)---) B), then

FreeO(M) = { 0 € FreeO(B) | o is not an occurrence of zy, ...} U
FreeO(N,) U - --
BoundO(M) = {0 € FreeO(B) | o is an occurrence of one of z;, ...} U
BoundO(B) U BoundO(N,) U - --

substitution:

(let ((zy Ny)-++) B)o = (let ((z17 N1o)---) B(r +0))
where 7 is a fresh renaming whose domain is {zy,...} N FreeV(range(o [FreeV(B))).
LET: rewrite rule

(let ((z; Ny)---) B) — ((lambda (z,---) B) Np---)

e cond
substition
(cond (N7 N;)...(else N))o = (cond (Nyo Nzo)...(else No))
COND: rewrite rule

(cond (VN) ...) — { (cond ...) ifVis a (false-value),
N otherwise.
(cond (else N)) — N

AND
v if V is a (false-value),
(and VN, o) — { (and N; ---) otherwise.
(and N) — N
(and) — #t
OR
VN (or Ny ---) if V is a (false-value),
(or !) — {V otherwise.
(or N) — N
(or) — #f

6.044J1/18.423J: Computability, Programming, and Logic Handout 7
Massachusetts Institute of Technology 17 September 1993

Problem Set 1

Reading assignment. Winskel Chapters 1-3.

Due: 24 September 1993.
Problems 1-3 refer to the substitution model Scheme (defined in Handout 6)

and the example evaluations of the substitution model (from Handout 5).

Problem 1. List the rules that are applied in the substitution model evalua-
tion of (rec-factorial 5). You do not need to list the rules in order, or any
rule twice.

Problem 2. For each of the following, give the first evaluation step at which
garbage collection occurs, and the binding that is garbage collected.

1. (iter-fact 5)

2. (y-iter-fact 5)

Problem 3. As a function of n, how many steps will it take the each of the
following to evaluate the factorial of n in the substitution model?

1. rec-factorial
2. iter-factorial
3. y-fact

4. y-iter-fact
Problem 4. Winskel, Exercise 3.4.
Problem 5. Winskel, Exercise 3.5.

Problem 6. Winskel, Exercise 3.6.

6.044J/18.423]: Computability, Programming, and Logic Handout 8
Massachusetts Institute of Technology 22 September 1993

Clarifications to Problem Set 1

This handout should clarify some ambiguities in the first three problems of Problem Set 1 (Handout 7).

Please note that HANDOUTS 5 AND 6 HAVE BEEN REVISED; make sure you are using the versions
labelled “Revised 22 September 1993”.

In problem 2, “(iter-fact 5)” should be “(iter-factorial 5)”.

We would like make the notions of “rule”, “step”, “how many steps”, etc., as clear as possible. We use the
following annotated example to do so. (You may recognize it as the “passkey” example.)

Example:

A set of integers can be represented as a predicate, that is, a function from integers to booleans. Applying
- the function to an integer returns true if the integer is an element of the set, and false otherwise.

Thus the empty set is represented by the function that ALWAYS returns false:

SUB-EVAL==
(define empty-set (lambda (any) ()))

————— ———

empty-set has been defined

And we can take an integer and a set and create a new set consisting of the old set plus the new integer
through the function add-to-intset:

SUB-EVAL==
(define
add-to-intset
(lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int)))))

add-to-intset has been defined

Using add-to-intset and empty-set, we can create the “set” {1,2,3}. We see here the first interesting
evaluation of the example.

SUB-EVAL==
(define

example-intset

(add-to-intset 3 (add-to-intset 2 (add-to-intset 1 empty-set))))
==[1] (INST: add-to-intset]==

(define
example-intset
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
3
(add-to-intset 2 (add-to-intset 1 empty-set))))

2 6.044J/18.423J Handout 8: Clarifications to Problem Set 1

This shows that the first evaluation step is by the rule INST, and consists of instantiating the (global)
definition of add-to~intset. These rule names (INST, ...) are listed in the REVISED version of handout 6.

==[2] [INST: add-to-intset]==>

(define
example-intset
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
3
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
2
(add-to-intset 1 empty-set))))
==[3] [INST: add-to-intset]==

(define
example-intset
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
3
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
2
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
1
empty-set))))
==[4] [INST: empty-set]==

(define
example-intset
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
3
((lambda
(new-int intset)
(lambda (some~-int) (if (= some-int new-int) #t (intset some-int))))
2
((1ambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
1
(lambda (any) ())))))
==[5] [LAM-APP]==

(define
example-intset

6.044J/18.423J Handout 8: Clarifications to Problem Set 1 ' 3

((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
3
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
2
(letrec
((new-int 1) (intset (lambda (any) ())))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int)))))))

Here we see the first non-INST rule applied. The LAM-APP rule turns the application of a lambda into a
letrec, in this case binding new-int and intset.

==[6]) [LAM-APP] ==

(define
example-intset
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
3
(letrec
((new-int 2)
(intset
(letrec
((new-int 1) (intset (lambda (any) ())))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))))
==[7] [FLAT)==

(define
example-intset
((lambda
(new-int intset)
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
3
(letrec
((new-int 2)
(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int)))))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))))
==[8] [LAM-APP]==

(define
example-intset
(letrec

((new-int 3)

(intset
(letrec
((new-int 2)

4 6.044J/18.423J Handout 8: Clarifications to Problem Set 1

(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int)))))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int)))))
==[9] [FLAT]==

(define
example-intset
(letrec
((new-int 3)
(new-int#2 2)
(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int))))
(intset
(lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int)))))

example-intset has been defined

Finally, we can test whether 2 is a member of example-intset:

SUB-EVAL==> (example-intset 2)
(example-intset 2)
==[1] [INST: example-intset]==

((letrec
((new-int 3)
(new-int#2 2)
(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int))))
(intset
(lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))))
(lambda (some-int) (if (= some-int new-int) #t (intset some-int))))
2)
==[2] (0UT] ==

(letrec
((new-int 3)
(new-int#2 2)
(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int))))
(intset
(lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))))
((lambda (some-int) (if (= some-int new-int) #t (intset some-int))) 2))

6.044J/18.423J Handout 8: Clarifications to Problem Set 1 5

==[3] [LAM-APP]==>

(letrec
((new-int 3)
(new-int#2 2)
(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int))))
(intset
(lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))))
(letrec ((some-int 2)) (if (= some-int new-int) #t (intset some-int))))
==[4] [INST: =] [INST: some-int]==

(letrec

((new-int 3)

(new-int#2 2)

(new-int#1 1)

(intset#1 (lambda (any) ()))

(intset#2

(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int))))

(intset

(lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))))
(letrec ((some-int 2)) (if (<<=>> 2 new-int) #t (intset some-int))))

Here we see that the evaluator has taken TWO STEPS, and has decided not to print the result of taking
the first step. The [4] in the arrow indicates that the first step taken, [INST: =], was step number 4. The
second step, [INST: some-int], was step number 5. The next step will be step number 6, as is indicated
below.

==[6] [INST: new-int] [GC: new-int]==

(letrec
((new-int#2 2)
(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int))))
(intset
(lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))))
(letrec ((some-int 2)) (if (<<=>> 2 3) #t (intset some-int))))

Here we have the first garbage collection. There is only one use of new-int, so once it has been instantiated,
we can garbage collect the binding.

==[7] [CONST: <<=>>][IF]==

(letrec
((new-int#2 2)
(new-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int))))

6 : _ 6.044J/18.423J Handout 8: Clarifications to Problem Set 1

(intset

(lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))))
(letrec ((some-int 2)) (intset some-int))) -

Here in the first step after the garbage collection, we see that THE GARBAGE COLLECTION DID NOT
TAKE UP ANY “STEPS”! That is, we can see from above that step 6 is [INST: new-int], that the GC
takes place immediately after that, and that step 7 is [CONST: <<=>>]. This is a matter of taste (which you
may or may not agree with). At any rate, it immediately raises the question of what we mean in problem 2
by “the first evaluation step at which garbage collection occurs”. For this example, we would like you to
answer “6”. We want the step number printed in the arrow between the expression which contains the
binding and the expression where the binding has been garbage collected.

==[9] [INST: intset] [GC: intset]==>

(letrec
((new-int#2 2)
(new~-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int)))))
(letrec
((some-int 2))
((lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int)))
some-int)))
==[10] [INST: some-int] [GC: some-int]==

(letrec
((new-int#2 2)
(new-int#1 1) —
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int)))))

((lambda (some-int) (if (= some-int new-int#2) #t (intset#2 some-int))) 2))
==[11] [LAM-APP]==

(letrec

((new-int#2 2)

(new-int#1 1)

(intset#1 (lambda (any) ()))

(intset#2

(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int)))))

(letrec ((some-int 2)) (if (= some-int new-int#2) #t (intset#2 some-int))))

==[12] [INST: =] [INST: some-int]==

(letrec

((new-int#2 2)

(new-int#1 1)

(intset#1 (lambda (any) ()))

(intset#2

(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int)))))

(letrec ((some-int 2)) (if (<<=>> 2 new-int#2) #t (intset#2 some-int))))

==[14] [INST: new-int#2] [GC: new-int#2]==

(letrec

6.044J/18.423J Handout 8: Clarifications to Problem Set 1 7

((new-int#1 1)
(intset#1 (lambda (any) ()))
(intset#2
(lambda (some-int) (if (= some-int new-int#1) #t (intset#1 some-int)))))
(letrec ((some-int 2)) (if (<<=>> 2 2) #t (intset#2 some-int))))
==[15] [CONST: <<=>>]1[IF][GC: new-int#1] [GC: intset#1] [GC: intset#2] (GC: some-int]l==

#t
Finally, note here that there are TWO steps taken in this last arrow, a CONST and an IF. (Remember, the

GC’s do not count as steps.) Thus the total number of steps taken is 16, not 15 as you might think if you
are not careful.

6.044J/18.423J: Computability, Programming, and Logic Handout 9
Massachusetts Institute of Technology 29 September 1993

Problem Set 2

Reading assignment. Winskel § 4.1-4.3

Due: 6 October 1993.
Let A be the expression for recursive factorial using a fixpoint operator:

(letrec ((fact (letrec ((f (lambda (fact) (lambda (n)
(if (<= n 0)
i
(* n (fact (- n 1))))))N)
(letrec ((x (lambda (x)
(f (Qambda (z2) ((x x) 2))))))
(letrec ((fact (lambda (z) ((x x) 2z)})))
(lambda (n) (if (<= n 0)
i .
(x n (fact (- n LI
fact)

How can we precisely explain what an occurrence of a variable is in an expres-
sion?

One way is to think of an expression as a tree, i.e., a list without sharing, and
describe which branches to follow successively from the root of the tree to get
to the occurrence. For example, in A, the last occurrence of the variable fact
is reached by taking the 3™ branch from the root (the caddr of the list), and
the first occurrence of fact as an operator applied to (- n 1) is reached by
successively choosing branches 2, 1, 2, 2, 1, 2, 3, 3, 4, 3, 1 (or taking cadr, then
car, then cadr, then cadr, then car, then cadr, then caddr, ...). So to be precise,
we could define an occurrence in an expression to be a sequence of numbers: the
last occurrence of fact is the sequence (3) and the first occurrence of fact as
an operator applied to (- n 1) is the sequence (2,1,2,2,1,2,3,3,4,3,1). This
is called the ¢ree-path representation of occurrences.

Let which-var be the partial function which takes an expression and an occur-
rence as arguments and returns the variable (if any) at that occurrence. For
example, '
which-var(A, (3)) = fact,
whickh-var(A4, (2,1,2,2,1,2,3,3,4,3,1)) = fact,
which-var(A4, (2,1,2,2,1,1)) = £.

However, which-var(A,1) is undefined, since letrec is not a variable.

2 6.044J/18.423J Handout 9: Problem Set 2

Problem 1. Give a mathematically precise inductive definition of which-var.
(Or, if you prefer, hand in some Scheme code for which-var and a few examples
of it running correctly.) <

Another way of defining “occurrence” comes from thinking of an expression as
a string of characters. (We will consider any nonempty sequence of whitespace
to be a single character.) For example:

o the 0% 8% and 9% characters of A are “(”;

e the 10% character of A is the “£” at the beginning of the first occurrence
of the variable fact (this is a binding occurrence); and

e if n is the length of the string A, the (n — 5)* character is the beginning
of the last occurrence of fact.

In this string indez representation, an occurrence is a nonegative integer.

Problem 2. Give a mathematically precise inductive definition of the partial
function str—tree-occur which converts an expression and a string index into a
tree-path. For example,

str—tree-occur(A, 11) = (2,1, 1),
str—tree-occur(A,n — 3) = (3).

It is not our intention that you struggle with the grubby details of parsing,
worrying about whitespace, etc. You can make the following assumptions:

o Every input will be well-formed, so you don’t need to do error checking.
In particular, the input string will be a well-formed expression, with as
little whitespace as possible, and the string index will be the index of the
first character of some subexpression of the string.

¢ You are given a function nezt-ezpr that takes as input an expression in
string form and an index into the string. The index should point to a
subexpression. nezt-ezpr parses over the subexpression to find its end,
then returns the string index of the very next subexpression in the string.
For example, if s = “(foo (+1 bar) baz)”, then

nert-expr(s,1) =5
nert-ezpr(s,5) = 14
next-expr(s,6) =9

6.044J/18.423J Handout 9: Problem Set 2 3

¢ You are given a function @ that concatenates sequences. For example,

(1,2,3)Q(4,5,6) = (1,2,3,4,5,6)
(}@(4,5,6) = (4,5,6)

(Alternately, hand in some Scheme code for str—tree-occur and a few examples
of it running correctly.) <

Definition 1. Two expressions M and N are equivalent iff Numval(C[{M]) =
Numval(C[N]) for all contexts C[-]. We write M ~ N when M and N are
equivalent.

Problem 3. Does the equivalence 2 =~ (+ 1 1) hold? If the equivalence
holds, you do not need to prove that it holds; but if it does not hold, you should
give a counterexample.

Problem 4. Find an M and N such that FreeV(M) # FreeV(N),and M = N.
You do not have to prove that M =~ N. <

The notion of equivalence spelled out above is a natural one. It gives us an
easy way of proving that two expressions are not equivalent: we simply exhibit
a context in which the two terms do not evaluate to the same numeral.

However, proving that an equivalence holds is not so easy. We must prove that,
when enclosed by any contezt at all, that the two expressions will not evaluate
differently.

A powerful result called the Context Lemma can make proofs of equivalence
easier. It makes precise our notion that the expressions of the functional kernel
of Scheme represent functions. The key idea is that two functions are equal if
and only if they return the same results when passed the same arguments.

Definition 2. The applicative contexts are defined inductively as follows:
Al = [
| CA[My--- M)
where n > 0 and M, ..., M,, are expressions.

Let NBval(M) denote the unique numeral or boolean, if any, which is the normal
form of Cinit[M]. NBval(M) is undefined if M has a normal form which is not
a numeral, or if M has no normal form.

We say expressions M and N are applicatively equivalent iff for all applicative
contexts Af],

NBval(A[(lambda (z;---z,) M)]) = NBval(A[(lambda (z;---z.) N))),

4 6.044J/18.423J Handout 9: Problem Set 2

where z,,...,T, are the free variables of M and N.

We write M ~ N when M and N are applicatively equivalent.
app

Lemma 1 (Context Lemma). M =~ N iff M le.
app!

To use the Context Lemma we must still consider an infinite number of contexts.
But in practice, it turns out to be much simpler to prove equivalences using
applicative contexts than using arbitrary contexts.

Problem 5. Give an example showing that the Context Lemma fails if we use

Numval instead of NBval in the definition of zl. <
: app

Problem 6. Show that the Context Lemma fails in the language extended
with the operator <<equal?>>. <<equal?>> is defined on page 11 of Handout 6;
you should assume that <<equal?>> returns #f in all cases where it is currently
unspecified in Handout 6.

Problem 7. Winskel 4.13. <

6.044]/18.423]: Computability, Programming, and Logic Handout 10
Massachusetts Institute of Technology 1 October 1993

Problem Set 1 Solutions

The problem set was worth 32 points. The max score was 25. (You don’t need
a 90% to get an A.)

A number of people had difficulty with the proofs (problems 3,4, and 5). I have
tried to comment on common errors in these solutions. If you still have trouble
understanding these problems after reading the solutions and your returned
problem set, you should see me — these will not be the last proofs we will ask
you to do.

Problem 1. [4 pts] List the rules that are applied in the substitution model
evaluation of (rec-factorial 5). You do not need to list the rules in order,
or any rule twice.

Answer: The rules INST, LAM-APP, CONST, and IF are applied (as well as
the garbage collection rules).

Problem 2. [4 pts] For each of the following, give the first evaluation step
at which garbage collection occurs, and the binding that is garbage collected.

1. (iter-factorial 5)
Answer: The first GC occurs between steps 4 and 5. The binding of n
to 5 is collected.

2. (y-iter-fact 5)

Answer: The first GC occurs between steps 8 and 9. Once again a
binding of n to 5 is collected.

Problem 3. [8 pts] As a function of n, how many steps will it take the each
of the following to evaluate the factorial of n in the substitution model?

1. rec-factorial

Answer: The easiest way to do this problem was to examine the sample
evaluation and look for patterns. For (rec-factorial 5) there was a
pattern of “unwinding” that produced a sequence of multiplies, as can be
seen in this edited version:

2 6.044J/18.423J Handout 10: Problem Set 1 Solutions

(;;;» 5C...0

==[12]==> ...

(<<*>> 5 (<<*>> 4 (...)))

==[23]==> ...

(<<#>> 5 (<<#>> 4 (<>> 3 (... DN
==[34]==> ...

Thus there is a loop of 11 steps for each n.

Moreover, after all the unwindings we end up with the expression
(<<*>> 5§ (<<*>> 4 (<<#d> 3 (<<#>>.2 (<<x>> 1 1N)).

So the unwindings are followed by n multiplies. (Many people missed
this.)

Finally, we note that it would take 6 steps to evaluate
(rec-factorial 0).

This can be seen by just replacing 5 by 0 in the sample evaluation, and
seeing where the evaluation would change.

Thus rec-factorial calculates n! in exactly 12n + 6 steps. As a sanity
check, we note that for n = 5 it should take 66 steps, just as in the sample
evaluation.

The others can be calculated similarly; note that the final n multiplies
occur only for rec~factorial and y~fact, and not for the iterative ver-
sions.

2. iter-factorial
Answer: 13n + 10.

3. y-fact

Answer: 21n + 9.
4. y-iter-fact
- Answer: 23n + 17.

Problem 4. [4 pts] Winskel, Exercise 3.4: Prove by structural induction that
~ the evaluation of arithmetic expressions always terminates.

Answer: We must prove, for any arithmetic expression a and state o, that
there exists some number m such that {a,0) — m. We proceed by induction
according to the structure of a:

6.044J/18.423J Handout 10: Problem Set 1 Solutions 3

a = n: then for any o, (n,0) — n by the evaluation rule for numbers. So let
m=n.

a = ap + a;: by induction we have for any o, there exist mg and m, such that
{ap,0) — my and {(a;,0) — m,;. Then by the evaluation rule for sums, we have
{(a,0) — m, where m is the sum of mqy and m,.

The cases @ = ap — @; and a = ag X a; follow similarly.

a = X: then for any o, (X, 0) — o(X) by the evaluation rule for locations. So
let m = o(X). []

Notes: What to put in a proof and how much to leave out are matters of
convention and common sense. I give below the factors I considered in deciding
what level of detail I would use in my proof.

I have not shown every case in detail. The cases a = ap — a; and @ = ap x a,;
are so similar to the case a = ap + a; that including them would just mean
copying the proof for a = a¢ + a;- It makes sense to leave them out. It is
important, however, to say which cases are left out, and why: this assures the
reader that you have thought about those cases, that the proof goes through for
them, and indicates how the reader might do the proof himself. Otherwise, the
reader might conclude that you forgot about those cases, and maybe that the
proof does not even go through for them.

I did include the case a = X, which some people omitted. The evaluation of
(X, o) is different from any other rule: it is the only one that uses o. Thus the
proof for this case is different from any other, and should be included.

I could have spelled out the induction hypothesis: “We will prove, for all arith-
metic expressions a, that P(a) holds, where

P(a) =Vo.3m.(a,0) —» m".

Instead, I used a standard mathematical convention: I stated in English the
property that I wished to prove, and the fact that I was going to prove it by
induction. I provided enough information for the reader to reconstruct P(a) for
himself if desired.

It wouldn’t be wrong to spell out P(a) in your proof, but if you do so, you
must get it right. A common mistake was to give an induction hypothesis with
incorrect quantifiers. For instance in

Pwrongl (a) = (aa 0’) —m,

(no quantifiers given) it is clear that @ is a parameter of Pyrong1, but what about
o and m? If we guess that they should be quantified, what clue do we have that
it should be Yo and 3m? Why not 3¢ and Ym?

4 6.044J/18.423J Handout 10: Problem Set 1 Solutions

Some people incorrectly quantified a in P{a), for example,
Pwrong2(a) = Va,cr.Eim.(‘a,a) —m.

The problem is that V is a binding operator, just as 1ambda is a binding operator
in Scheme. It is a declaration of a new variable, distinct from all other variables,
including other variables of the same name. Thus the a introduced by the V is
distinct from the a appearing as a parameter in Pyrong2(a).

Note that the property Pj(a) = “evaluation of a always terminates” is different
from the property Py(a) = “evaluation of a is deterministic”. P;(a) says that
if {a,0) evaluates to m and m/, then m = m'. If P, holds of an arithmetic
expression g, it does not mean that (a, o) evaluates to some m. It could be that
for all o, (a,0) evaluates to no m, in which case P,(a) holds, but P,(a) does
not. Some people seemed to think that Py(a) implied P (a).

Problem 5. [8 pts] Winskel, Exercise 3.5: Show that the evaluation of
boolean expressions is firstly deterministic, and secondly total.

Answer: First we prove that for all b,0,t, and ¢, if (b,0) — to,t;, then
to = t;. We proceed by structural induction on b.

b = true or b = false: then only one rule applies to (b, o), namely,
(b,o) — b.

So if (b,0) — to,t1, then tg =t; = b.

b = —b": suppose (b,a) — to,t;. Then by the single evaluation rule for -, we.

must have (b',0) — ty,t], where t; is the negation of ¢y, and t{ is the negation
of ¢t;. But by induction we must have tj = ¢, and therefore ¢y = t;.

The cases b= by V by and b = by A by are proved similarly.

b= ap = a,: suppose (b,0) — tp,t;. Then by the single evaluation rule for =,
we must have {(ag, o) — mg,no and {a;,0) — my,n;, where ¢ iff m¢g = m;, and
t; iff ng = n,. But by Proposition 3.3 of Winskel, we must have mg = ng, and
m =mn. Thus to =1;1.

The case b = ap < a; is handled similarly. : |
Now we prove, for any boolean expression b and state o, that there exists some ¢
such that (b,6) — t. Once again the proof is by structural induction on b.

b = true or b = false: then (b,0) — b.

b= —b": by induction we have, for any o, that there is a ¢’ such that (¢/,c) — t'.
And then the rule for - can be applied: (b,0) — t, where ¢ is the negation of ¢'.

6.044J/18.423J Handout 10: Problem Set 1 Solutions 5

The cases b= by V by and b = by A by are proved similarly.

b = a¢g = a;: by the Problem 4, for any o there exist mg¢ and m; such that
{@p,0) — myp and {a;,06) — my;. Then we can apply the rule for = to get
(b,o0) — t, where t iff mo = m,.

The case b = a9 < a; is handled similarly. a

Notes: For the curious, let me spell out the induction hypotheses:
Pi(b) =Vo,tg,t;. if (b,0) — to,t1, then o =1

for the first part, and
Py(b) =Vo.3t.{b,o) = t

for the second.

Note that I am using b as the parameter of the properties P, and P,, rather
than a as in problem 4. This simply follows our convention (Winskel, p. 12)
that a will be used to stand for arithmetic expressions, and b will be used for
boolean expressions. A number of people ignored this and used a for boolean
expressions, m and n for boolean values, etc. This will confuse any reader who
is used to the conventions.

Also, I used both Proposition 3.3, from Winskel, and the result of Problem 4
in this proof. From Winskel's statement of the problem, it was already clear
that this would be necessary. But note that I was careful to say exactly where I
used the results. It is important to “flag”, for the reader, places where previous,
non-trivial results are being used.

Problem 6. [4 pts] Winskel, Exercise 3.6: What goes wrong when you try to
prove the execution of commands is deterministic by using structural induction
on commands?

Answer: Just about everyone got this wrong.

The correct answer is most easily seen by trying to do the proof. First, we
must decide what is meant by “execution of commands is deterministic”. Since
commands “evaluate” to states, we guess that the induction hypothesis should
be: :

P(c) =Vo,01,0,. if {c,0) = 01,02, then 01 = 05.

So we try to prove Vc.P(c) by induction on the structure of commands. All of
the cases go through easily, ezcept the while case.

Suppoée ¢ = while b do ¢/, and (¢, 0) — 01,02.

6 6.044J/18.423J Handout 10: Problem Set 1 Solutions

First we consider the ways in which

(670) — 01, (1)

{c,0) = o2. (2)

There are two rules for while (this is the first time we have run up against this).
By Problem 5, we know that the evaluation of boolean expressions is total and
deterministic. So either (b, o) — false, or (b,s) — true. In the first case, both
(1) and (2) must have followed by the first rule for while. We will encounter
no problems with this case.

But if (b,0) — true, then both (1) and (2) must follow by the second while
rule:
(b,0) = true (c',0) =0, (whilebdo c,o}) — 0,
(while 6 do ¢’,0) — 0,

and
(b,0) — true (c/,0) —» o5 (whilebdo,d}) — o2
" (while bdo ,5) — 02

We can now try to apply the induction hypothesis. First, note that
(¢ o) = a1,0%.
By induction on ¢’ we can conclude that o] = 0%. So let o' =4er 0] = 05

Then we have (while b do ¢,0') — 01,05. Can we now use induction to finish
the proof?

The answer is no. Recall that in a proof by induction, we prove that the induc-
tion hypothesis holds of an element by assuming that it holds for all smaller
elements. In this case, “smaller” means “subexpression”. Thus we were able to
assume that the induction hypothesis held of ¢/, because ¢’ is a subexpression
of c. But we cannot assume that it holds of while b.do ¢, because this is not
a subexpression of ¢; it is c itself.

Note: A number of people thought the proof would fail because there are
expressions using while that do not terminate. For example, for any o, there
is no o’ such that

(while true do skip,o) — ¢’.

But-as I noted in the solution to Problem 4, “terminates” and “deterministic”
are two very different properties. A command that never terminates is, in fact,
deterministic: it never terminates in two different states. Thus non-termination
does nhot imply non-determinism.

6.0443/18.423J: Computability, Programming, and Logic Handout 11
Massachusetts Institute of Technology 1 October 1993

Instructions for Problem Sets

1 Form of Solutions

Each problem is to be done on a separate sheet of three-hole punched paper. If
a problem requires more than one sheet, staple these sheets together, but keep
each problem separate. Do not use red ink. Mark the top of the paper with:

e your name,

“6.044J/18.423J",

the assignment number,

the problem number, and

the date.

Try to be as clear and precise as possible in your presentations. Problem grades
are based not only on getting the right answer or otherwise demonstrating that
you understand how a solution goes, but' also on your ability to explain the
solution or proof in a way helpful to a reader.

If you have doubts about the way your homework has been graded, first see
the TA. Other questions and suggestions will be welcomed by both the instructor
and the TA.

Problem sets will be collected at the beginning of class; graded problem sets
will be returned at the end of class. Solutions will generally be available with
the graded problem sets, one week after their submission.

2 Collaboration and References

You must write your own problem solutions and other assigned course work in
your own words and entirely alone. On the other hand, you are encouraged to
discuss the problems with one or two classmates before you write your solutions.
If you do so, please be sure to

indicate the members of your discussion group

on your solution.

Similarly, you are welcome to use other texts and references in doing homework,
but if you find that a solution to an assigned problem has been given in such a
reference, you should nevertheless rewrite the solution in your own words and
cite your source. ‘

2 6.044J/18.423J Handout 11: Instructions for Problem Sets

3 Late Policy

Late homeworks should be submitted to the TA. If they can be graded without
inconvenience, they will be. Late homeworks that are not graded will be kept for
reference until after the final. No homework will be accepted after the solutions
have been given out.

6.044J/18.423J: Computability, Programming, and Logic Handout 12
Massachusetts Institute of Technology 6 October 1993

One-step vs. “Natural” Semantics

The operational behavior of the language IMP is described in Winskel using
inductive rules for deriving evaluation assertions of the form {c,os} — o'. This
style of semantics has been called “natural” because it resembles so-called “nat-
ural deduction” inference rules of formal logic.

One can also give a term-rewriting style semantics for IMP using inductive
rules for deriving one-step-rewriting assertions of the form (c,o)—;0’'. The two
styles of semantical specification are equivalent in the following precise sense:

Theorem. For all c € Com and 5,0’ € X,
(c,a) —7 o' iff {c,0) — ¢'.

In the rest of this handout, we define the one-step semantics and then prove the
above Theorem. We use op to range over syntactic operator symbols, and op
to range over corresponding arithmetic or Boolean operations.

1° One-Step Rules for Arithmetic Expressions, Aexp

(X1 0) -1 (U(X))d)

(00,0) —>1 (06,0)
{ap op a1,0) —1 {(aj op a1,0)

(a1,0) =1 (a3,0)
(n op a1,0) —1 (n op a},0)

(n op m,0) —>1 (n op m,o)

op | op

+ | the sum function

— | the subtraction function

x | the multiplication function

Notice that :
(5 + 7, 0’) -1 (127‘7)
is an instance of the rule {n op m,a) —1 (n op m, o), but that
(5+7,0) =1 (5+7,0)

is not derivable at all.

2 6.044J/18.423J Handout 12: One-step vs. “Natural” Semantics

2 One-Step Rules for Boolean Expressions, Bexp

(0010) -1 (06,0')
(a0 op a1,0) —1 (ag op a1,0)

(a1,0) =1 {(a},0)
{n op a1,0) —1 (n op a},0)

(n op m,0) —1 (n op m,0)

op
the equality predicate
the less than or equal to predicate

A0S

We next have the rules for Boolean negation:

(b7 U) —1 (b’vo)
(=b,a) —1 (=b',0)

(- true,o) —; (false, o)
(~false,g) —; (true,o)
- Finally we have the rules for binary Boolean operators. We use op and op to

range over the symbols and functions in the chart following the rules. We let
t,to,t1,... range over the set T = {true, false}.

(bo,U) —*1 (b' ,U)
(bo op b1,0) —1 (by op b1, 0)

(b1, 0) —1 (b},0)
(to op by,0) —1 (to op b}, 0)

(to op t1,0) —1 (tg 0p t1,0)

op [op
A | the conjunction operation (Boolean AND)
V | the disjunction operation (Boolean OR)

6.044J/18.423] Handout 12: One-step vs. “Natural” Semantics

3 One-Step Rules for Commands, Com

Atomic Commands:

(skip,a) =1 @

{a,0) =1 (d',0)
(X :=a,0) =+ (X :=d,0)

(X :=n,0) =1 0[n/X)

Sequencing;:
{co,0) =1 {cp,0)
{(co;c1),0) =1 {(cp;€1),0")
(COaa> -1 U’
{(cos1),0) =1 (c1,0")
Conditionals:

(b,0) =1 (¥',0)
(if bthencg elsec;, o) —; (if b’ thencg elsec,, o)

(if true thenc; else ¢, a) —1 {¢p,0)

(if false then ¢y else ¢y, 0) —1 {c;,0)

While-loops:

{(whilebdoc¢,o) —; (if bthen(c; while bdo c) else skip, o)

4 Equivalence of One-Step and Natural Semantics
We now prove

Theorem. For all c € Com and 0,0’ € I,

{c,0) =1 o' iff {c,0) — o'

The proof proceeds in three stages:

4 6.044J/18.423J Handout 12: One-step vs. “Natural” Semantics

(A) Prove (a,0) =1 (n,0) iff (a,0) — m
(B) Prove (b,q) —} (t,0) iff (b,0) — ¢, using (A);
(C) Prove (c,0) —1 o' iff (c,0) — o', using (A) and (B).

The proofs of all three parts are similar, except that where structural induction
serves to prove a version of Lemma 1 below for expressions, induction on deriva-
tions is needed to prove it for commands. We will henceforth assume that (A)
and (B) are proven, and present (C) only.

We first prove (C) from left to right, namely
(c,0) =»1d" = (c,o)—0.

The proof is based on
Lemma 1. If (¢,0)—1(c,¢") and {¢,0") — &', then {(c,0) — o’.

Assuming this lemma, a simple induction on the definition of the transitive .
closure, —1*, of the one-step evaluation relation, —;, completes the proof of
(C) =>:

Base case: Suppose (¢,0) —] o' because (¢,0)—10’. Then either ¢ is skip
and ¢’ is ¢, or cis X := n and ¢’ is ¢[n/X]. In either case, (c,0) — o’
follows immediately by a natural evaluation axiom.

Induction: Suppose (¢,a) —} o' because (¢,o)—1(c’, ") for some ¢/,a"” such
that (¢/,¢"”) —1 o’. Then by induction, we have that (¢’,¢"”") — ¢’. But
now Lemma 1 immediately implies (¢,o) — o', as required.

So we need only prove Lemma 1, which we do by induction on the derivation of
(c',o") — o'. The induction breaks into cases according to the form of c.

First, we note that ¢ cannot be either skip or X := n where n € N, because
in both these cases, (¢,) moves in one step to a state rather than a command
configuration (¢, ¢"), and the condition of the lemma is not satisfied. The other
cases are:

o[c is of the form X := a where a ¢ Num)] There is a unique one-step rule by
which (X := a,0)—1(c/,a") could be derived, and by this rule ¢ must be X :=
a' where {a,0)—1(a’,0), and ¢"” must be ¢. We are given that (c,c") — o',
and there is only one possible derivation with this conclusion:

(a',o) = n

(X :=d',0) = o[n/X]

We conclude that

6.044J/18.423J Handout 12: One-step vs. “Natural” Semantics 5

o' must be o[n/X] for some n such that {a’,0) — n.
But {a’,0) — n implies {a’,¢) —} (n,q}, by (A). Thus, we have
(a,a)—»l(a',o)—»l'(n,a).

By (A) again, we conclude that (a,0) — n. Now the assignment rule for natural
evaluation gives the derivation

{a,0) = n

(X :=a,0) = a[n/X]

So indeed, {c,0) — o'.

o[c is (cg; c1)] There are two ways that the given condition {c, o)—1{c’,c") could
be derived, namely,

[{co,0)—10" and ¢ is ¢;] Since {co,d)—10", the rules for —, imply
that either ¢y must be skip and 6" = o, orelse cpis X :=n
and o’ = ofn/X]. So

(skip,0) = o, {(c1,0) =0’

((skip; c1),0) — o'

or
(X :=n,0) = o[n/X], {c1,0ln/X]) =o'

!

(X :=mn;a1),0) >0
is a derivation of {c,o) — o', as required.
[(co,0)—1(ch,0") and ¢ is (cp;c1)] We have
dlF {(ch;c1),0") = o',
for some d which must be of the form
(ch,0") = 8" {e1,0") = o'
{(cpie1),0") = o’
Thus we have a derivation of {cj,0”) — ¢"’. This derivation is

a subderivation of d, and we are given that (co,o)—1(ch,0"),
so by induction we deduce

(Co,a’) =o',
But that gives

(C0,0') — 0"”, (Cl,d”’) — Ul

{c,a) = d’

6 6.044J/18.423] Handout 12: One-step vs. “Natural” Semantics

o[c is if bthen cg else ¢;] There are two subcases:

[b € T and ¢’ is ¢;] Then we have
(c,0)—>1(ciyo) and (ci,0) > o,
and we get the derivation

{b,0) = b, {ci,0) >’

(c,ao) = o
[6 ¢ T] Then we have derivations

(b,0)—>1(¥,0)
(c,a)—1{if b thencjelsec;,o)

and
(bl1a) - t, (C,‘,O‘) —d

(if ¥ thencgy elsec;,q) — o’

for some t € T and 7 € {0,1}. By (B), (¢,0) — t implies
(¥,0) -1 (t,0), so

(b) U)'_’l (bl, U)_’l ‘<t5 U)
which, again by (B), implies (b,0) — t. So we have

(b,0) = t, {ci,o) >

(c,0) = o’
e[c is whilebdo ¢’] There is a unique one-step derivation
(c,0)— 1 (if bthen(c”; c) else skip, o),

so ¢ is if bthen(c”;c) elseskip and ¢” is 0. But we know (Winskel Prop. 2.8)
that ¢ ~ ¢/, and are given that (¢/,¢) — o', so we conclude {c,o) — o’.

This completes the proof of Lemma 1. B

It temains to prove the converse implication:

(o) > o' = (c,0) o]0

The proof requires some simple facts about —*.

6.044J/18.423J Handout 12: One-step vs. “Natural” Semantics 7

Lemma 2.

1. {a,0) =} {a',0') = (X :i=a,0) o] (X :=d, 0),
2. (byo) =} (V',0') = (if bthencyelsec;,o) >} (if b’ thency elsecy,d’),
3. [{co,0) =1 6" & (c1,6") o1 0') = ((cosa1),0) =} o',
Proof: All three parts follow by straightforward induction on the definition
of the transitive closure, —*, of —;. We omit 1 and 2, and do only the

slightly more complicated part 3. In particular, we prove 3 by induction on the
derivation of {cp, o) —} o

Such a derivation must consist of {cy,o)—1v and a derivation of y—,*o" for
some state or configuration 4. So there are two cases:

[is a state o"] The result then holds easily, with {co,0)—10" implying that
((co;€1),0)—1{c1,0"). Combining this with our original presumption of
(c1,0") =% o' gives the desired result.

[y is a configuration (cg, 7¢)] Then, we can apply the induction hypothesis to
the evaluation (cg,00) —1 0", and we conclude that {(cy;c1),00) =1 0'.
But since {co,)—1{cp,00), we have by the definition of —; that
((co; e1),0)=1{(cpi €1), 00) = o'

So {(co;c1),0) —1 o as required.

Proof: We now prove the converse implication of (C) by induction on the
derivation d of {¢,o) — o'. The induction breaks into cases according to the
form of c.

o[c is skip] By the definition of —; we have (skip,o)—,0, so ¢’ = o, and hence
(skip, o) —} o', as required.

o[c is of the form X := a] The derivation of (c,0) — ¢’ must be of the form

(a,a).—r n
(X :=a,0) = o[n/X]

so o’ is o[n/X]. By (A), {(a,0) — n implies

(a,0) =1 (n,0).

8 6.044J/18.423J Handout 12: One-step vs. “Natural” Semantics

But then by Lemma 2.1
(X :=a,0) 2] (X :=n,0).
Now (X :=n,0)—10[n/X] is an —, rule, so we have

(X i=a,0) =] on/X]=7".

o[c is (co;c1)] Then d must be of the form

(co,0) = 0" {c1,0") =o'

{(cose1),0) = o

Let dy and d; be the left and right subderivations above. Then, by induction
we have {cp,0) =} 0" and {¢;,0") -} o'. Now by Lemma 2.3 we conclude

{(co;e1),0) =1 0.

o[c is if bthen ¢q else ¢;] The derivation d is of the form

(bo) >t (c,o) o0’

{c,0) =o'

for t € T. Let us call the right-hand subderivation d’. Since (b,c) — t, we know
by (B) that (b,0) —} (t,0), and hence by Lemma 2.2

(if bthency else ¢y, o) —] (if tthency elsec,, o).

Then, by the induction hypothesis (applied to d') we have {(c;,0) —] o', so

(if bthencyelsecy,o)—1*(if t thencg else ¢y, o)
- (C{,O’)

— » o,l
o[c is while bdo ¢] The simpler subcase is when d is of the form

(b, o) — false

(whilebdod',0) — o

6.044J/18.423J Handout 12: One-step vs. “Natural” Semantics

Then ¢’ = ¢, and, by (B), we have
(b,0) —7 (false, o),
so by Lemma 2.2
(if bthen(c'; c) else skip, o) —] (if false then(c'; c) else skip, o).
Thus,

(whilebdoc',o) —; (if bthen(c’; c) elseskip, o)
*(if false then(c'; c) else skip, o)
(

-1
— (skip, o)
—*1 0.

The other subcase is when d is of the form

(b,0) — true (c’,0) = d" (c,0") =0’

(c,0) = o'
As in the previous cases, from the subderivations we can conclude

(b,0)—1"(true, o)
(C’,U)‘—"].‘a'"

(Ca 0'”)—"1‘0

by (B) and induction hypothesis. Then, by Lemma 2.3, we can conclude
((c;c)0) -1 0.
Putting the pieces together with the definition of —1, this gives us

(¢,0) — (if bthen(c; c) elseskip, o)
—1 *(if true then(c’; c) else skip, o) .
—1{(c;¢),0)
""1‘0";
thus proving the final case in the theorem.
n

6.044J/18.423J: Computability, Programming, and Logic Handout 13
Massachusetts Institute of Technology Revised 12 October 1993

Problem Set 3

Due: 13 October 1993.
QUIZ 1: In class, closed book, Friday, October 15.

Problem 1. Counsider the following proposed definition of a possibly partial
function f : N - N:

f(0)y=1
f1) =2 .
f(f(n) = (1 + f(n+2))*

In this problem we examine whether this is a proper definition of a function f.

As noted in class, one way of testing whether such a “definition” is in fact well-
defined is to transform it into a set of inductive rules. Let R be the set of rule
instances obtained from the following rules:

0/(01 1)’
0/(1,2),
{(n,m),(n +2,m")}/(m, (1 +m")?).

1. Explain why there must be a least binary relation F C N x N defined
by R, and describe it explicitly.

2. Is F' the graph of a function?

3. Show'that F still does not satisfy the equations. (Hint: Since F(F(0)) is
defined, the third equation implies that F(2) is defined.)

4. Conclude that there is no partial function f : N — N satisfying the
equations.

Problem 2. Winskel Exercise 3.13.

2: 6.044J/18.423J Handout 13: Problem Set 3

Problem 3. For L C Loc, the relation =p between states is defined by
oy = o2 iff 01(X) = o2(X) for all X € L.

The binary relation ~ between arithmetic expressions is defined by
ar ~ ag iff (Yo1,02,m . 01 = 02 = ((a1,01) — m iff (az,02) — m))

Prove that a ~|oc(q) @ for all arithmetic expressions a. Use the induction hy-
pothesis P(a), where

P(a) iff a ~joc(a) @
That is, you should prove Va € Aexp .P(a).

Optional: The operational behavior of IMP expressions and commands de-
pends only on the locations they can read and write. We give here a precise
definition of this dependence and verify it. (It may be helpful to look at Winskel
Prop. 4.7.)

The locations writable by a command ¢ are given by loc.(c), and are exactly
those locations appearing on the left-hand side of an assignment command in ¢
(see Winskel, p. 39).

The locations readable by a command ¢ are exactly those locations appearing
in a position not on the left-hand side of an assigment in ¢. Let locg:(c) be the
set of these locations.

For example, if
co=if (X <Y) then X:=Y +1 else W := Z,
then locr(cp) = {W, X}, and locr(cp) = {X,Y,Z}. Note that X is both in
locy, and in locg . Also, loc(c) = loci(c) Ulocar(c) for any c.
The binary relation ~; between commands is defined:
¢~ ¢ iff (o1 =1 02 =
({c1,01) = o1 for some o} iff {cp,02) — o5 for some 03) &
(({er,01) = 0 & {c2,02) — 03) > 0] =1 03)).
1. Prove that ¢ ~jocp (c) ¢ for all ¢ € Com. You should assume the result of
the first part of the problem, and its counterpart for boolean expressions:
Va € Aexp, L 2 loc(e).a ~L a
Vb € Bexp, L 2 loc(b).b ~L b
You should use as induction hypothesis P(d), where
P(d) iff Ve,0,0',09,L. H dIF (¢,0) — ¢', L D locgr:(c), and o =, 0,

then (i) I+ (¢, 02) — o} for some o5; and
(ii) if I+ {¢,02) — 03, then ¢’ =L 73, for all 5.

6.044J/18.423J Handout 13: Problem Set 3 3

2. Conclude that ¢ ~o¢(c) ¢ (This is not quite immediate. It may be helpful
to appeal to Winskel Prop. 4.7.)

3. We referred to the natural semantics and the one-step semantics of IMP
as “operational,” but since Loc is an infinite set, and therefore so is each
state, these “operational” semantics invoive copying and updating infinite
objects in derivations. Briefly explain how the previous result leads to a
more truly “operational” version of natural and one-step semantics using
finite portions of states. Then say precisely how the original versions
of operational semantics can be retrieved from the versions using finite
portions of states.

Problem 4. Winskel Exercise 4.3.

6.044J/18.423]): Computability, Programming, and Logic Handout 14
Massachusetts Institute of Technology 13 October 1993

Problem Set 2 Solutions

This problem set was worth 34 points.

Problem 1. [6 points] Give a mathematically precise inductive definition of
which-var.

-Answer: First we give the domain and range of which-var :
which-var : {(exp) X (seq) — (var),

where (seq) is the set of sequences. Let s range over (seq), x range over {var),
and M range over (exp).

Now we define which-var by the inductive rules:

which-var(z,{()) =z

which-var{ (if M; M, Mj3), (i + 1)@s’) = which-var(M;, s") for i € {1,2,3}
which-var((M; ... M,), (1)Qs') = which-var{(M;, s') for1<i<m
which-var((lambda (z;...z.) M),(2,1)) = z; forl<i<n

which-ver((lambda (z; ...z,) M),(3)Qs') = which-var(M,s') forn >0
which-var((letrec ((zy Mp) ... (zn M,)) M), (2,i,1))=z; for1<i<n

which-var((letrec ((z; My) ... (z, M,)) M), (2,1,2)@3")
= which-var(M;, s') for1<i<n

which-var((letrec ((z3 M) ... (z, M,)) M),(3)Qs')
= which-var(M, s') forn >0

2 6.044J/18.423J Handout 14: Problem Set 2 Solutions

Problem 2. [6 points] Give a mathematically precise inductive definition of
the partial function str—tree-occur which converts an expression and a string
index into a tree-path.

Answer: In solving this problem, I started out by writing Scheme pseudo-code:

(define (strToTree s n start)
if (= start n) ; invariant: start <= n
< ; <> is the empty sequence
(let loop ((1)
(begin-mark (+1 start))
(end-mark (next-expr s (+1 start))))
(if (< n end-mark)
(@ <j> (strToTree s n begin-mark))
(loop (+1 j)
end-mark
(next-expr s end-mark)))))

We can compute str—tree-occur(s,n) by (strToTree s n 0); it would not be
hard to turn this into a real Scheme program.

It is straightforward, though somewhat inconvenient, to convert the Scheme
pseudocode into mathematics:

Let S be the set of strings, and N be the set of integers. We were given the
functions

nezt-expr: S x N — N,
@ : (seq) x (seq) — (seq).

We define str—tree-occur: S x N — (seq) by
str—tree-occur(s,n) = strToTree(s,n,0),

where strToTree : S x N x N — (seq) is defined by

RS ifi=m,
strToTree(s,n, i) = { loop(s,m,1,i + 1, nezt-ezpr(s,i + 1)) otherwise.

The function loop : 8§ x N x N x N x N — (seq) is defined by

(5YQstrToTree(s,n,b) ifn <e,

loop(s, n, 5, b, €) = { loop(s,n,j + 1, e, next-expr(s,e)) otherwise.

g

6.044J/18.423J Handout 14: Problem Set 2 Solutions 3

Problem 3 [4 points] Does the equivalence 2 ~ (+ 1 1) hold?

Answer: No, because + is a free variable that can be rebound in an unexpected
fashion. For example, if C[] is the context

(letrec ((+ (lambda (a b) 0))) []),

then Numval(C[2]) = 2 but Numval(C[(+ 1 1)]) = 0.
On the other hand, 2 &~ (<<+>> 1 1) does hold.

Problem 4. [4 points] Find an M and N such that FreeV(M) # FreeV(N),
and M =~ N.

Answer: The simplest example that I can think of is

M=3,
N = (if #t 3 foo).

Here M has no free variables, but FreeV(N) = {foo}. However, foo is never
used in any execution of N; regardless of the value of foo, N will return 3.

Problem 5. [4 points] Give an example showing that the Context Lemma
fails if we use Numval instead of NBval in the definition of ~ .

app!
Answer: There are simple contexts that can distinguish #t and #f numerically;
for example, if C[] is the context

(if [] 6 2),
then Numval(C[#t]) = 6, but Numval(C[#£]) = 2. Thus #t % #f.

However, there is no applicative context that can numerically distinguish #t
and #f. (This is easy to see once you note that Numval(#t) and Numval(#f)
are both undefined, because neither evaluates to a numeral. And therefore
Numval(#t) = Numval(#£).)

Thus we would have #t =~ | #£, but #t % #f contradicting the Context Lemma.
app

Problem 6. [4 points] Show that the Context Lemma fails in the language
extended with the operator <<equal?>>. <<equal?>> is defined on page 11 of
Handout 6; you should assume that <<equal?>> returns #f in all cases where
it is currently unspecified in Handout 6.

4 6.044J/18.423J Handout 14: Problem Set 2 Solutions

Answer: We take as counterexample

M = (lambda (x) x),

N = (lambda (y) y).
Clearly M and N are equal as functions. Thus M = N.

appl
However, by the definition of <<equal?>>, (<<equal?>> M N) evaluates to #f.

This lets us create a non-applicative context C[-] that numerically distinguishes
M and N: if

C[] = (if (<<equal?>> [] (lambda (x) x)) 7 3),
then
Numval(M) =7,
Numval(N) = 3.

Thus M # N.

Problem 7. [6 points] Winskel 4.13.
Exhibit a monotonic operator that is not increasing.

Answer: Take F to be the operator mapping sets of integers to sets of integers
defined as follows:

F(A)=0.
That is, F' maps every set to the empty set.

Clearly F is monotonic: for any A and B, F(A) C F(B) because F(A4) =
F(B)=0.

But F is not increasing, because if A is any nonempty set, A £ F(A)=0. ®

Show that given any set A there is a least fixed point of R which includes A4,
and that this property can fail for monotonic operations.

Answer: We proceed almost exactly as in Winskel’s proof of Proposition 4.12.
We define a sequence of sets, Ag, A;, As, ..., by repeatedly applying R to A:
Ao =R(4) = 4,
A = B(4p) = R;(A) = R(A),
Az = R(A,) = R (A) = R(R(4)),

Ani1 =R(4,) =R (4),

6.044J/18.423J Handout 14: Problem Set 2 Solutions 5

Let A, = U
taining A:

A,. We will prove that A, is the least fixed point of R con-

new
Proposition:

1. R(A,) = A..
2. If AC B and R(B) = B, then A, C B.

Proof:

1. Since_ﬁ is increasing we already know that A, C R(A,). It remains to
show R(A,) C A,.

Suppose a € R(A,); we wish to show a € A,. Now a € R(A,) iff a € A,
or 3X C A,.(X/a) € R. So we only need show that
(3X € A,.(X/a) € R) = a € Au,

that is, we must show that A, is R-closed.

Suppose X C A, and (X/a) € R. Because X is finite, there is some
n € w such that X C AE Then by the definition of R, we have a € An4,.
Therefore a € A., and R(A,) C A..

2. Suppose A C B and R(B) = B. We show by mathematical induction that
for all n € w, A, C B.
By hypothesis Ag = A C B.

Now assume A, C B. Since R is monotonic, we have
R(A,) C R(B).

But R(A,) = An41 and R(B) = B, s0 Any; C B.
Thus we can conclude that A, C B.

Finally, we show that this can fail for monotonic operators, by counterexample.
Namely, it fails for the operator F defined above. Since F maps every set to
the empty set, there can be only one fixpoint of F: the empty set. Thus if A4 is
nonempty, there is no fixpoint of F' containing A. |

6.044)/18.423J: Computability, Programming, and Logic Handout 15
Massachusetts Institute of Technology 13 October 1993

Problem Set 3 Solutions

Problem 1. Consider the following proposed definition of a possibly partial
function f: N — N:
floy=1
fy=2
f(f(n)) = (1 + f(n+2))?

In this problem we examine whether this is a proper definition of a function f.

As noted in class, one way of testing whether such a “definition” is in fact well-
defined is to transform it into a set of inductive rules. Let R be the set of rule
instances obtained from the following rules:

9/(0,1),
0/(1,2),
{(n,m), (n +2,m")}/(m, (1 +m")?).

1. Explain why there must be a least binary relation F C N x N defined
by R, and describe it explicitly.
2. Is F the graph of a function?

3. Show that F still does not satisfy the equations. (Hint: Since F(F(0)) is
defined, the third equation implies that F(2) is defined.)

4. Conclude that there is no partial function f : N — N satisfying the
equations.

- Answer:

1. The fact that there must be a least relation F was proved in chapter 4
of Winskel; see Proposition 4.1. The least relation F is exactly Ig =

{(0,1),(1,2) }.
2. Yes, F is the graph of a (partial) function.

3. Any f that satisfies the equations surely satisfies f(0) = 1, and f(1) = 2.
And F indeed satisfies these conditions. But now consider the third equa-
tion, letting n = 0. The equation says

F(£0) = (1+ £(2))?,

2 6.044J/18.423J Handout 15: Problem Set 3 Solutions

or, rewriting the left-hand side,
f(1) =1+ f(2))%

This equation implies that f(1) is defined if and only if f(2) is defined.
And as we have argued, f(1) is defined and is equal to 2. But now consider
F: it is not defined on 2. Therefore F' does not satisfy the equations.

4. As we have seen, any f that satisfies the equations must satisfy
F(1) =1+ £(2))%
Since f(1) = 2 we must have
fe=v2-1.

But there is no natural number we can assign to f(2) so that this holds
(f(2) would have to be a real). Thus there is no f satisfying the equations.

Problem 2. Winskel Exercise 3.13.

Answer: For an arithmetic expression a, loc(a) is defined by structural induc-
tion as follows:

loc(n)
loc(X)

9, loc(ag +a1) = loc(ag) Uloc(ay),
{X}, IOC(ao - al) = IOC(ao) U loc(al),
loc(ag X a1) = loc(ap) Uloc(ay).

For a boolean expression b, loc(b) is defined by structural induction as follows:

loc(true) = @, loc(ag =a;) = loc(ag)Vloc(as),
loc(false) = 9, loc(ag < a1) = loc(ag) Uloc(ay),
loc(-¥') = loc(b'), loc(bg Vb1) = loc(bg)Uloc(by),
loc(bp Aby) = loc(bp) U loc(by).

For a command c, locg(c) is defined by structural induction as follows:

locg(skip) = 9,
locg(X := a) = loc(a),
locgr(eo; 1) = locg(co) Ulocr(er),
locg(if b then ¢y else ¢;) = locg(cp) Ulocg(cy),
(

locg(while b do ¢') = locg(c).

6.044J/18.423J Handout 15: Problem Set 3 Solutions 3

Problem 3. For L C Loc, the relation =; between states is defined by

o =102 iff 61 (X) =02(X) forall X € L.

The binary relation ~; between arithmetic expressions is defined by
a1 ~ ag iff (Vol,a'g,m .01 =1 02 = ((a1,01) = m iff {(az,02) — m))

Prove that @ ~joc(q) @ for all arithmetic expressions a. Use the induction hy-
pothesis P(a), where

P(a) iff @ ~joc(a) a-

That is, you should prove Ya € Aexp .P(a).
Answer: We proceed by cases on the structure of a.

a = n: then Vo.(a,0) — n, and this is the only possible derivation. So
clearly P(a) holds.

a = X: then if 01 =joc(a) 02, we have 01(X) = 02(X). Let n = 01(X). There
is exactly one rule for the evaluation of @ = X, from which we determine

<a7 01) - n,
(a,02) — m,

and these are the only derivations starting with {a,o1) or (a,02). Thus P(a)
holds.

a = a; + az: Suppose (a,01) — m. We will show (a,02) — m. (The reverse
implication is proved in the same way.)

Since (a,01) — m, we must have

(ar,01) = my,
((12,0’1) — ma,

for some m,,me that sum to m. By induction we know P(a;) and P(as); so

<a1702) - m,
(az,02) — may,

Therefore we can conclude {a,d;) — m.
The other cases (a = a; — a2,a = a1 X az) follow similarly. []

Optional: The operational behavior of IMP expressions and commands de-
pends only on the locations they can read and write. We give here a precise
definition of this dependence and verify it. (It may be helpful to look at Winskel
Prop. 4.7.)

4 6.044J/18.423J Handout 15: Problem Set 3 Solutions

The locations writable by a command c are given by locz(c), and are exactly
those locations appearing on the left-hand side of an assignment command in ¢
(see Winskel, p. 39).

The locations readable by a command ¢ are exactly those locations appearing
in a position not on the left-hand side of an assigment in ¢. Let locg:(c) be the
set of these locations.

For example, if
cog=if (X <Y)then X :=Y +1 else W:=Z,

then loc(cy) = {W, X}, and locg(co) = {X,Y,Z}. Note that X is both in
locy, and in locg:. Also, loc(c) = locr{c) Ulocg/{c) for any c.

The binary relation ~; between commands is defined:

C1 ~[Ca iff (0’1 =L 0=
({e1,01) — o1 for some o] iff (c2,02) — o5 for some d5) &
(({e1,01) = 0] & (c2,02) — 03) => 01 =L 03)).

1. Prove that ¢ ~ocp,(c) ¢ for all ¢ € Com. You should assume the result of
the first part of the problem, and its counterpart for boolean expressions:

Va € Aexp .a ~jo(q) @
Vb € Bexp .b ~loc(b) b

You should use as induction hypothesis P(d), where

P(d) iff Ve,0,0',02,L. If d IV {¢c,0) = o', L D locg:(c), and o =, 02,
then (i) I {(c,o2) — o5 for some o5; and
(i) if I+ (c,09) — 0%, then o' = g3, for all o5.

2. Conclude that ¢ ~o¢(c) ¢. (This is not quite immediate. It may be helpful
to appeal to Winskel Prop. 4.7.)

3. We referred to the natural semantics and the one-step semantics of IMP
as “operational,” but since Loc is an infinite set, and therefore so is each
state, these “operational” semantics involve copying and updating infinite
objects in derivations. Briefly explain how the previous result leads to a
more truly “operational” version of natural and one-step semantics using
finite portions of states. Then say precisely how the original versions
of operational semantics can be retrieved from the versions using finite
portions of states.

Answer: To appear.

6.044J/18.423J Handout 15: Problem Set 3 Solutions 5

Problem 4. Winskel Exercise 4.3.
For rule instances R, show that the set Z defined by

Z = n{ Q| Q is R-closed }

is R-closed. What is the set Z?

Answer: First, note that the set
W ={Q|Q is R-closed }

is non-empty (it contains at least Ig). This is important, because ()@ is not
well-defined. So we have verified that Z = (W is indeed a well-defined set.

Now suppose (X/y) is an instance of a rule in R, and that X C Z. Then by the
definition of Z, X C @ for all Q@ € W. Since each @ € W is R-closed, y € Q for
all Q € W. Therefore y € YW = Z, and Z is R-closed.

Furthermore, Z is the smallest R-closed set: by definition, it is contained in all
R-closed sets. But it was proved in Winskel (Prop. 4.1) that I is the smallest
R-closed set. Therefore we know Z = Ig. n

6.044J/18.423J: Computability, Programming, and Logic Handout 16
Massachusetts Institute of Technology 13 October 1993

Quiz 1 and Solutions from 1991

Instructions. For your reference, there is an appendix listing the definitions
of the “evaluates to” relation —, and the one-step rewriting relation —; on
configurations of the language IMP.

For Problems 1 and 2, let w be the IMP command
while45 < Xdo X =X -3; Y =X-1; X =Y -1

and let & be a state such that ¢(X) = 1000 and «(Y') = 2000.

Problem 1 [10 points]. According to the inductive definition of evaluation,
the assertion
(w,0) — {40/ X][41/Y]

has a unique derivation. How many instances of the sequencing rule scheme

(seq —) given below appear in this derivation? 384

(Co,d) — U”, (Cl,d”) — U’

{(co;c1),0) — o

(seq —)

Note: The quiz did not ask for any explanation. One will be asked for on problem
set 4.

Problem 2 [15 points]. By definition, (w,o) —} 0{40/X][41/Y] because there
is a (unique) sequence of the form:

(w,0)—>1(c1,01)—=1{c2, 02) =1 -+ =1(Cn, 0n) —10[40/X][41/Y]

where n happens to be 2500.

Notice that &) must equal o, and ¢; must be

if45 < Xthen(X:=X-3;Y:=X-1; X :=Y - 1; w) elseskip.

6.044J/18.423J Handout 16: Quiz 1 and Solutions from 1991 2

2(a) [6 points]. What are

ce?| if45<1000then(X ==X -3;Y =X -1; X =Y ~ 1; welseskip

o027 o

c3? iftruethen(X ==X -3;Y:=X-1; X :=Y - 1; w) elseskip

o3? o
cn? skip
on? o[40/X][41/Y]

The answers for c3 and o3 were graded relative to the answers for c; and o3.

2(b) [4 points]. How many ¢;’s are of the form whilebdoc? | 193 | Actu-
ally the correct answer is really 192. We forgot that the first configuration in the
chain ({w,o)) was not explicitly described to be co. Thus the first while in the
chain does not really contribute to the count. If we had let {cg,00) = {w,) then
there would not have been a problem. Full credit was given for either answer,
unless it was clear that 192 was arrived at via a mistake (and thus two wrongs
making a right).

2(c) [5 points]. There are k times as many ¢;’s which are of the form
if b’ then celsec’

than are of the form
while b’ doc".

What is k? 3 Due to the slight miscounting in the preceding answer
the correct answer is really (193 x 3)/192 = 3.0156. Credit was given for either
answer.

6.044J/18.423J Handout 16: Quiz 1 and Solutions from 1991 3

Problem 3 [20 points]. It was noted in class that every Aexp configuration
evaluates to a number. Likewise, one can prove by structural induction on Bexp
that every Bexp configuration evaluates to a truth value, namely,

for all (b,0), there is a t € {true, false} such that (b,0) — t.

3(a) [10 points]. List the cases of the structural induction and indicate what
must be shown for each case.

The base cases are:

[b=t € {true,false}] We must show that, under no additional assumptions,
there exists a t' € {true, false} such that (t,0) — t'.

[b=ag = a1] We must show that there ezists a t € {true, false} such that
(ag = a3,0) — t. To do so, we may use the analogous property for Aexp,
viz. to assume that there erist ng and n; such that (a0,0) — ng and
(al, 0’) - 7ny.

[b=ag < a1] Similar to the preceding case.
The non-base cases are:

[b=~¥] Under the assumption that there ezists a t € {true, false} such that

(¥',0) — t, we must show that there erists g ¢ € {true, false} such that
(=b' oy — t'.

[b=bo Aby] Under the assumption that there erist ty,t, € {true, false} such

that (by,0) — ty and (b1,0) = t;, we must show that there ecists a t €
{true, false} such that {bo A by, 0) — ¢.

[b=byv b1] Similar to the preceding case.

3(b) [10 points]. Pick a non-base case and prove it!
We pick the non base-case (6= bo Aby).

(Iénder the inductive assumption that there erist ty, t, ¢ {true, false} such that
0,0) — &g and (b1,0) = t1, we must show that there exists a ¢ € {true false}

Such that (b() A bl 0‘) — t, B’Ut b rule R
conjunction of 1. e . Y (and —), there is such a ¢, namely the

6.044J/18.423] Handout 16: Quiz 1 and Solutions from 1991

Prt?b!em 4 [25 points]. We define a “parallel evals to” relation, «—, which is a
variation of the “evals to” relation, —. The rules to define — are obtained from

the rules defining — by replacing all occurrences of “—” by “—”. In addition,
there is one further “parallel if” rule:

{co,0) = o, (c1,0) — o’ '
(if bthencyelsec), o) — o (par-if —)

4(a) [5 points]. Give a simple example of a command, ¢, such that (c,0) < ¢
has more than one derivation for any state o.

if bthenc' elsec’, for any ¢/

Although the definition of — differs from that of —, it turns out to specify the
seme relation on configurations as —. The nontrivial direction of this remark
is the implication

(o) >0’ = (c,0) -
This implication can be proved by induction on the definition of — (that is by
rule induction on the rules for <).

4(b) [10 points]. Briefly explain what the cases of the induction are, and why
there is only one non-trivial case.

There is one case for each of the inference rules of < on Com-configurations
(or on Aexp, Bexp, and Com configurations. This was slightly ambiguous but
unimportant, since either reading gave the same definition of —).

So there are the base cases for the Com-configuration rules: (skip —), (assign
The inductive cases are for the rules: (seq—), (if-true —), (if-false =) (while-
false <), (while-false —), and finally a case for the new rule (par-if —).

The only non-trivial case is for the new rule (par-if —), because the'other
rules for < are the same as the corresponding rules for —. .In particular,
if {c,0) — o’ follows from some (—)-rule, R, other. than .(par-zf. —), then the
antecedents if any, of R which involve —, each implies by mdtlnctwn, the corre-
sponding antecedent with “—” replaced by “—7, so0 {¢,0) = o follows trivially
by the —-version of R.

4(c) [10 points]. Prove the non-trivial case. (You may assume the results
mentioned in Problem 3.)

So, we suppose that {c,0) — o’ because of the rule (par-if —).

6.044J/18.423J Handout 16: Quiz 1 and Solutions from 1991 5

Then ¢ must be of the form if bthen cg else ¢, where (cg,) — o' and (¢1,0) — o’
(so by induction, we may assume that (cy,0) — o' and {¢1,0) — o).

By Problem 3, we know that there exists a t € {true,false} such that (b,0) — t.
This gives us two cases based on t.

Suppose t = true. Since (b,0) — true, rule (if-true —) applies, and so then
(c,o0) = o'

The case of t = false works similarly. Since (b,o) — false, rule (if-false —)
applies, and so then (c,0) — o’.

6.044J/18.423J Handout 16: Quiz 1 and Solutions from 1991 6

A Appendix

We use n, sometimes with subscripts as in ng,n1, to denote arbitrary elements
of Num. Similarly, we assume X,Y € Loc; a € Aexp, t € {true, false};
b € Bexp; c € Com; and o € the set of states.

A.1 “Evals to” Rules for IMP

Notice that we give a name for each rule in parentheses to its right.

A.1.1 Aexp Rules

(n,0) = n (num —)
(X,0) = a(n) (loc —)
<a010') — 7Ny, (alad) — N
{ag + a1,0) = n (plus —)
where n is the sum of ny and n;.
Similarly, there are rules (times —) and (minus —).
A.1.2 Bexp Rules
(t,o) =t (bool —)
<a070') — N, (alad) — (equa.l _')

{ag = a1,0) = ¢t

where t = true if ng and n; are equal, otherwise t = false.
Similarly, there is a rule (< —).
(bo) =t

(mbyo) =t/

where ¢’ is the negation of ¢.

(not —)

{bo,0) = to, (b1,0) =ty
(bo A by,0) =t

where ¢ is true if ty = true and t; = true, and is false otherwise.

(and —)

Similarly, there is a rule (or —).

6.044J/18.423J Handout 16: Quiz 1 and Solutions from 1991
A.1.3 Com Rules
(skip,0) = o (skip —)

(a,0) > m (assign —)

(X :=a,0) — o[n/X]

" Vi 7
{cg,0) = a", {c1,0")—> 0 (seq —)

((cos;e1),0) = 0’

(b-, 0') — true, (C{J,O') -0 ‘
(if bthency elsecy, o) — o (if-true —)

(b» 0') — false, (cl,g-) -0)
(if bthen cg elsec;,0) — o’ (if-false —)

(ba 0') — false .
{(whilebdoc,0) — o (while-false —)

!

" 3 "
(b,0) — true, (c,0) —»o”, (whilebdoc,0”) >0 (while-true —)

(whilebdoc,o) — o’

A.2 Rewriting rules for IMP

A.2.1 Aexp Rules
(X,0)=1{0(X),0) (loc =)

(a’O’ 0')_’1<0'6a 0')
(ap + ay,0)—1{ah + a1,0) (plus-left —1)

a,o)— a’,a .
(n +<a, ag—ign T ()1/,0) (plus-right —)

(ng +1n1,0)—1{n,0) (plus-num —)

where n is the sum of ny and n;.

Similarly, there are rules (times-left —), (times-right —), (times-num —;),
(minus-left —;), (minus-right —,), and (minus-num —).

6.044J/18.423J Handout 16: Quiz 1 and Solutions from 1991

A.2.2 Bexp Rules

{a0,0)—1{ap,)
(ap = 61,0)—'1(06 =ay,0)

(equal-left —4)

) (equal-right —;)

(ng =ny,0)—1(t,0) (equal-num —,;)

where t = true if no and n; are equal, otherwise ¢ = false.
Similarly, there are rules (<-left —,), (<-right —,), and (<-num —,).

<bva)_'1<blv 0')
(=b,0) =1 (=¥, 0)

(not-eval-arg —;)

(-t,o)—=1(t',0) (not-bool —1)

where ¢’ is the negation of ¢.

{bo, 0)—1(by, o)
(bo /\bl,a)—vl(b{, /\bl,a)

(and-left —,)

<b’ 0)_’1 <blva)
(tAb,g)—1{tAb,0)

(and-right —;)

(to A ty,o)—1(t,0) (and-bool —)

where t = true if g = true and t, = true, otherwise t = false.
Similarly there are rules (or-left —,), (or-right, —;) and (or-bool —1).
A.2.3 Com Rules

(skip,0)—10 (skip —1)

<ava)_'1<al’a)
(X :==a,0)—1{X :=4d,0)

(assign-eval-arg —)

(X :=n,0)—10[n/X] (assign-num —;)

6.044J/18.423J Handout 16: Quiz 1 and Solutions from 1991

{co,0)—1{cp, ')
((60;01)70)—'1((06;01)70')

(seg-start —1)

(co,0)—10’
((cojc1),0)—=1{c1,0")

(seq-finish —)

<b7 0')_'1<b', 0)
(if bthency elsec;,o)—1 (if b’ then ¢y else ¢y, 7)

(if-eval-guard —)

(if true then ¢ else ¢y, o) —1{co, o) (if-true —)
(if false then cg elsec;, o) —1{c1,0) (if-false —1)

(while bdo ¢, 0)—;(if b then(c; while bdo c) else skip, o) (while —)

6.044J/18.423J: Computability, Programming, and Logic Handout 17
Massachusetts Institute of Technology 13 October 1993

Quiz 1 and Solutions from 1992

(This was a closed book, closed notes exam. There were four (4) problems,
worth 25 points each.)

Recall from Problem Set 2 that IMP, is the extension of IMP by a further
expression construct, cresultis a, where ¢ is a command and a is an arithmetic
expression. On this quiz, arithmetic expressions, a, ay, . . ., Boolean expressions,
b, bg, ..., and commands, ¢,cy,..., are understood to be those of IMP,. The
natural evaluation rules (—,) and one-step (—,1) rules of IMP, were attached
in an appendix to this quiz. To avoid clutter, the subscript “r” on the arrows
will henceforth be dropped.

In IMP,, every command is equivalent to an assignment statement, namely

¢ ~ X :=cresultisX

(Recall that ¢; ~ ¢ means that for all a,0”,
{c1,0) — o' iff (c3,0) = 0'.)
Problem 1 [25 points]. One way to prove this equivalence would be by appeal
to the one-step semantics. Thus, if
(e,0)=1{c1,01) =1 - —=1{Cn, On)—10"

for some sequence of configurations (c;,0;) and n > 1, then

s / ! / ! ! ! !
(X = cresultis X, o) —1{c;,01)—1 - —1{c,,0.)—1 - —1 (cn+k,an+k>—>1cr
, for some sequence of configurations (c},s!) and k > 1.

1) 7t

Note that c;,,, is an assignment of the form X :=m.

1(a) [18 points]. Which of the following correctly describes m? (circle all
those which are correct):

n+k+1 o (X)

8.
9.
a(X) o4k (X)

1. n o' (X)

2. n+1 7. oX)+k
3. n+k o(X)+k
4.

5.

2 6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992

1(b) [7 points]. What is k? k =[2 l

From the evaluation rules for —1, we know that every (c;,o!) must be ezactly
(X := ¢ resultis X, 0;), for i < n. Further, since {c,,0n)—10', we know that
cn is one of skip, X :=m, or Y := m’' (for some numeral m'), where Y 1is
a different location from X. This gives us three possible classes of evaluations,
starting with (c},,0.,):

(X := (skip resultis X),0,)—=1(X := X, 0,)
_'1<X =m, Un)

—10n
or
(X := (X :=mresultis X),0,)—1(X = X, on[m/X])
—1{(X :=m,on[m/X])
—10a[m/X]
or

(X := (Y := m' resultis X),0,)—=1(X := X,0,[m'/Y])
—1{X :==m,o,[m'/Y])
—10a[m'/Y]

Note, first, that all of these are of the form
<C'mU;u)"l<c'n+1vU;u+1>_‘1<c'n+270;+2>_'1‘7’7

so k = 2. Next, each c,,,, is of the form X := 07, 5(X), so answer 10 applies.
Finally, note that in each case o’ = o, 5, s0 answer 6 applies as well. Answer 9
is true in some cases (like the first and third), but not true in general, as the
second case shows.

6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992 3

Problem 2 (25 points]. There is another, direct way to prove this equivalence:
describe how to find a derivation of

2(a) [12 points].
(X :=cresultis X,0) — o’

from a derivation of
<c7 d) g U,’

Given a derivation d I+ {c,0) — o', we have the following derivation:

d (X,d) - {d'(X),0)
(cresultis X,0) — (¢/(X),0')
(X := cresultis X,0) — o'[0'(X)/X]

Since o'[0'(X)/X]| = o', we have a derivation of

(X :=cresultis X,0) — o'

2(b) [13 points]. and vice-versa.

Given a dertvation d IF (X := cresultis X, o) — ¢', we know that d must end
with the rule
(cresultis X, o) = (m,c")

(X :=cresultis X,0) — o'
where ¢’ = o"[m/X].
Then, the derivation of (cresultis X,o) — (m,o"’) must end with the rule
(C, U) o (X, U"’) = <m, U")

(cresultis X,0) — (m,c")

Now,
<X,U",) — <m’UII)

is an aziom; but for this aziom to hold, it must be the case that "' (X) = m
and " = ¢'"". But this means that

g = a’"[m/X] = a"[m/X] ——

4 6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992

Thus, we know that d is of the form:

(o) = d (X,0') = ('(X),0")
(cresultis X, o) — {¢'(X),0’)

(X := cresultis X,0) — ¢’

which contains a derivation for (c,0) — o' as a subderivation.

6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992 5

Problem 3 (25 points]. We define four (4) sets of rule instances over the
natural numbers w = { 0,1,2,... }:

Ry = - Z 7 n;zn++21 fornew

R, .= - & 5 7:_ 5 n;zn++21 fornew

Ry = I nZ-Z 1’3’5"2'1'1’2"-}-1 fornew,n>1
Ry = T 5 —np—_l}_%— form,n e w

3(a) [16 points]. For i = 1,2,3,4 give a simple description of Ig,, the set of
numbers derivable from R;.

Ip, = The odd integers > 7
Ip, = The integers > 7

Ig, = The integers > 1 (or > 0)
Ig, = The even integers > 4

3(b) [9 points]. Which i satisfy the property that every number in Ig, has
a unique R;-derivation? For the others, what is the smallest integer with two
derivations?

unique derivation If “no,”
(yes/no) smallest integer
R Yes
R, No 9
Ry No 4
Ry No 12

6 6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992

Problem 4 [25 points]. Say that b € Bexp, is side-effect free iff, for all
states 0y, 00,
(byo1) = (t,02) = 01 =0

4(a) [20 points]. Suppose b is side-effect free. Carefully prove that
(whilebdoc,0) - o' = (b,¢') — (false,d’).

This is a very simple induction on derivations.

Suppose d |+ (whilebdoc¢,0) — o'. Then:

Base case: If the last rule of d is

{(b,0) — (false,o’)
(whilebdoc,0) — o’

then, since b is side-effect free, o = o', so we have (b,o’') — (false,d’).

Induction: If the last rule of d is not the while-false rule, then it must be
while-true:

(b,6) — (true,o”) (c,0") - ¢ (whilebdoc,d"”) — o’
(whilebdoc,0) — o’

But, since the derivation of (whilebdoc, 0’’) — ¢’ is a subderivation of d,
by induction we have

(whilebdoc,6”) - o' = (b,0') — (false,d’).
So (b,0’) — (false,o’).

6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992 7

4(b) [5 points]. Give a simple b (with side-effects) which is a counterexample to
the implication of part 4(a). I(if X = Othen X := lelse X := Oresultis X) =0

It was required to find a Bexp, b, such that
(whilebdoc,o) — o’ and (b,o') A (false,o’)

for some ¢, o and o'. The easiest way is simply to ensure that b always changes
the state; thus, if b is (X := X + lresultis0) = 1, then, if 0(X) = 0 we have

(while b do skip, o) — o[1/X] and (b,0[1/X]} — (false, o[2/X])

The expression we have given in the answer bozx is slightly more complez, and
actually yields true as well as changing the state. With b as in the answer boz
and o(X) = 0:

(while bdoskip,s) — o[1/X] and (b,o[1/X]) — (true,o[0/X])

Yet another possibility would be for (b,0') to fail to evaluate to anything in
state o', as with ((while X = 1doskip); X := X + lresultis0) = 1.

Finally, there is the possibility of a Bexp, b, such that
(b,0') — (true,d’).

We leave this as an extra-credit exercise.

8 6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992

Appendix A: Natural Evaluation Rules for IMP,

As mentioned earlier in the quiz, we’ll be omitting the r subscripts to reduce
clutter. Otherwise, these definitions are the same as those given in Problem
Set 2.

Rules for Aexp
(n,0) — (n,0)
(X,0) = (s(X),0)

(ag,0) = (no,0”), (a1,6”) = (n1,0’)
(ao + a1,0) — (n,o)

where n is the sum of ng and n;.

There are similar rules for x and —.

(c,0) = d", (a,0") — (n,o)
(cresultisa,o) — (n,0')

Rules for Bexp

<ta U) - <t’ U)

<a0,0') — <n07UII)’ <a1aUII) - <n1’al)
(ao = a1,0) — (t,0)

where t = true if ng and n, are equal, otherwise ¢t = false.

There is a similar rule for <.

(b,0) = (t,0")
(=b,0) — (t',0")

where t' is the negation of .

<b050') — <t0aall)7 <b17UII) — <t1)UI)
(bo Ab1,0) — (t,0")

where ¢ is true if £ = true and ¢; = true, and is false otherwise.

There is a similar rule for V.

6.0447/18.423J Handout 17: Quiz 1 and Solutions from 1992

Rules for Com

(skip,0) — o

(a'va) _’<n,‘7,)
(X :=a,0) = 0'[n/X]

(co,a) — U", <61,U") — U,

((co;€1),0) = 0’

(b,o) — (true,d”), (co,0") =o'
(if bthencgelsec;,0) — o’

(b,o) — (false,d”), (c1,0")— o’
(if bthencg elsec;,0) — o'

(b,0) — {false,o’)
(whilebdoc,0) — o'

(b,0) — (true,¢”), (c,0") =", (whilebdoc,d"') — o

(whilebdoc,o) — o'

10 6.044J/18.423J Handout 17: Quiz 1 and Solutions from 1992

Appendix B: One-Step Evaluation Rules for IMP,

As in previous handouts, we will use op to range over syntactic operator sym-
bols, and op to range over corresponding arithmetic or Boolean operations.
Also, as elsewhere in the quiz, we will be dropping the r subscripts to avoid
clutter. The language involved is still IMP,., however.

Rules for Arithmetic Expressions, Aexp
(X, 0)—1{0(X),0)

(C, U)_'l (cl) UI)
(cresultisa,s)—;{c resultisa,o’)

(C, U)_'l o
(cresultisa,o)—1{a,0’)

(a0, 0)—1{ag, 0’)
{ag op a1,0)—1{ag op a1,0’)

(a1,0)—1(a},0")
(n op a;,0)—1(n op a},0")

(n op m,o)—1(n op m,)

op | op

+ | the sum function

— | the subtraction function

X | the multiplication function

Rules for Boolean Expressions, Bexp

(00,0)—'1(06@')
(ao opa, U)_'l(a:) op ai, U,)

{a1,0)—1{a},0')
{(n op a1,0)—1{n op a},0’)

{n op m, 7)—1(n op m,)

6.044.7/18.423J Handout 17: Quiz 1 and Solutions from 1992 11

[=}
i)

op
the equality predicate
the less than or equal to predicate

IA

We next have the rules for Boolean negation:

(b,)= (¥, 0")
(_‘b’ U)_'l(_‘b,) U,)

(—~true, o)— (false, o)
(—false, o)—(true,o)

Finally we have the rules for binary Boolean operators. We let ¢, tg,¢1,... range
over the set T = {true, false}.

{bo,) —1{bp, ')
(bo op by1,0)—1{b; op by,0")

(b1, a)—1(by,0")
(to op b1, 0)—1(to op b},0”)

(to op t1,0)—1(to op t1,0)

op | op
A | the conjunction operation (Boolean AND)
V | the disjunction operation (Boolean OR)

Rules for Commands, Com

Atomic Commands:
(3kip, 0')_'1 4

Sequencing:
(CO’U)_'I(CB’U,)
((co; 1), 0)—1{(co; €1), 0")

{co,0) 10’
((Co;Cl),U)—'l(Cl,U')

12 6.044.J/18.423J Handout 17: Quiz 1 and Solutions from 1992

Conditionals:
(b, g)—1 (b, 0')
(if bthencg else c;, o) —1 (if b’ then ¢y else ¢y, o)
(if true then ¢g else ¢, 0)—1{cy, o)
(if false then ¢y else ¢y, 0)—1{c;,0)
While-loops:

(whilebdo ¢, g)— (if bthen(c; while bdo ¢) else skip, o)

6.044J/18.423J: Computability, Programming, and Logic Handout 18
Massachusetts Institute of Technology 15 October 1993

Quiz 1

Instructions. This is a closed book, closed note exam. There are three (3)
problems, on pages 2-7 of this booklet. Write your solutions for all problems
on this exam sheet in the spaces provided, including your name on each sheet.
Don’t accidentally skip a page. Ask for further blank sheets if you need them.

There are a number of appendices, containing information on IMP and the
Substitution Model of Scheme. You have seen all of this material before; it is
included for reference only.

GOOD LUCK! -

NAME:

Problem | Points Score
1 30
2 30
3 40
Total 100

Problem 1 [30 points]. For each of the following expressions of the functional
kernel of Scheme, write down a Substitution Model normal form for the expres-
sion, or write that the expression has no normal form. (The Substitution Model
is summarized in Appendix D, and normal forms are defined on p. 16.)

1. (letrec ((x 2) (y 3))
(<<+>> x ¥))

2. (letrec ((x 2)
(y ((lambda (x) (<<+>> 1 x)) 4)))
(<<+>> x ¥))

3. (letrec ((f (lambda (z) (<<+>> x 2))))
(lambda (x) (f x)))

4. (letrec ((x (lambda () x))) x)

5. (letrec ((x (lambda () x))) 1)

6. (lletrec ((y x) (xy))
(<<+>> 1 x))

6.044J/18.423J Handout 18: Quiz 1
NAME 3

Problem 2 [30 points]. In this problem we ask you to add an until operator
to the language IMP. (IMP is summarized in Appendices A and B.)

First we extend the syntax of commands as follows:

cu=...| do c until b.

Informally, do ¢ until b executes ¢ repeatedly until b evaluates to true. We
expect that

(do c until b,0) = o' iff {((c;if b then skip else (do c until b)),s) — o'

Note that ¢ is always executed at least once.

2(a) [10 points]. Complete the definition of the until operator by filling in the
boxes in the following rules:

(e) — (b, -

(do c until b,0) — o'

[until-1]

) — (b, — (do c until b,| —

(do c until b,0) — ¢'

[until-2]

2(b) [10 points]. Suppose
Cdo =do X := X -1 until X <0,

and suppose o, is a state such that o,(X) = 2. Then IF (c40,02) — 7a[0/X].

Draw the derivation tree for IF {c40,0.) — 0a[0/X].

2(c) [10 points]. Now suppose oy, is a state such that o,(X) = n, wheren > 1.
Then IF {c40,0b) — [0/ X].

How many times is the rule [until-1] used in the derivation of I+ {(c4o,0b) —
ob[0/X])?

How many times is the rule [until-2] used in the derivation of It (c4o,0n) —
ob[0/X]?

6.044J/18.423J Handout 18: Quiz 1
NAME 5

Problem 3 {40 points]. Recall the following sets, which were defined in Winskel’s
book (the exact definitions can be found in Appendix C):

¢ loc(a) is the set of locations appearing in an arithmetic expression a;

loc(b) is the set of locations appearing in a boolean expression b;

loc(c) is the set of locations appearing in a command c; and

locz(c) is the set of locations appearing on the left-hand side of assignment
statements in command c.

Note that if X ¢ locy(c), then the value of X cannot be changed by the execution -
of c. Intuitively, then, locz(c) is the set of locations which might be written
during the evaluation of c.

We want you to define loc,eaq{c), the set of locations in command ¢ which might
be read during the evaluation of c¢. For example, if

ca=ifW<O0then X:=Y +1lelse Z2:=X+Y,
then we should have locreaqa(ca) = {W, X, Y }.
3(a) [16 points]. Give a definition of loc,eaqa(c) by induction on the structure
of commands. We have filled in the case ¢ = ¢y; ¢; for you; you must fill in the

other cases. You may use locz(c), loc(a), loc(b), or loc(c) in your definition if
you so desire.

® l0Cread(CoiC1) = 10Cread(Co) UloCread(cy).

locreada(skip) =

locreaa(X :=a) =

10Creaa(if b then cg else ¢;) =

locread(while b do ¢) =

3(b) {4 points]. Give a simple command ¢ such that

loc(c) = locL(¢) = locread(c) # 0.

3(c) [20 points]. It can be proved, by structural induction on commands c,
that

loc(c) = 1ocreaa(c) UlocL(c).

We have filled in the case ¢ = c¢p;¢; of the proof for you; you must fill in the
proof for the cases ¢ = X := a and ¢ = while b do ¢'. {You need not prove the
remaining cases, ¢ = skip and ¢ = if b then ¢ else ¢;.)

® ¢ = ¢p;c;: By definition,
loc(e) = loc(ep) Uloc(ey).
And by induction,

loc{co) = locreaa(co) U locr (o),
loc(¢r) = locreaa(c1) Uloc(c1).

Therefore
loc(e) = 10Cread(Co) Ulocread(c1) UlocL(co) UlocL(c1),
and by the definition of 10¢,eaq and locy,
loc(c) = locreada(c) Ulocp(c),

as desired.

6.044J/18.423J Handout 18: Quiz 1
NAME

e c = while b do ¢’

Appendix A: Syntax of IMP

For Aexp:
ar=n|X|ap+tarja—a1|a xXa

For Bexp:
b::= true | false |ap = a1 |ag < a3 | -b|bpAby | bo Vb
For Com:

cu=skip| X :=a|co;c1 | if b then ¢p else ¢; | while b do ¢

6.044J/18.423J Handout 18: Quiz 1

NAME

Appendix B: Semantics of IMP

Evaluation of Aexp’s:

{(n,o) = n
(X,0) = o(X)

(ag,0) = no__(a1,0) = m

(ag +a1,0) = n

(@g,0) = no {a1,0) = m

(a0 —-a1,0) —=n

(ao,U) — ng (01,0) - m

(ag X a1,0) = n

Evaluation of Bexp's:
(true,o) — true

(false, o) — false

{ag,0) = n {a1,0) =& m

(ag = a1,0) — true

(a(),o.)_'n (0'170.)_"”7‘

{ag = a1,0) — false

{ag,0) = n (a1,0) = m
{ag € a1,0) — true

(a07a) —n (alva) —m
{ag £ a1,0) — false

where n is the sum of ng and n;.
where n is the result of subtracting n; from ng.

where n is the product of ng and n,.

if n and m are equal.

if n and m are unequal.

if n is less than or equal to m.

if » is not less than or equal to m.

{b,0) — true {b,0) — false

(=b,0) — false (=b,0) — true

(bo,0) = to (bi,0) =ty
(bo /\bl,O') —t

where t is true if ¢y = true and ¢; = true, and is false otherwise.

(b070) — 1o (blya) -1
(boVbj_,O’) — t

where t is true if {g = true or t; = true, and is false otherwise.

10

Execution of Com’s:
(skip,o) — ¢

{a,0) = m
(X :==a,0) = o[m/X]

{co,a) = d" {¢3,0") =o'

(co;1,0) — o

(b,d) — true {cg,0) — o'
(if b then ¢, else ¢;,0) — o'

{b,g) — false {c;,0) > o’
(if b then ¢y else ¢;,0) — o'

(b,0) — false
(while bdo ¢,0) = ¢

(b,0) — true {(c,0) = ¢” (while bdo ¢,0") - o'
(while b do ¢,0) — o’

6.044J/18.423J Handout 18: Quiz 1
NAME 11

Appendix C: Location functions
For an arithmetic expression a, loc(a) is defined by structural induction as
follows:

loc(n)
loc(X)

@, lOC(ao -+ 0.1)
{X}, loc(ap —ay)
loc(ao % a1)

loc(ag) U loc(ay),
loc(ap) U loc(ay),
loc(ag) Uloc(ay).

For a boolean expression b, loc(b) is defined by structural induction as follows:

loc(true) = 0, loc(ag =a1) = loc(ag) Uloc(as),
loc(false) = 0, loc(ag € a1) = loc{ag) Uloc(ay),
loc(=d') = loc(¥'), loc(bo V b1) = loc(bo) Uloc(by),

: loc(bo Ab1) = loc(bo) Uloc(by).

For a command ¢, loc(c) is defined by structural induction as follows:

loc(skip) = 0,
loc(X :=a) = {X}Uloc(a),
loc(co; €1) = loc(co) U loc{cy),
loc(if b then ¢ else ¢;) = loc(b) Uloc(c) U loc(ey),
loc(while & do ¢') = loc(b) Uloc(c').

For a command ¢, locg(c) is defined by structural induction as follows:

locr (skip) = 0,
loct (X :=a) = {X},
locg(co; 1) = locr(co) Ulocr(cy),
loc, (if b then ¢g else ¢;) = locg(co) Ulocr(cy),
locz(while b do ¢') = loc.(c').

12

6.044J/18.423J Handout 18: Quiz 1

Appendix D: The Substitution Model of the Functional Kernel of Scheme

1 Syntax

We follow the grammatical conventions of the Revised* Scheme Report, using z, y, z to denote variables,
and M, N, B to denote expressions. We use * to indicate zero or more occurrences of a phrase type and *
for one or more occurrences.

The (scheme-constant)’s correspond to familiar Scheme procedures.

(nonbinding-keyword

(keyword) ::=

(binding-keyword
(exp

e

(bindings
(formals
(constant

(numeral

)
)
)
)
(boolean) :
(scheme-constant) :
(system-constant) :
(var) :

(built-in) :

(rule-defined)

::= lambda| letrec
n= (if (exp) (exp) (exp))

| (exp)™)

(binding-keyword) | (nonbinding-keyword)
n=if

| (lambda ((formals)) (exp))
| (Letrec ((bindings)) (exp))

| (constant)

| (var)
i= ({var) (exp))®
= (var)*

(all
(all

(var)’s must be distinct)
(var)’s must be distinct)

:= (numeral) | (boolean) | (scheme-constant) | (system-constant)

=#t|#f

-1|3.14159] ...

:= (built-in} | (rule-defined)
:= identifiers of the form <<---

>> that are not (scheme-constant)’s

:= identifiers other than {constant}’s or (keyword)’s

1= KKHD> | K-> <A DS>| KK/ >> | <=0 <<= >>

| << < >>| <<ged>>| <<sin>>| << quotient>>
| <<zero?>>| <<abs>>| <<1+>>| <<sqrt>>| <<not>>|...

= <<boolean?>>| <<number? >>| << procedure?>>

The (built-in)’s correspond to basic

operations on numerals as specified in the Revised* Scheme Report. The (system-constant)’s correspond to
other procedures which may be added to the system by importing external code.

2 Functional Values

The purpose of evaluating an expression is to obtain its

[13

value.”

(lambda-val) ::= (lambda ((formals)) (exp))

(letrec-free-val) ::=
(value) ==

(lambda-val) | {(constant)

(letrec-free-val) | (letrec (({var) (letrec-free-val))*) (value))

The (letrec-free-val)’s will play a particularly important role in specifying Scheme’s evaluation rules. We let

v,n,...

denote (letrec-free-val)’s.

g

6.044J/18.423J Handout 18: Quiz 1 13

3 TFree and Bound Variable Occurrences

We define the free and bound occurrences of variables in an expression M.

(1) M is a (constant).

FreeO(M) =0

BoundO(M) =90

(2) Misz.
FreeO(M) = {the occurrence of z in M}
BoundO(M) =0
(3) M is Ckey Ny ---) or (Ny ---).
FreeO(M) = FreeO(Ny,)
BoundO(M) = BoundO(Ny,---)
where key is a (nonbinding-keyword).

(4) M is (lambda (z;...) N).

FreeO(M) = { 0 € FreeO(N) | 0 is not an occurrence of one of z;, ...}
BoundO(M) = { 0 € FreeO(N) | o is an occurrence of one of z1, ...} U BoundO(N)

(5) M is (letrec ((x; Ni)---)B).

FreeO(M) = { 0 € FreeO(B) U FreeO(N;) U - -- | 0 is not an occurrence of one of zj, ...}
BoundO(M) = { 0 € FreeO(B) U FreeO(N;)U --- | 0 is an occurrence of one of z1, ... } U
BoundQ(B) U BoundO(N;) U ---

A variable is free in an expression if it has a free occurrence in the expression. It is free in a set of expressions if
it is free in any of them. We write FreeV (M) for the set of variables free in M; similarly for FreeV({Mi,...}).

4 Substitutions

A substitution, o, is formally defined to be a total function whose domain is a finite set of (var)’s and whose
range is a set of (exp)'s. :

Any substitution o determines an inductively defined function from (exp)’s to (exp)’s. We write Mo for the
result of applying this function to M. More precisely, Mo is defined by induction simultaneously on the
structure of M and the size of domain(c). The base Case (1) of the definition ensures that the function on
expressions determined by o acts the same on variables in domain(c) as o itself.

(1)
zo = {cr(a:) ifze c!oma.in(cr),
z otherwise.

(2) If domain(s) = @, then
Mo=M

14 6.044J/18.423J Handout 18: Quiz 1

For any set, F, of (var)’s, we write o | F for the restriction of ¢ to F N domain(c).

3)
Mo = M (o | FreeV(M))
Thus, if FreeV(M) = 0, then Mo = M.
(4)
My - do= (Mo ---)
(key My ---)o = (key Myo--+)
where key is a (nonbinding-keyword).
Scheme is specified to obey the “static” scoping conventions of familiar mathematical notation. This means
that when M has binding constructs, free variables in expressions being substituted into M should not get
bound by binding constructs in M. Such unintended binding is prevented by selectively renaming bound

variables in M to be “fresh” variables. (Substituting without renaming would model the “dynamic” scoping
of pre-Scheme Lisp dialects, leading to notorious “false capture” or “funarg” problems.)

A renaming is defined to be a substitution which maps the variables in its domain to distinct (var)’s. A
renaming, 7, is fresh with respect to a set of expressions and substitutions if none of the variables in its
range have free or binding occurrences in any of the expressions or domains and ranges of the substitutions
in the set. When the relevant set is clear, we simply say that 7 is a fresh renaming.

For substitutions o, 7, the ertension of T by o, written 7 + o, is the substitution combining ¢ and 7, with
T given priority where the domains overlap. That is,

_ [r(¥) ify € domain(r),
(r+0)(y) = {cr(y) if y € domain(o) — domain(7).
Note that in general T+ 0 # o + 7.

The next cases in the definition of M¢ are simplified by assuming that domain(s) C FreeV(M). By Case (3),
there is no loss of generality in this assumption.

()
(lambda (z; z2-+-) M)o = (lambda (z:17 27 -) M(T + o))
where 7 is a fresh renaming whose domain is {z;,...} N FreeV(range(c)).
(6)
(letrec ((z1 My)---) B)o = (letrec ((z7 My(r+0)) ---) B(T +0))

where 7 is a fresh renaming whose domain is {z;,...} N FreeV(range(o)).

5 Rewrite Rules

In Revised* Scheme, only #f counts as false in conditional expressions. Other values such as numerals and
procedures count as true.

(false-value) ::= #f

6.044J/18.423J Handout 18: Quiz 1 15

o [F
M, ifV is a (false-value),

(if VM, Mp) — {M1 otherwise.

To capture the Revised* Scheme behavior of (built-in)’s, we introduce a partial function, System-Eval :
{exp) — (exp).
e CNST: built-in and system constants
(enst Vi ---) — System-Eval ((cnst V4 --+))
where cnst is a (built-in) or (system-constant), and System-Eval ((cnst V;---)) is defined.

For example,
System-Eval ((<<+>> 3 -7.1 9)) =4.9

Errors are somewhat messy to incorporate into the Substitution Model, so we take System-Eval to be
undefined in cases where Revised? Scheme specifies errors. For example, an expression such as (<<+>> #t)
which generates an immediate Revised* Scheme error will not match the lefthand side of any rewrite rule.

System-Eval also handles (system-constant)’s generated by calls to external code which return procedures.
This allows the Substitution Model implementation to interface with real Scheme or with compiled code.

o LAM: lambda-application
((lambda (z;...) B) M;...) — (letrec ((z;7 M;)...) Brt)

where 7 is a fresh renaming whose domain is {z;,...} N FreeV({M;,...}).
We write {z « M} for the substitution whose domain is {z} and which maps z to M.

e letrec

INST: letrec-instantiation

(letrec ((bindings) (z V)---) B{z —z}) —
(letrec ((bindings} (z V).---) B{z—V})

where B has exactly one free occurrence of z.
OUT: letrec-out:

(M; ... My (letrec ((bindings)) B) My, ... M,) —
(letrec (({bindings)) (zy ... zx B zi41 ... 2n))0

(key My ... M (letrec (({bindings)) B) Miy; ... M,) —
(tetrec (({bindings)) (key zi ... 2k B zkq1 ... 2n))o
where o is the substitution whose domain is a set {z1,..., 2z, } of fresh variables, o(z;) = M;, and key
is a (nonbinding-keyword).
FLAT: letrec-flatten:

(letrec ({bindings), (z (letrec ((bindings),) By)) (bindings),) B) —
(letrec ((bindings), ((bindings),7) (x By7) (bindings);) B)

where 7 is a fresh renaming whose domain is 7, N (F, U {z} U F3 U FreeV(B)) and F; is the set of
binding variables in (binding),.

16 6.044J/18.423J Handout 18: Quiz 1

¢ BOOL? , o
(<<boolean?>> V) — {“t if Vis #t or #1,
#f otherwise.
e NUM? . .
(<<number?>> V) — {#t if V is a (numeral),
#f otherwise.
¢ PROC?

#t if V is a (lambda-val), (scheme-constant},
(<<procedure?>> V) — or (system-constant),
#f otherwise.

6 Garbage Collection Rules

(letrec () B) — B
(letrec ((z; M)---) B) — (letrec ((z;; M;)---) B)

where z;,, Zi,, ... are the live variables in the letrec expression. These variables are defined inductively by
the conditions:

(1) all variables in FreeV(B) are live, and

(2) w; is live if M; is not a value, and

(3) if z; is live, then all variables in FreeV(M;) are live.

7 Contexts and Rewriting

A context is an (exp) with exactly one free occurrence of a designated variable called the hole. The hole is
written as []. If C is a context, we write C[M] for the expression that results from replacing the hole in C
by M without any renaming.

If My = C[N1] and Mz = C[N,] for some context C, and “N; — N;” matches any rewrite rule or garbage
collection rule above, then we say M, rewrites in one step to Mz, written

M, — M.
rew

In particular, when “N; — N2” matches one of the garbage collecting rules, we write

M, — M,.
grbg

We.say M rewrites to N, written M —* N if either M = N, or else

rew

M—M— - —N

rew rew rew
for some expressions M), ...; similarly for —b»*. An expression, M, is a normal form when there is no N
grbg

such that M — N. For example, according to the above rules of our Substitution Model, all (constant)’s
W

re
and (var)’s are normal forms.

In general, an expression may have many distinct normal forms reflecting the different ways rewrite rules
might be applied to it. Despite this, numerical normal forms are unique:

6.044J/18.423J Handout 18: Quiz 1 17

Theorem (Determinacy). If an expression M has a normal form which is a numeral, then that
numeral is the only normal form of M.

Determinacy implies that in calculating a numerical value of an expression, there is no need to consider
where and which rewrite rules to apply. This is a fundamental property distinguishing the functional kernel
of Scheme from the fuller language with side-effects.

The Determinacy Theorem is far from obvious, and considerable ingenuity is needed to prove it.

8 Correctness

The instial global context, Cini, is defined to be the context in which variables are bound to all the corre-
sponding constants, viz.,

Cinit = (letrec ((+ <<+>>)... (sqrt <<sqrt>>) ... (apply <<apply>>) ...) []).

Let Numval(M) denote the unique numeral, if any, which is the normal form of Cinit{M]. Numval(M) is
undefined if M has a normal form which is not a numeral, or if M has no normal form.

Theorem (Numerical Correctness). Let M be an (exp) without scheme- or system-constants
whose value in the initial environment is specified in Revised* Scheme. If the specified value is
a numeral, then Numval(M) is defined and equals the numeral. Conversely, if Numval(M) is
defined, then it equals the value specified in Revised* Scheme when M is evaluated in Scheme’s
initial environment.

Note that the Theorem leaves open the possibility that Numval(M) may be defined in cases when M does
not have a specified value in Revised? Scheme.

Proving a theorem like this which relates the (denotational semantics) specification in the Revised* Scheme
Report with the rewriting rules of our Substitution Model requires sophisticated proof methods from pro-
gramming language theory.

6.044J/18.423]: Computability, Programming, and Logic Handout 19
Massachusetts Institute of Technology 18 October 1993

Quiz 1 Solution

(This was a closed book, closed note exam. There were three (3) problems,
worth 100 points total).

Problem 1 [30 points]. For each of the following expressions of the functional
kernel of Scheme, write down a Substitution Model normal form for the expres-
sion, or write that the expression has no normal form. (The Substitution Model
is summarized in Appendix D, and normal forms are defined on p. 16.)

1. (letrec ((x 2) (y 3))
(<<#+>> x y))

Answer: 5.
2. (Qetrec ((x 2)

(y ((lambda (x) (<<+>> 1 x)) 4)))
(<<+>> x y))

Answer: 7
3. (letrec ((f (lambda (z) (<<+>> x 2))))
(lambda (x) (f x)))
Answer: (lambda (y) (<<+>> x y)).
Because the definition of £ contains a free variable x, the inner declaration
of x must be renamed to avoid capturing the free x. (We have used y here
but any variable other than x is acceptable.)
4. (Qetrec ((x (lambda () x))) x)

Answer: The expression has no normal form.

5. (letrec ((x (lambda () x))) 1)
Answer: 1,
Because x is bound to a value, and it is free in the body of the letrec, it
can be garbage collected.
6. (letrec ((y x) (x y))
(<<+>> 1 x))

Answer:

(letrec ((y x) (x y))
(<<+>> 1 x))

2 6.044J/18.423J Handout 19: Quiz 1 Solution

The expression IS a normal form. Neither x nor y is bound to a value
(variables are not values), thus INST cannot be applied. (Tricky; no one
got this one right.)

Problem 2 [30 points]. In this problem we ask you to add an until operator
to the language IMP. (IMP is summarized in Appendices A and B.)

First we extend the syntax of commands as follows:

c¢:=...|do c until b.

Informally, do ¢ until b executes c repeatedly until b evaluates to true. We
expect that

(do c until b,0) - o' iff {(c;if b then skip else (do c until b)),0) — o'.

Note that c is always executed at least once.

2(a) [10 points]. Complete the definition of the until operator by filling in the
boxes in the following rules:

Answer:
/ /
{e,t o —=| o o, o —| true funtil-1]
{(do c until b,0) — o’
=i o (b, o” —{ false | (do c until b, o" - o

(do c until b,0) — ¢’

2(b) [10 points]. Suppose
cgo=do X=X -1 until X <0,
and suppose o, is a state such that 0.(X) = 2. Then IF (c4o,0.) — 0a[0/X].

Draw the derivation tree for I {c40,0a) — 7a[0/X].

Answer: We will abbreviate X := X — 1 as ¢;, and X < 0 as b. Then the
derivation tree looks like:

[until-2)]

6.044J/18.423J Handout 19: Quiz 1 Solution 3

(€1,0.[1/X]) = 0.[0/X], (b,0.[0/X) — true

<clan) - Ua{l/X]’ <b7 Ua[l/X]) - falsev (cdo’Ua[l/X]) - Ua[O/X]

(cdo)Ta) — Ua[O/X]

We did not mean to require you to draw the derivation trees for the boolean
and arithmetic subexpressions of ¢4, (this wasn’t evident from the phrasing of
the question). No points were taken off for any mistakes made there.

By way of illustration we give the derivation tree for the boolean evaluation
(b,ca[l/X]) — false = (X < 0,0.[1/X]) — false,

namely,
(X,0.[1/X]) =1, {0,0.]1/X]) =0
(X <0,0,[1/X]) — false '

2(c) [10 points]. Now suppose oy, is a state such that op(X) = n, wheren > 1.
Then IF {(cdo,0b) — ou[0/X].

How many times is the rule [until-1] used in the derivation of IF (c4o,0n) —
ob[0/X]?

Answer: One time.
How many times is the rule [until-2] used in the derivation of IF (c4o,0b) —
ob[0/X]?

Answer: (n — 1) times.

Problem 3 [40 points]. Recall the following sets, which were defined in Winskel’s
book (the exact definitions can be found in Appendix C):

s loc(a) is the set of locations appearing in an arithmetic expression q;
o loc(b) is the set of locations appearing in a boolean expression b;
¢ loc(c) is the set of locations appearing in a command c; and

o locz(c) is the set of locations appearing on the left-hand side of assignment
statements in command c.

4 6.044J/18.423J Handout 19: Quiz 1 Solution

Note that if X & locz(c), then the value of X cannot be changed by the execution
of c¢. Intuitively, then, locp(c) is the set of locations which might be written
during the evaluation of c.

We want you to define loceaq(c), the set of locations in command ¢ which might
be read during the evaluation of ¢. For example, if

ca=if W<0Othen X:=Y +1lelse Z:=X+Y,

then we should have loceeada(ca) = {W, X,Y}.

3(a) [16 points]. Give a definition of 10creada(c) by induction on the structure
of commands. We have filled in the case ¢ = cp;c; for you; you must fill in the
other cases. You may use locz(c), loc(a), loc(b), or loc(c) in your definition if
you so desire.

L4 lo_cread(co; C1) = locread(cO) U locread(cl)
Answer:
® locieaq(skip) = 0
® 10Cread(X :=a) = loc(a)
® 10Creaq(if b then ¢y else ¢;) = loc(b) U locread (o) U locreaa(c1)
® loCreaa(while b do ¢/) = loc(b) Ulocreaa(c)

3(b) [4 points]. Give a simple command ¢ such that
loc{c) = locr{c) = locreaa(c) # 0.

Answer: One correct answeris ¢ = X := X.

3(c) [20 points]. It can be proved, by structural induction on commands c,
that

loc(c) = locreaa(c) Uloc(c).

We have filled in the case ¢ = ¢p;c; of the proof for you; you must fill in the
proof for the cases ¢ = X := a and ¢ = while b do ¢’. (You need not prove the
remaining cases, ¢ = skip and ¢ = if b then ¢ else c;.)

6.044J/18.423J Handout 19: Quiz 1 Solution

¢ ¢ = ¢g;c;: By definition,
loc(c) = loc(cg) U loc(ey).
And by induction,

loc(co) = locreaa(co) Ulocr(co),
loc(cy) = locread(c1) Ulocr(cr).

Therefore
loc(c) = locread{co) U locreaa(ci) Uloc r{co) Ulocr(cy),
and by the definition of loc,eag and locy,
loc{c) = loceaa(c) Ulocr(c),

as desired.
Answer:

¢ ¢ = X := a: By definition,
loc(X :=a) = {X}Uloc(a).
Since by definition,

locread(X := a) = loc(a),
loc (X :=a) = {X},

clearly we have
loc(X := a) = locread(X :=a) Ulocr(X := a),
as desired.
¢ ¢ = while b do ¢': By definition,
loc(c) = loc(b) U loc(c').
And by induction, loc(¢’') = locreaa(c') Uloc(c¢'). Thus we have
loc(c) = loc(b) U locreaa(c’) U locL(c").
Since by definition,

locread(c) = loc(b) U locreaa(c’),
locz(c) = locr(c'),

we have loc(c) = locreaa(c) Ulocr(c').

6.044J/18.423J: Computability, Programming, and Logic Handout 20
Massachusetts Institute of Technology 20 October 1993

Grade Statistics for Quiz 1

Number of quizzes taken: 11
Grade range: 61-95

Mean: 83

Histogram:

0-4:
5-9:
10-14:
15-19:
20-24:
25-29:

. 30-34:
35-39:
40-44:
45-49:
50-54:
55-59:
60-64: *
65-69: *
70-74: *
75-79:
80-84: *
85-89; kx*
90-94; **
95-99: **

6.0447/18.423J: Computability, Programming, and Logic Handout 22
Massachusetts.Institute of Technology 25 October 1993

Proof of Compositionality for IMP

The Meaning of IMP Programs

We can define an abstract “meaning” for arithmetic expressions, boolean ex-
pressions, and commands based on their evaluation. (The language IMP and
its evaluation are summarized in Appendices.)

The meaning of an arithmetic expression a is the function fa] : £ — N defined
as follows:

fa](g) = n, where n is the unique number such that {a,o) — n.

Similarly, the meaning of a boolean expression b is the function 3] : & — T
defined as follows:

[b](¢) = t, where t is the unique truth value such that (b,o) — ¢.

Note that [a] and [b] are well-defined because the evaluation of arithmetic and
boolean expressions is deterministic and total. :

The execution of commands is deterministic but not necessarily total. A con-
figuration (c,o) might not terminate; but if it does, it will terminate in a
unique state ¢’. Thus we can define the meaning of ¢ to be the partial function
[c] : £ — £ determined by:

[c)(e) = &' iff {c,0) = &'.

Contexts

. Informally, a context is a “term with a hole”. For example, an arithmetic
expression context is an arithmetic expression with a hole; when the hole is filled
in with an arithmetic expression, the result is a new arithmetic expression. A
full definition of arithmetic expression contexts follows:

(Here op ranges over {+, —, x}).

[Note that I am using a slightly different definition of context than the one
Albert used in class. My definition allows a context to have zero, one, or more

2 6.044J/18.423J Handout 22: Proof of Compositionality for IMP

holes. This makes proofs slightly easier (by reducing the number of cases that
need to be considered), but is not an important difference.]

If A['] is a context and a is an arithmetic expression, then A[a] is the arithmetic
expression obtained by “plugging in” a into the holes of A[]. It can be defined
by induction on the structure of A[-]:

o If A[] =[], then Afa] = a.
o If A[] =d', then Afa] =a'.
o If A[] = Ai[] op A2[], then Ala] = A, [a] op Az(a].
For example, if A'[] is defined by
AT =[]+ (1 +9),
then

A'[6] = 6 + (6 + 5).

The boolean contexts and command contexts are defined similarly:

B[] =[]
| b
| -B[]
| Bil] A Baf]
| B[]V B[]
Cl==[]
[+
Cr[]; Ca[]

if b then C,[] else C;[]
while b do C'[]

The “plugging in” operation for boolean and command contexts is defined in
the same way as for arithmetic contexts.

Compositionality

Contexts are a technical device that lets us talk about “pieces” of an expression
or program. Most important, they give us a precise method of removing a
sub-part from a program and replacing it by another another sub-part.

6.044J/18.423J Handout 22: Proof of Compositionality for IMP 3

For example, one sub-part of an accounting package P might be a sorting algo-
rithm ¢. If ¢’ is another, faster sorting algorithm, we will be very interested in
whether we can replace ¢ with ¢’ in P without changing the answers reported
by P. With contexts we can express this situation by:

“The program P = C|c] for some context C[], and we want to know
whether P’ = C|[c'] computes the same answers.”

Compositionality is a property that says that if the meaning of c is the same
as the meaning of ¢/, then it is safe to replace ¢ by ¢ in C[] — for any C[]!
In a compositional language we can reason about sub-parts of programs (like
sorting packages, etc.) based solely on their meanings, and be confident that
our reasoning will hold no matter how the sub-parts are used.

We will first prove compositionality for arithmetic expressions. We will need
the following lemma:

Lemma 1. For all arithmetic expressions a;,a, and operators op,
[a1 op az] = [ai1] op [az].
Proof: Similar to the proof of Lemma 2 below. []

Theorem 1 (Compositionality of arithmetic expressions). For all arith-
metic expressions a;, as,

la1] = [az] = (VA[] . ([Ala1]] = [Alaz]])).

Proof: Assume [a,] = [a2]. We will show that for all A[], ([A[a:1]] = [Ala2]])-
The proof is by induction on the structure of A[]:

e A[] = []: Then Afa,] = a1 and Alas] = a2, so
([Ala1]] = [Alaz]}) iff ([ar] = [a2]),
and the right-hand side holds by assumption.
o A[]| = a: Then Ala)] = a = Alaz], so [A[a1]] = [a] = [Alaz]]-
o A[] = Ai[] op A2[]: Then
Ala;] = Aifa1] op Aszfay],
by the definition of “plugging in” an expression into a context. Thus

[Ala1]] = [Ax[a1] op Azfai]]-

6.044J/18.423J Handout 22: Proof of Compositionality for IMP

Then by Lemma 1 above we have

[Afai]] = [Ax[ai]] op [42[a:]]- (1)

Now A;[-] and A;[] are smaller than A[], so we can apply the induction
hypothesis to them. That is, we have

[Axfas]] = [Ai[a2]],
[Az[a:1]] = [Az[az]]-
Substituting into (1), we have

[Afa1]] = [A1[az]} op [Az[az]]-
Now we work backwards: by Lemma 1 we have

[Ala:]] = [Ailaz] op Az[az]],
and by the definition of plugging in,

[Alei]] = [Alaz]],

as desired.

We can prove compositionality for boolean expressions in much the same way:

Theorem 2 (Compositionality of boolean expressions). For all boolean
expressions by, bg,

[6:1] = [b2] = (VB[] . [Blb1]] = [Blbz]])-

Proof: Omitted.]

Just as Lemma 1 related the syntactic operators of arithmetic expressions to
certain mathematical functions, we can show that the syntactic connectives of
commands have mathematical counterparts:

Lemma 2. For all commands ¢; and ¢y,

[(e15¢2)] = [e2] o [e1]:

Proof: We show that for all ¢ and o', [(¢1;¢2)}(0) = o' iff ([e2] o [er1])(o) =o'.
[(c1; c2)}(0) = o

iff {((c1;¢2),0) = 0’ by definition of [-],
if (c1,0) = 0" and {(c,0") — o’
for some o”’ by the evaluation rule for “;”,
if [a](e) =0" and [c2](c”) = o’
for some o”, by definition of [-],
if ([ez] o [a])(o) =7’ by the definition of “o”. u

Finally, we are ready to prove compositionality for the full language.

e

6.044J/18.423J Handout 22: Proof of Compositionality for IMP 5

Theorem 3 (Compositionality of IMP). For all commands ¢, ¢z,
[e1] = [e2] = (VC[] . [Clai]] = [Cle2]])-

Proof: Assume [c1] = [cz]. We want to show that for all command contexts
C[], [Cla]] = [Clcz]]. The proof is by induction on the structure of C[-]:

e C[]=[]. Then [C[a1]] = [e1] and [Clce]] = [c2], and these are equal by
assumption.
e C[] = ¢, for some command ¢. Then [Cle1]] = [Cle2]] = []-
o C[]=(Ci[];Ca[])- Then
[Cleill [(Cilar]; Caa])] by definition of “plugging in”,

[C2la]] e [Ci[a]] by Lemma 2,

[Cale2]l © [Cile2]] Dby induction on contexts,
[(C1[e2); Cale2])] by Lemma 2,

[Cle2]] by definition of “plugging in”.

o C[] = while b do C'[].

Unless we have a lemma (like Lemma 2 above) relating the meaning of
a while command to the meanings of its sub-parts, we will not be able
to prove this case by induction on the structure of contexts alone. [See
the solution to Problem 4 from Problem Set 1, as well as section 3.4 of
Winskel’s book for further discussion.] Since such a lemma would involve
a complicated mathematical function (the equivalent of o for while), we
will take another approach.

We instead do an entire sub-proof by induction on derivations.
We prove that for all 4, o, and o',

d I {(while b do C'[c1],0) — o' iff IF (while b do C'[¢s],0) — o'
The proof is by induction on the structure of d:

— d is a derivation of the form

(b,0) — false
(while b do C'[c1],0) — o

(so ¢' = ¢). Then clearly

{b,0) — false
(while b do C’[cg],0) — o

as desired.

6.044J/18.423J Handout 22: Proof of Compositionality for IMP

— d is a derivation of the form

(b,0) — true (C'[q1],0) = 0" (while b do C'[¢;],0") — 0’
(while b do C'[c1}],0) — o'

Then
ik (b,0) — true,
Ik {C'[aa],0) = 0",
d; IF (while & do C’[e1],0”) — ¢.
Now

I (C'ler),) — 0"
if [C'la1]l(¢) =" by definition of -],
if [C'le2]](¢) =0” by induction on contexts,
iff Ik (C'[c],0) — 0" by definition of [].
And
dy IF (while b do C'[¢],0") = o' iff I+ (while b do C'[c3),0") — o',
by induction on derivations. Thus we have all of
IF {b,0) — true,
Ik (C'[ca],0) — o,
Ik (while b do C’[co],0") — o,
and can conclude
Ik (while b do C'[¢c2],0) — o',

as desired.

e C[] =if b then C;[] else C;[]: we omit this case.

6.0447/18.423J Handout 22: Proof of Compositionality for IMP

Appendix A: Syntax of IMP

For Aexp:
a:=n|X|ag+a1]lap—a1jaxa
For Bexp:
b::=true |false |ap = a1 |ap <ay | ~b|bgAby | bo VI
For Com:

cu=skip | X :=a]co;cy | if b then ¢y else ¢; | while b do ¢

8 6.044J/18.423J Handout 22: Proof of Compositionality for IMP

Appendix B: Semantics of IMP

Evaluation of Aexp’s:
(n,0) = n
(X,0) = o(X)

(ag,0) = ng_ (a1,0) = m

where n is the sum of ng and n;.

(ag + a1,0) = n
{ao, Uza—’ ng Sl_’f)n_' it where n is the result of subtracting n, from n,.
0 — &1,
{ao, UZa—'xncoz ((:;1’_(:)71_' ! where n is the product of ng and n;.
0 1

Evaluation of Bexp’s:
(true, o) — true
(false, o) — false

{@p,0) = n {aj,0) > m
{(ap = a1,0) — true

if n and m are equal.

(a070)—’n <a170)_'m
(ag = a1,0) — false

if n and m are unequal.

(@’0) —n (01,0') - m
{ag £ a1,0) — true

if n is less than or equal to m.

(a0, 0) = n (a1,0) > m
{ap < a1,0) — false

if n is not less than or equal to m.

(b,0) — true b, o) — false
(—b, o) — false (—b,0) — true

(bO, 0) - tO (bl,o) - tl
(bo A b1,0’) —t
where t is true if {5 = true and ¢; = true, and is false otherwise.

(bo,0) = to (h,0) =t
(bo Vb,0) >t
where t is true if g = true or t; = true, and is false otherwise.

6.044J/18.423J Handout 22: Proof of Compositionality for IMP

Execution of Com’s:

(skip,0) — o

{a,0) = m

(X :=a,0) = alm/X]

{co,0) = " {c1,0") =o'
(co;c1,0) = o

(b,0) — true (cg,0) — o’
(if b then ¢ else ¢;,0) — o’

(b,0) — false (¢;,0) — ¢’
(if b then ¢, else ¢;,0) — o'

{(b,0) — false

(while bdo ¢,0) -0

(b,0) — true (c,0) = ¢” (while bdo ¢,0”) = o’

(while b do ¢,0) — o’

6.044J/18.423J: Computability, Programming, and Logic
Massachusetts Institute of Technology

Handout 21
20 October 1993

Problem Set 4

Due: 27 October 1993.

Problem 1. Winskel Exercise 6.1.
Problem 2. Winskel Exercise 6.2.
Problem 3. Winskel Exercise 6.13.

Problem 4. Winskel Exercise 6.17.

6.0441/18.423]: Computability, Programming, and Logic Handout 23
Massachusetts Institute of Technology 29 October 1993

Problem Set 5

Due: Friday, November 5, 1993.

Problem 1. Lemma 1 from Handout 22 says that each syntactic operator of
arithmetic expressions has a corresponding operator on the meaning of arith-
metic expressions. For this problem, we ask you to prove Lemma 1 for the
syntactic operator + and its counterpart +, the pointwise sum operator.

We define +; : (¥ — N) x (£ = N) — (£ — N) as follows:
(m1 +p m2)(0) = n,

where n is the sum of m;(¢) and ms(0).

Prove that for all arithmetic expressions a;,as,
la1 + a2] = [a1] +5 [a2].

Problem 2. Letcond: (¥ — T)x (2 = Z)x (X —) — (£ — X) be defined
as follows:

me,(0) if my(o) = true,

COHd(mb,mcl,mcz)(U) = { M, (0-) if mb(o') = false.

(a) Prove that
[if b then ¢; else co] = cond(fb], [c1], [c2])-
(b) We omitted the if case of the proof of compositionality for IMP (Theo-

rem 3 from Handout 22). Using the result from (a), prove the missing if
case (i.e., the case C[] = if b then C,[] else Cs[]).

Problem 3. Prove Lemma 6.8 from Winskel’s book.

Problem 4.

(a) Using the definition of validity, prove that for all assertions A and integer
variables j,

if |= A, then k= Vj.A.

6.044J/18.423J Handout 23: Problem Set 5

(b) Give an assertion A, state o, and interpretation I such that
o= A,

but
o BT Vj.A.

(c) Conclude that for your A from part (b), A = V4.4 is not valid.

6.044J/18.423J: Computability, Programming, and Logic Handout 24
Massachusetts Institute of Technology 5 November 1993

Problem Set 4 Solution

Problem 1. Winskel Exercise 6.1. [I restate the problem here in slightly
different form than Winskel.]

Write down an assertion Prime(i) € Assn with one free integer variable ¢ which
expresses that 7 is a prime number, i.e. it is required that:

o =! Prime(i) iff I(i) is a prime number.

Answer: First we define, for any integer variables j and k, the assertion “j
divides k”:
jdividesk=30.j x €=k,

There are many possible definitions of Prime(7); this is one example:

Prime(i) = (2 <9) A ((V].2 < j A divides i) = 1 = j).

Problem 2. Winskel Exercise 6.2. [There was a typo in Winskel’s statement
of the problem, so I restate it here.]

Define a formula LCM(3, j, k) € Assn with free integer variables variables 4,7,
and k, which means “i is the least common multiple of j; and k,” i.e. it is
required that:

o ! LOM(i, 3, k) iff I(i) is the least common multiple of I(j) and I(k).

(Hint: The least common multiple of two numbers is the smallest non-negative
integer divisible by both.)

Answer: First we define the assertion CM(i, j, k), meaning “; is a common
multiple of j and &”:

CM(i, j,k) = (k divides i) A (j divides).

As Winskel has stated it, the least common multiple is the smallest non-negative
common multiple. For example, the least common multiple of —1 and —2 is 2.
So we have the following definition of LCM:

LCM(,j, k) = (0 < i) A CM(i, j, k) A (V2.(0 <) A CM(z, 5, k) = i < x).

2 6.044J/18.423] Handout 24: Problem Set 4 Solution

Problem 3. Winskel Exercise 6.13.

Prove, using the Hoare rules, the correctness of the partial correctness assertion:

{1 <N}

P:=0;

C =1,

(while C< Ndo P:=P+M;C:=C+1)
{P=Mx N}

Answer: By the rules for assignment and sequencing, we can get

{1<NAO=0A1=1}P:=0{1<NAP=0A1=1}
{1<NAP=0A1=1}C:=1{l<NAP=0AC =1}
(I<NAO=0AI=1}1P:=0;C =1{ISNAP=0AC =1}

which the rule of consequence can simplify to
{1<N}P:=0;C:=1{1<NAP=0AC=1}.
For any assertion I, the assignment and sequencing rules give

{I[C + 1/C)[P + M/P)}P := P+ M{I[C +1/C)} {I[C +1/C]}C := 1{I}
(IC+1/Cl[P+ M/P[JP = P+ M,C = C + I{[}

Now, let I be (P=M x (C - 1)) A(C £ N +1). Then,

IC+1/CI[P+M/Pl=(P+M=Mx(C+1-1))A(C+1<N+1)
=(P=Mx(C-1)A(CLN)
=S(P=Mx(C-1))A(C<N+1)A(C<LN)
=IAN(C<N)

And thus, we have
{IN(CLN)}P:=P+M;C:=C+1{I},
so, by the rule for while-loops

{IN(CL<N)}P:=P+M;C:=C+1{I}
{I}whileC < NdoP:=P + M;C:=C+1{IA-(C < N)}

Finally, since
(I1<NAP=0AC=1)=>1

and
(IA-(C<N))=(P=NxM)

6.044J/18.423J Handout 24: Problem Set 4 Solution 3

we can use the rule of consequence to get

{I<KNAP=0AC=1}
whileC < NdoP =P+ M;C:=C+1
{P=N x M}

and the rule for sequencing to get

{1< N}
P:=0;C:=1;(whileC< NdoP:=P+ M;C:=C+1)

Problem 4. Winskel Exercise 6.17.
Provide a Hoare rule for the repeat construct and prove it sound.

Answer: The repeat construct is defined by the following rules:

(c,0) =o' (b,o') — true
(repeat ¢ until b,0) — o'

[repeat-1]

{¢,6) = " (b,0") — false (repeat c until b,0”’) - o’

(repeat c until b,0) — o'

[repeat-2]

We will prove that the following Hoare rule is sound:

{A}e{A}
{A}repeat c until 5{A A b}

Assume that |= {A}c{A}, and let » = repeat c until b. We want to show that
= {A}r{A A b}. This is equivalent to showing that

Vo,1.(c E' A) = ([r]le EF AAb).
Since [rjo = o’ iff (r,0) — ¢, this is equivalent to showing
Vd,o,1.(c E! AAdIF (r,0) > ¢') =o' =T AND.
We show this by induction on d. That is, for all d, we show that

Vo,I.(c ET ANdIF (r,0) = 0') =o' EF AAD. (1)

6.044J/18.423J Handout 24: Problem Set 4 Solution

Suppose d is a derivation ending with the rule [repeat-1]:

d= (c,0)—=o (bo') — true
(repeat ¢ until b,0) — ¢’

Then if o |=! A, since {A}c{A} and (c,0) — o', we have o’ =/ A.
And since (b, ¢’} — true, by Proposition 6.4 we have ¢’ =/ b.
Thus ¢’ |=! (A A b), proving the induction hypothesis (1).

Suppose d is a derivation ending with the rule [repeat-2):

d= {c,0) = 0" (bo") > false (repeat ¢ until b,c") — o’

(repeat ¢ until b,0) — o’

Then if o =7 A, since {A}c{A} and {(c,0) — ¢”, we have ¢" |=' A.
And then by the induction hypothesis (1) applied to the subderivation d’:

d =

(repeat ¢ until b,0") — o' l

we have o’ |=! (A A b), as desired.

Rt

6.044J/18.423J): Computability, Programming, and Logic Handout 25
Massachusetts Institute of Technology 5 November 1993

Problem Set 5 Solution

Problem 1. Lemma 1 from Handout 22 says that each syntactic operator of
arithmetic expressions has a corresponding operator on the meaning of arith-
metic expressions. For this problem, we ask you to prove Lemma 1 for the
syntactic operator + and its counterpart +, the pointwise sum operator.

We define +, : (£ = N) x (£ = N) = (X — N) as follows:
(m1 +p m2)(0) =n,

where n is the sum of m, (o) and mz(o).

Prove that for all arithmetic expressions a;, ag,

la: + a2] = [a1] +p [a2]-

Answer: Both [a; + a3] and ([a,] +; [az2]) are functions from states to num-
bers. To show that the two functions are equal, we simply show that they agree
on all arguments. That is, for all states o, we show

[a1 + a2] (o) = ([a1] +; [az])(0).

We reason as follows:

a1 + a2](o) =n
if {ay +ag,0)>n (by definition of [-}),
iff {(a1,0) — n; and {az,0) — ng, where n is the sum of n; and n,
" (by the evaluation of arithmetic expressions),
if [ai1](¢) =ny and [az](¢) = nq, where n is the sum of n; and ng
(by definition of [}),
iff ([a1] +p [az])(e) =n (by definition of +;).

Problem 2. Letcond: (£ - T)x(Z = Z)x(Z =) = (X — Z) be defined
as follows:

me, (o) if my(o) = true,

cond(my, me,, Me,)(0) = { Mey (o) if mp(o) = false.

6.044J/18.423J Handout 25: Problem Set 5 Solution

(a) Prove that

(b)

[if b then c; else cz] = cond([b], [c1], [ca])-
Answer: Just as in Problem 1, we will show that for all states o,
[if b then ¢, else c3](0) = cond([b], [c1], [c2]) (o).
By the definition of [-], we have
[if b then c; else c2](0) = o' iff (if b then ¢; else c3,0) — o’.

By the definition of the execution of commands, we have

. R (b,0) — true and (c;,0) — o',
(if b then ¢, else cy,0) — o” iff { or (b,0) — false and (c3,0) — o’.

And by the definition of [-],

(b,0) — true iff [b](c) = true,
(er1,0) = ' iff [ei](e) =,
(b,0) — false iff [b](c) = false,
(c2,0) =o' iff [e2](o) =0".

Combining all of the above, we have

[6l(o) = true and [c,}(c) =o',
or [b](c) = false and [c2](0) = 0o’.

Then by the definition of cond, we have
[if b then c; else c3](0) = o’ iff cond([b], [c1], [c2])(o) = ¢,

as desired. |

[if b then ¢, else c;](0) =o' iff {

We omitted the if case of the proof of compositionality for IMP (Theo-
rem 3 from Handout 22). Using the result from (a), prove the missing if
case (i.e., the case C[-] = if b then C,[] else C3[]).

Answer: We are assuming that [c;] = [c2], and we want to show that
for all command contexts C[], we have [Cci]] = [C[cz]]- The proof was
by induction on the structure of C[], and we only need to prove the case
C[-] =if b then C,[] else Caf].

Then we reason as follows:

[Clall [if b then Ci[c;] else C2[c1]] by defn. “plugging in”,
cond([t], [Cier]], [Cafer]]) by part (a),

cond([b], [Cilc2]], [Cale2]]) by induction on contexts,
[if b then Ci[c;] else Ca[c2]] by part (a),

[Cleal} by defn. “plugging in”.

nmnun

6.044J/18.423J Handout 25: Problem Set 5 Solution 3

Problem 3. Prove Lemma 6.8 from Winskel’s book.
Answer: We restate the lemma here:

Lemma 6.8 If a,ap € Aexpv and X € Loc, then for all interpretations I and
states o,

Avlaola/ X} 1o = Av[ao} (o [(Av[a]lc)/X]).

Proof: By structural induction on ao. Let o' = o[(Av[a]lo)/X]; then we
want to show

Av[aoa/ X))o = Av[ao]ls’.
e If X does not appear in ag, then
Av[aole/X]]Io = Av]ao]!o,

by the definition of substitution. And since o(Y)=0'(Y) forall Y # X,
and X does not appear in ag, we have

Av[ag]lo = Av[ao]Io’.
Thus for the cases ag =n, ag =1, and ag = Y Z X, we have
Avaole/X]}Ie = Av[ao}ld’,

as desired.
e a9 = X. Then
Avjagla/X]JIe = Av[X[a/X]}I0,
= Avfa]lo by defn. substitution.
And
Avfalle’ = Av[X]Io’,

= o'(X) by defn. Av[],
= (o[(Av]allo)/X])(X),
= Av[a]lo by defn. “patching” of o.

e ag =a; +az. Then
Av[ao[a/X]} o Av[(ay + a3)[a/X]]Io,

Avfaija/X] + azla/X]]Is by defn. substitution,

Avfaifa/X])Io
+Avfaz[a/X]])Io by defn. Av[],
= Av[alﬂIa'
+Avfaz]Io’ by induction on ag,
= Avfa: + a}lo’ by defn. Avf-],
= Av]ao}lo’.

e The cases ag = a; —az and ap = a1 X a; are similar to the last case.

6.044J/18.423J Handout 25: Problem Set 5 Solution

Problem 4.

(a) Using the definition of validity, prove that for all assertions A and integer

(b)

(c)

variables j,
if = A, then | Vj.A.

Answer: We reason as follows:

EA = forallcandI,o =’ A
(by the definition of validity),
for all 0,1, and n, o E=11"/4] A,
for all 0 and I, 0 =7 V5.4
(by the definition of satisfaction),
> EVjA

{by the definition of validity).

=
=

[]
Give an assertion A, state o, and interpretation I such that
o ! 4,
but
o 1 vj.A.

Answer: Here is one example. Let A be the assertion j = 8, let I be any
interpretation such that I(j) = 8, and let o be arbitrary. Then clearly
o E! A

However, o ! Vj.A, because (for example) o £13/7] A4, []
Conclude that for your A from part (b), A = V¥j.A is not valid.
Answer: If = A = Vj.A, then for all o and I,

o=l A= VjA,

by the definition of validity. And then by definition of satisfaction, we
have for all ¢ and I, either (not o =7 A) or (¢ ! Vj.4).

Part (b) contradicts this, so it must be that A = Vj.A is not valid. a

6.044]/18.423J: Computability, Programming, and Logic Handout 26
Massachusetts Institute of Technology 5 November 1993

Expressing exponentiation in Assn

In this handout we will prove that assertions (Assn) are capable of expressing
exponentiation. This is not as simple as it might seem; remember, Assn does
not have exponentiation as a primitive, and while it does have addition and
multiplication, it does not have recursive constructs like while that make the
task easy in real-world programming languages.

Nevertheless, we will be able to “program” exponentiation in Assn. We will
use a familiar programming strategy: we will break up the problem into sub-
problems, solve the sub-problems, and combine those solutions into a solution
for the overall problem.

Abbreviations

Each sub-problem will be solved by defining a predicate. We will be defining
many predicates, and it will be helpful to have abbreviations for them. Instead
of giving a formal definition for our abbreviations, we will illustrate their nuances
with the following example:

We define a predicate DIVIDES(i,) which will hold if and only if 7 divides j:
DIVIDES(i,j) = 3k.i x k = j.

We use the “(¢,7)” in “DIVIDES(i,5)" to indicate that DIVIDES is an as-
sertion about the integer variables i and j. When we use DIVIDES, we will
provide it with “arguments” in place of ¢ and j. For example, when we write
“DIVIDES(2,9)”, we mean the assertion

Jk.zxk=9.
When we write “DIVIDES(j,k)” we mean the assertion

I jx K =k
Note that we have renamed the original k to k' to avoid capturing the free k.

We will be using some common arithmetic abbreviations, for example, “z < 3"
for “ﬁ(y S x)”’ and “x > y” for “ﬁ(x S y)”‘

2 6.044J/18.423J Handout 26: Expressing exponentiation in Assn

Sequences

The language of assertions does not provide any of the sophisticated data struc-
tures found in modern programming languages. Our first task is to program
up one such data structure, sequences of non-negative numbers, so that we can
talk about, e.g., (2, 3,4) (the sequence of non-negative numbers consisting of 2
followed by 3 followed by 4) or () (the empty sequence of non-negative numbers).

The trick is to observe that a sequence of numbers (nj,ny...,nn) can be
uniquely represented as the single number

(n1 X b™ 1) + (n2 X B™72) + -+ + (nm X BY),

provided b is greater than any n;. That is, we will represent sequences as base b
numbers. (For brevity, we omit mention of the “non-negative” condition here
and subsequently.)

Ofthand, our strategy seems to be circular: we want to express exponentiation
by encoding sequences, but our encoding of sequences seems to rely on expo-
nentiation. However, we can avoid this problem by using a prime number for
the base b. Because of the special properties of prime numbers, exponentiation
of primes is easier to talk about in Assn than exponentiation in general. We
will be able to express the all of the properties of prime exponentiation that we
will need from scratch.

First, we introduce some notation. For any sequence S, we write #,S for the
encoding of S as a base p number. For example,

#5(4,0,2) = (4 x 52) + (0 x 3') + (2 x 539),
=27,

and #1,() = 0.

Now, given any sequence {nj,ny...,n.,), we can easily express the predicate
“r =#p(n1,n2...,nm)" in Assn by:

(0<n1)A(ny <p)
A A0 < nm) A (Am < p)
Arz=(mix(Ex---xp))+ 2 x(pX---Xp))+-+nm).
e s’ R i

m-—1 times m-—2 times
Note that we have not used exponentiation in this definition, nor have we used

any special properties of primes. For example, “z = #5(4,0,2)” is expressed
in Assn by

O<HA(A<5)A0<OA(O<S)AODL2A(2<5)
Az =(4x(5x%x5))+(0x5)+2).

""

6.044J/18.423J Handout 26: Expressing exponentiation in Assn 3

This gives us one way of constructing sequences, but it requires that we have
hold of every element of the sequence. We would also like to build up lists by
concatenation.

If S; is the sequence (ay,...,a,) and Sy is the sequence (b, ...,bn), then the
concatenation of S; and Sy, written S;@S,, is the sequence

(al,.. . ,an,bl,. . ,bm)
Then if z = #,S5; and y = #,5,,

z=(a1 xp" ')+ + (an x %),
y=(b xp™" N+ 4 (bn x °).

We would like to define an operator @, so that 2@,y = #,(S5;@S,). Clearly,
we want

@py = (a1 x p" ™) 4+ -+ 4 (an x P°T™)
+ (b x ™) 4 4 (b x P°).

That is, 2@,y should be z shifted left by the length of y, plus y: zxp™+y. Call
p™ the shift-value. We will use some special properties of primes to calculate
the shift-value of a p-encoded sequence.

The predicate PRIME (p) will hold if and only if p is a prime number. Recall
that a prime number p is a number greater than 1 whose only positive factors
are 1 and p:

PRIME(p) = -(p<1)A(Vi.1 <iADIVIDES(i,p))=(i=pVi=1)).

The predicate POWP(p,) will hold if and only if p is prime and i is a power
of p. Every number has a prime factorization; and the prime factorization of ¢
is of the form p x px --- x p iff ¢ is a power of p. Thus every factor of i is a
power of p iff ¢ is a power of p. This leads us to the following definition:

POWP(p,i) = PRIME(p)
A(1<9)
A (Y4.(2 < j A DIVIDES(j,1)) = DIVIDES(p, 7)).

The predicate SHIFT (p,y,v) will hold if and only if p is prime and v is the
shift-value of the p-encoded sequence y:

SHIFT(p,y,v) = POWP(p,v)Av>y
AVw(POWP(p,w)Aw >y)=v <z

More simply, v is the shift-value of y if it is the least power of p greater than y.

Now that we have SHIFT, many predicates involving concatenation are easy to
encode. For example:

4 6.044J/18.423J Handout 26: Expressing exponentiation in Assn

o The predicate “w = z@,y” can be expressed as

v (SHIFT(p,y,v) Aw =2 Xv+Yy).

o The predicate “w = #@,y@,2” can be expressed by
Jg.(w = zQpq) A (g = yQ,2).

o For any sequence S, we can express “w = #,5Q@,z” by
Jg.(w = q@pz) A (g = #,5).

All of the predicates involving @, and #, that we use subsequently are similarly
defined.

Exponentiation

Our goal is to give an assertion POW (i, k,n) that holds if and only if i = &™.
The top-level idea is that i = k™ if and only if there is a sequence of the form

(1,k,0,2,k%...0,m,k™,0),
and n equals the third-to-last element of the sequence, and 1 equals the second-
to-last element of the sequence.

We will develop our assertion POW in a step by step fashion. First, let’s call
our sequence z, and see how to express that z is of the form above.

We require that z start with 1 followed by & followed by 0:
START(p,z,k) = 3yi.x = #,(1,k,0)Qpy;.

Any subsequence {a, b, 0) of z is either at the end of z, or is immediately followed
by a subsequence {a + 1,b x k,0):

PATTERN (p,z,k) = VYy2,vys,0,b.
(z = y2@p(#p(a’ b, 0))@py3) =
(y3 = #p()
v 31/4-1/3 = #p(a + 1>b X k70)@py4)'

The third-to-last digit of z must be n, and the second-to-last digit of z must
be i:

FINISH(p,z,n,i) = 3:’/5'1: = yS@P(#p(nviyo))'
Putting all the pieces together, we have

POW(i,k,n) = 3p,z.START (p,z,k)

A PATTERN(p,z,k)
A FINISH (p,z,n,1).

6.044J/18.423J: Computability, Programming, and Logic Handout 27
Massachusetts Institute of Technology 9 November 1993

Quiz 2

Instructions. This is a closed book, closed note exam. There are five
problems, on pages 2-10 of this booklet. Write your solutions for all problems
on this exam sheet in the spaces provided, including your name on each sheet.
Don’t accidentally skip a page. Ask for further blank sheets if you need them.

Several appendices contain definitions related to the langnage IMP. You have
seen all of the material in the appendices before; it is included for your reference
only.

GOOD LUCK!

NAME:

Problem | Points Score
1 15
2 25
3 25
4 15
5 20
Total 100

2 6.044.J/18.423] Handout 27: Quiz 2

Problem 1 [15 points]. In this problem, we will extend the language IMP
with a parallel operator, timeshare. Informally, timeshare(cp, ¢;) interleaves
the execution of the commands ¢y and ¢;. The execution of timeshare(cy,c1)
proceeds by first executing cg one step, then executing c¢; by one step, then ¢q,
then ¢;, etc. When one of the commands finishes executing, the other is allowed
to run to completion.

The IMP commands, command contexts, and the “plugging in” operation,
(given in Appendix A) are extended as follows:

e c:=...| timeshare(co, 1),
e C[]==...| timéshare(Co[~],Cl D,
o If C[] = timeshare(Cy[-}, C1[]), then Cl¢] = timeshare(Cy[c], Ci[c]).

The one-step semantics —; for IMP (given in Appendix B) is extended by the
rules:

(c0,0) =1 {(cp, ")
(timeshare(co, ¢1),0) —1 (timeshare(c;, ¢j),0')

{co,0) =1 0’
(timeshare(cp,c1),0) —1 (c1,0)

We call the extended language IMP+timeshare.

The meaning function for IMP+timeshare commands is defined exactly as
for IMP:
[de)=d" it {c,o)—77,

where the relation —7 is the transitive closure of the relation —;, extended as
above.

6.044J/18.423J Handout 27: Quiz 2

NAME 7

3(a) [8 points]. Write a definition for FINISH(p,z,q,n), which means that
the base-p representation of z ends properly.

The Assn PATTERN(p,z) means that if 4, j, 0, #', j', and k are consecutive
digits in the base-p representation of z, then 1, j, ¢/, j/, and k are related as
indicated by (x) above:

PATTERN (p,z) = V¥i,3,k,¢,5',xz1,22.
(x = (-751 @p (#p(i,j,O)) @p (#p(il,jly k)) @p z3)
=>(k=0
A =i+1
A A)),

where A € Assn expresses the proper relation between j and j'.

3(b) [8 points]. Clearly state in English the proper relation between j and j'.

3(c) [9 points]. Write an A € Assn expressing this relation.

8 6.044J/18.423J Handout 27: Quiz 2

Problem 4 [15 points]. For each of the following forms of Assn’s, indicate
whether it is valid for every Assn A. If it is not valid for every A, exhibit a
specific A € Assn which makes the form into a false Assn.

4(a) [5 points]. (Vi.A) = (3i.A).

4(b) [5 points]. (Fi.A) = (Vi.A).

4(c) [5 points]. (Vi.35.A) = (J7.Vi.A).

6.044J/18.423J Handout 27: Quiz 2
NAME 9

Problem 5 [20 points]. For any program ¢ € Com and assertion A € Assn,
we would like to have an Assn “[c]A” whose meaning is, “if ¢ is executed and
it halts, then A holds in the resulting state.” That is,

o =T “c]a” iff (if [c]o is defined, then [c]o =1 A).

For example:

e For every state o and interpretation I,
o }:1 “X =0)(X =0).
e For every state o and interpretation [,

o X = 0)(X =1).

e The assertion “[X := X +1](X =Y)” is true in some states and interpre-
tations, and false in some states and interpretations.

5(a) [5 points]. Describe a state o7 such that for all interpretations I,

o = X =X +1[(X =Y)".

5(b) [5 points]. Describe a state g2 such that for all interpretations I,

o T X =X +1(X =Y)".

10 6.044J/18.423J Handout 27: Quiz 2

There will always be an Assn whose meaning is “[c]A”. This follows from the
expressibility by assertions of the input/output relation of any command.

In particular, for ¢ € Com with loc(c) = X, we know there is an assertion
IO x(i,j) € Assn, with free variables 7 and 7, which means, “if o(X) = and
[c]o is defined, then ([c]o)(X) = j.” So the assertion for “[c]A” can be written
in the form:

Vi,j. (X =i A IO, x(3,5)) = A,

for some A' € Assn.

5(c) [10 points]. Complete the above definition by giving an appropriate A’ €
Assn.

6.044J/18.423J Handout 27: Quiz 2

Appendix A: Syntax of IMP

The arithmetic expressions Aexp:

ax=n|X|ag+ay|as—a|axay

The boolean expressions Bexp:

b:=true|false|ag=a;|ag<ai|-b|bgAby|bVh

The commands Com:

cu=skip | X :=a|cg;c1 | if b then ¢ else ¢; | while b do ¢

The command contexts:

Cl] =[]
Col]; C1[1]

if b then Co[] else Ci[]
while b do C'[]

The “plugging-in” operation for commands and command contexts:

If C[] =[], then C[c] = ¢
If C[] =, then Clg] =
If C[] = Co[]; C1[], then Clc] = Cyc]; Chle].
If C[] = if b then Co[] else Cy[], then
Cld] E.if b then Cy[c] else Ci|c].

If C[-] = while b do C'[], then C[c] = while b do C’[¢].

11

12 6.044J/18.423J Handout 27: Quiz 2

Appendix B: One-step Semantics of IMP

In this appendix, we use op to range over syntactic operator symbols, and op
to range over corresponding arithmetic or Boolean operations.

One-Step Rules for Arithmetic Expressions
(X,0) =1 (0(X),0)

{ag,0) =1 (afpa)
{ao op a1,0) —; {a; op a;,0)

(ala0> —1 (allva)
(nop a1,0) —; (n op aj,o)

{n op m,a) =1 {n op m,0)

op | op

+ | the sum function

— | the subtraction function

x | the multiplication function

Notice that
(5+7,0) —1{(12,0)

is an instance of the rule (n op m,o) —; (n op m, o), but that
<5+7a0) -1 <5+7a0>

is not derivable at all.
One-Step Rules for Boolean Expressions

(a0, 0) —1 (ag,0)
(a0 op a1,0) =, (ag op a1,0)

(a1,0) =1 (a1,0)
(nop ay,0) -1 (nop aj,o)

<Tl op m,a) -1 <n op m70>

6.044J/18.423J Handout 27: Quiz 2 13

Q
e

op
the equality predicate
the less than or equal to predicate

IA 1

We next have the rules for Boolean negation:

(b,0) =1 (V',0)
(=b,a) —1 (-, 0)

(- true,o) — (false, o)
(—~false, 0} —; (true,o)

Finally we have the rules for binary Boolean operators. We use op and op to

range over the symbols and functions in the chart following the rules. We let
t,to,t1,... range over the set T = {true, false}.

(bo,0) —1 (bh,0)
(bo op by,0) —1 (b op by, 0)

(by,a) =1 (b}, 0)
(to op by,0) — (to op by, 0)

(to op t1,0) —1 (to op t1,0)

op | op

the conjunction operation (Boolean AND)
the disjunction operation (Boolean OR)

One-Step Rules for Commands

Atomic Commands:
(skip,0) —1 0

{a,0) =1 (a',0)
(X :=a,0) =1 (X :=4d',0)

(X :=n,0) =1 o[n/X]

14 6.044J/18.423J Handout 27: Quiz 2

Sequencing:
(Co,U') —1 (06,0'/)
{(co;e1),0) =1 ((cps 1), 0")

{co,0) —1 o’
{(cosc1),0) =1 (a1, 0")

Conditionals:

(bv 0') —1 (blva)
{(if bthen ¢y elsec;, o) —; (if b’ thencyelsecy, o)

(if true then ¢g else ¢y, 0) —; {cp,0)

(if false then ¢g else ¢1,0) —; {c1,0)

While-loops:

(whilebdoc,o) —; (if bthen(c; whilebdo ¢) else skip, o)

6.044J/18.423J Handout 27: Quiz 2

Appendix C: Rules of Hoare logic for IMP

{A}skip{A} [skip]
{Bla/X]}X = a{B} [assignment]

{A}eo{C} {C}ci{B}
{A}eo; c1{B}

{AAb}eo{B} {AA-b}e:{B}
{A}if b then cg else ¢; {B}

[sequencing]

[conditional]

{AAb}e{A)
{A}while b do c{A A b}

{loop-invariant]

E(A=>4) {4}{B} E(B' =B5)
{A}e{B}

[consequence]

15

16 6.044J/18.423J Handout 27: Quiz 2

Appendix D: The assertion language Assn

A = true | false
|ap =a1|ao <ay
| Ao AA1 [AoV A | A A =2 A
|ViA|3iA

6.044J/18.423J: Computability, Programming, and Logick Handout 28
Massachusetts Institute of Technology 15 November 1993

Quiz 2 Solution

(This was a closed book, closed note exam. There were five problems, worth
100 points total).

Problem 1 [15 points]. In this problem, we will extend the language IMP
with a parallel operator, timeshare. Informally, timeshare(cg, ¢1) interleaves
the execution of the commands c¢g and ¢;. The execution of timeshare(cg, ¢1)
proceeds by first executing ¢y one step, then executing c¢; by one step, then ¢g,
then ¢, etc. When one of the commands finishes executing, the other is allowed
to run to completion.

The IMP commands, command contexts, and the “plugging in” operation,
{given in Appendix A) are extended as follows:

e ¢ ::=...|timeshare(cg,c1),
e C[]:=...|timeshare(Co[], C1[]),

e If C[] = timeshare(Cy['], C1[]), then C[c] = timeshare(Cy[c], C1[c]).

The one-step semantics —; for IMP (given in Appendix B) is extended by the
rules:

{c0,0) =1 (€, ")
(timeshare(cg, ¢,),0) —1 (timeshare(c,, cp),o')

& (CO7U> —1 o’

(timeshare(cg, ¢1),0) —1 {(c1,0")

We call the extended language IMP 4-timeshare.

The meaning function for IMP+timeshare commands is defined exactly as
for IMP:

[ele) =" f (c,0) —F o,

where the relation —7 is the transitive closure of the relation —;, extended as
above.

2 6.044J/18.423J Handout 28: Quiz 2 Solution

1(a) {7 points]. Exhibit a simple command, ¢, of IMP (without timeshare)
such that

[timeshare((X := 0; X := 1),¢)] # [timeshare(X :=1,¢)].
Answer: One example is ¢ = (X := 2); then for any o, we have
[timeshare((X :=0; X :=1), X :=2)](¢)(X) =1,
[timeshare(X :=1,X := 2)](¢)(X) = 2.
|

1(b) [8 points]. Explain why a correct answer to part (a) provides a counterex-
ample to the claim, “the meaning function [-] is compositional for the language
IMP+timeshare.”

[Hint: Any command c satisfying the inequality of part (a) provides a coun-
terexample; your answer to part (b) should not depend on the particular ¢ you
chose for part (a).]

Answer: Let C[] = timeshare({],¢c),c; = (X :=0; X :=1),and co = X := 1.

Note that [c;] = [cz], but part (a) shows that [Clc1]] # [Clecz]], directly
contradicting compositionality.

]
Problem 2 [25 points].

2(a) {10 points]. Exhibit a simple program HALVE € Com satisfying the par-
tial correctness assertion

{0<YA(Fj(G=0Vvi=1)A((2xi)+j=Y))}HALVE{i = Y}.
Answer: (I use “a < a’” as an abbreviation for =(a’ < a).)
HALVE=Z :=Y;while Z<2xY doY:=Y -1
e
a

Assume that HALVE is a program satisfying the partial correctness assertion
from part (a), and let X be a location that is not used in HALVE. Define the
program LOGTWO € Com as follows:

LOGTWO = while =(Y = 1) do (HALVE; X := X + 1).
We claim that the predicate
“Y x2X =n and Y is a power of 2”

is a loop-invariant for LOGTWO.

6.044J/18.423J Handout 28: Quiz 2 Solution 3

2(b) {5 points]. To show that the above predicate is a loop-invariant, what
partial correctness assertion must be shown to be valid? (The Hoare logic rules
for IMP are included in Appendix C.)

Answer: Let A be the predicate above. In order to show that A is a loop-
invariant, we must show

{AAN=(Y =1)}HALVE; X := X +1){4}.
|

2(c) [10 points]. Explain why the partial correctness assertion you gave in
part (b) is indeed valid.

Answer: Any power of 2 is greater than or equal to 1. Thus T A (Y = 1)
implies Y > 2, and so Y is of the form 2 x ¢, where ¢ is a power of 2. Then by
part (a) we have

{IA=(Y =1)}HALVE{“Y x 2X*! = and Y is a power of 2”}.
And we have
{“Y x2X*! =n and Y is a power of 2"} X := X + 1{4}

by the rule for assignment. Then using the sequencing rule, we have the desired
result.

Problem 3 [25 points]. We would like to express the assertion “q is the n'h
prime” in the language Assn. (Assn is defined in Appendix D.) We will take
an approach similar to the one we used, in class and in a handout, to define
“,= k™ in Assn.

We have at-gur disposal the following Assn’s:

s PRIME(p), which means that p is a prime number;

o “z=#,(i1,%2,...,im)", which means that the base-p representation of z
is the sequence of digits #;,%2,...,%m;

e and “z = z @, y”, which means that the base-p representation of z is the
concatenation of the base-p representations of z and y.

The top-level idea is that q is the nt* prime if and only if there is a sequence of
the form ‘ ‘

4 6.044J/18.423J Handout 28: Quiz 2 Solution

(1’p1$0727p2?0737p3107'"vmvpmao)v (*)
where n = m, ¢ = p,, and p1, p2, ps, P4, ... are the primes in ascending order:
2,3,5,7,....

For example, 11 is the 5*" prime, and there is a sequence
(1,2,0,2,3,0,3,5,0,4,7,0,5,11,0)
of the above form.

Using this idea, we will define NTHPRIME(q,n) € Assn which means that ¢
is the nt® prime:

NTHPRIME(q,n) = 3p,z.(START(p,zx)
A PATTERN (p,)
A FINISH (p,z,q,n)).

The Assn START (p,z) says that the base-p representation of z is a sequence
that starts out properly:

START(p,z) = 3z1,%2.(z =21 @p T2
ATy = #,,(1,2,0))‘

Similarly, FINISH(p, z,q,n) will say that z ends properly, and PATTERN(p, x)
will say that sub-sequences of = follow an appropriate pattern.

3(a) [8 points]. Write a definition for FINISH(p,z,q,n), which means that
the base-p representation of x ends properly.

Answer:

FINISH(p,z,q,n) = 311,%2.(x =z1 Qp x5
Az = #p(na q, O))

e

The Assn PATTERN (p,z) means that if 4, j, 0, 7, j', and k are consecutive
digits in the base-p representation of z, then i, j, i, j/, and k are related as
indicated by (x) above:

PATTERN(p,z) = Vi,j,k,i,j, 21,2
(z = (21 @p (#5(1,5,0)) @y (#5(¢',5', k) @p 72)
=>(k=0
A =141
A A)),

where A € Assn expresses the proper relation between j and j'.

6.044J/18.423J Handout 28: Quiz 2 Solution 5

3(b) [8 points]. Clearly state in English the proper relation between j and j'.

Answer: The proper relation is:
“4' is the least prime greater than j.”

It is not necessary to say that j is prime; it will follow by induction that all
the j’s are prime. However, it is not harmful, either.

3(c) [9 points]. Write an A € Assn expressing this relation.

Answer: (I use “a < a'” as an abbreviation for ~(a’ < a).)
A = PRIME(j)A(j <5')A=(3r.PRIME(r) A (j <7) A (r < §').

Problem 4 [15 points]. For each of the following forms of Assn’s, indicate
whether it is valid for every Assn A. If it is not valid for every A, exhibit a
specific A € Assn which makes the form into a false Assn.

4(a) [5 points]. (Vi.A) = (3i.A).
Answer: Valid for all A.
[|

4(b) [5 points]. (3i.A) = (Vi.A).

Answer: Not valid for all A. One counterexample is

.q*

A = (i=3)

4(c) [5 points]. (Vi.35.4) = (35.Vi.A).

Answer: About half the class missed this one. The form is not valid for all A.
One counterexample is
A = (E=73).

6 6.044J/18.423J Handout 28: Quiz 2 Solution

Problem 5 [20 points]. For any program ¢ € Com and assertion A € Assn,
we would like to have an Assn “[c]A” whose meaning is, “if ¢ is executed and
it halts, then A holds in the resulting state.” That is,

o =1 YA” i (if [c]o is defined, then [c]o =T A).
For example:
e For every state ¢ and interpretation I,
o =YX = 0)(X =0)".
e For every state o and interpretation I,
o X =o)X =1).
o The assertion “[X := X +1}(X =Y)” is true in some states and interpre-

tations, and false in some states and interpretations.

5(a) [5 points]. Describe a state oy such that for all interpretations I,

aE X =X+1(X=Y).

Answer: Any o) satisfying ¢1(Y) = ¢1(X) + 1. For example, a o, where
UI(X) = 3»
0'1(Y) =4.

5(b) [5 points]. Describe a state o3 such that for all interpretations I,
o E X =X +1)(X =Y).
Answer: Any o satisfying 02(Y") # 02(X) + 1. For example, a o3 where
02(X) =4,
% oo(Y) =4.
]

There will always be an Assn whose meaning is “[c]A”. This follows from the
expressibility by assertions of the input/output relation of any command.

In particular, for ¢ € Com with loc(c) = X, we know there is an assertion
IO, x(i,7) € Assn, with free variables ¢ and j, which means, “if 0(X) = ¢ and
[c]e is defined, then ([c]o)(X) = j.” So the assertion for “[c]A” can be written
in the form:

Vi,j.(X =1 ATO: x(3,3)) = A',
for some A' € Assn.

6.044J/18.423J Handout 28: Quiz 2 Solution 7

5(c) [10 points]. Complete the above definition by giving an appropriate A’ €
Assn.

Answer: Remember that the truth of “[c)A” is being judged in a state before ¢
is executed. The IO predicate allows us to look at the state after ¢ is executed,
through the variable j. Thus to see if A is true after ¢ executes, we merely
test A with the value of j in place of X:

A = Ajj/X].
. :

Appendix A: Syntax of IMP

The arithmetic expressions Aexp:
a:=n{X|a+a1|a—a;]a xa
The boolean expressions Bexp:
bu=true|false |ay=a;|ag<ay |-b|bgAby|boV b
The commands Com:
cu=skip| X :=a| cok;cl | if b then ¢y else ¢; | while b do ¢
The command contexts:

Cla=[]

if b then Cy[] else C[]

l
| Cof]; Cil]
l
| while b do C'[]

The “pluggﬁig-in” operation for commands and command contexts:
o If C[] =[], then Clc] =c.
o IfC[] =, then Clc] =¢.
If C[-] = Cy[-]; C1[], then C[c] = Co[c]; Ci[c]-
If C['] = if b then Cy[] else Ci[], then
Clc] = if b then Cyc| else Ci[c].

If C[] = while b do C'[], then C[c] = while b do C’[¢].

8 6.044J/18.423J Handout 28: Quiz 2 Solution

Appendix B: One-step Semantics of IMP

In this appendix, we use op to range over syntactic operator symbols, and op
to range over corresponding arithmetic or Boolean operations.

One-Step Rules for Arithmetic Expressions

(X,0) =1 (0(X),0)

(a070) —1 (06,0')
{ao op ay,0) — (ag op a1,0)

(a1,0) =1 {(a},0)
(n op aj,0) =1 {n op ay,0)

(n op m,a) —1 {n op m,0o)

op | op

4+ | the sum function

— | the subtraction function

X | the multiplication function

Notice that
(6+47,0) = (12,0)

is an instance of the rule {n op m,c) —; (n op m,o), but that
(5+7,0)—1{(5+7,0)
is not derivable at all.

i
J‘* .

One-Step Rules for Boolean Expressions

10)
op ay,0)

<a070> -1 (a
(ao op 01,0') g | (a

!
Q
7

0

{a1,0) —1 {a},0)
(n op a1,0) —1 (nop aj,0)

{n opm,c) —1 {n op m,o)

6.044J/18.423J Handout 28: Quiz 2 Solution 9

op
the equality predicate
the less than or equal to predicate

A DS

We next have the rules for Boolean negation:

(b70> —1 <b/70>
{(=b,0) =1 (=, 0)

(—true, o) —, (false, o)
(—false, o) —1 (true,o)
Finally we have the rules for binary Boolean operators. We use op and op to

range over the symbols and functions in the chart following the rules. We let
t,to,t1,... range over the set T = {true, false}.

(bo,O’) —1 (b{),cr)
(bo op by,0) —1 (bg op by,)

(b170> —1 (bllao'>
(to op b1,0) —1 (to op b}, 0)

(to op t1,0) —1 (to op t1,0)

op | op
A | the conjunction operation (Boolean AND)
V | the disjunction operation (Boolean OR)

One—Stef;" Rules for Commands

Atomic Commands:

(Skip7 U) —10

10 6.044J/18.423J Handout 28: Quiz 2 Solution

Sequencing:
(0070) —1 (0670’)
((cosc1)s0) =1 ((cp;¢1),0")
(CQ,U) —1 o'l
((co;€1),0) =1 (c1,0”)
Conditionals:

(bv U) —1 (bl, 0')
(if bthencg elsecy,0) —; (if ¥’ then¢yelsecy, o)

(if true then ¢y else ¢y, o) —1 {cp,0)
(if false then cp else ¢;, o) —; {(¢1,0)

While-loops:

(whilebdoc, o) —, (if bthen(c; while bdo ¢) else skip, o)

Appendix C: Rules of Hoare logic for IMP

{A}skip{A} [skip]
{Bla/X]}X := a{B} [assignment]
) Wl L o
Uatoll) Uof®) oy
{A}wh{iﬁa/;) Z}E{QZ A —b} [loop-invariant]

= (A= 4" {?1;}}66{{1;}} = (B’ = B) [consequence]

6.044J/18.423J Handout 28: Quiz 2 Solution

Appendix D: The assertion language Assn

A = true | false
|ag =a;|ap < ax
| Ao A A1 | AoV Ap | ~A | Ao = A,
|Vi.A|3i.A

11

6.044J/18.423J: Computability, Programming, and Logic Handout 29
Massachusetts Institute of Technology 15 November 1993

Grade Statistics for Quiz 2

Number of quizzes taken: 11
Grade range: 68-100

Mean: 85

Histogram:

0-4:
5-9:
10-14:
15-19:
20-24:
25-29:
30-34:
35-39:
40-44:
45-49:
50-54:
55-59:
60-64:
65-69:
70-74:
75-79: *
80-84; **x*
85-89: *
90-94: **
95-100: **

6.044J/18.423]: Computability, Programming, and Logic Handout 30
Massachusetts Institute of Technology 17 November 1993

Notes on Expressiveness

We define the set DynAssn of “dynamic assertions” by adding, for ¢ € Com,
a new form of assertion, [c]D, to the definition of Assn:

D .= a1=a2|a1S_azlﬂD|D1AD2|D1VD2|D1=>D2
| 35.D | V5.D | [¢]D
Informally, [c]D means “after doing c, the property D will hold.” Formally,
o ' [JD iff (if [c]o is defined, then [c]o ! D).

The following important properties are immediate consequences of the defini-
tions:

e [c]D is a precondition sufficient to ensure that D holds after executing c:
k= {[c]D}e{D}-

e Any precondition D’ sufficient to ensure that D holds after executing c is
stronger than [c|D:

E {D'}e{D} iff k(D= []D).
For this reason, any formula equivalent to [c]D is called a weakest precondition
of D under c.

We illustrate [c]D with a few sample equivalences:

[if bthenc, elsecy]D iff (b= [c1]D) A (-b = [ca)D),
[(cr;e2)]D iff [e]([e2] D),
[X :=a]A if Af[a/X] (for A € Assn).

(Note that A in the last equivalence above must not be a DynAssn containing
commands, since we have not defined substitution into such formulas. This is
hard to d& properly, because a location on the left-hand side of an assignment
statement acts like a binding identifier.)

It might seem that adding weakest preconditions to the language of assertions
will allow us to express more predicates. However, it can be shown that Assn
already has the power to express weakest preconditions:

Theorem 1 (Expressiveness). For all ¢ € Com, A € Assn, there is a for-
mula W(c, A) € Assn such that W(c, A) is a weakest precondition of A under c.

Soied
JEAFUE SRR I N

2 6.044J/18.423J Handout 30: Notes on Expressiveness

Corollary 1. There is a translation mapping any D € DynAssn into an equiv-
alent D € Assn.

Proof (of corollary).
a)y=ay 18 a) =az
DT‘\—/T)Q is 1,)\1 A 13;
35D is 3D
[Z]-I) is W(c,D)

The other cases are similar. B

Proof (of Expressiveness Theorem). By induction on c:

W (skip, A) == A,
W(X :=a, A) := Ale/X),
W (if bthenc, elsecy, A) ::= (b = W(c1, A)) A (=b = W(ca, 4)),
W ((c1;¢2), A) =i= W (c1, W(ca, A)).

b Ry

That W (c, A) is equivalent to [c]A in each case above follows from the equiva-
lences between DynAssn’s that we have already noted.

The remaining case, W(while bdoc, A), is more elaborate. We take the follow-
ing approach: we show that there is an easy way to express a weakest precondi-
tion for a command if we can express its input/output relation (and vice-versa);
and we define the input/output relation for while loops.

Let ¢’ be an arbitrary command, and for notational convenience, say that
loc(¢’) € {X1,X2}. We know that the evaluation of ¢’ depends only on the
values of X; and X,. Let IOy x,,x,(%1,%2,51,J2) be a formula with free vari-
ables 71, i3, j1, and j2, which means

Clc'Volir/ X142/ X2] = o1/ X1, 42/ Xo].
To minimize clutter, we’ll omit the subscripts X;, X3 below.

If 10 (41,42, 1, j3) € Assn, then we can define W(¢/, A) € Assn to be

Wiy, ig, 1, J2-(Xa = 61 A Xa = ig ALOw (i1, 92, 41, 52)) = Al /X1, 52/ Xal.
Since we have defined weakest preconditions for skip, assignment, if-statements,
and sequencing above, we have defined the corresponding cases of 10..

Conversely, from Assn’s which are weakest preconditions for ¢ we can define
10 (41,42, j1,j2) € Assn to be

(W(c’,jl =X1Aja= Xz) A -nW(c’,false))[’il/Xl,‘iz/XQ].

6.044J/18.423J Handout 30: Notes on Expressiveness 3

Note that W(c',j1 = X; Aj2 = X3) means that if ¢’ terminates, it does so with
final contents of X;, X2 equal to j;,j2. The other conjunct, =W (¢, false) is
needed to assert that ¢’ does indeed terminate.

It will also be convenient to have a one-to-one coding of pairs of numbers into
positive numbers. One way to do this is to define the one-to-one function
mkpair : (N x N) - N* by

mkpair(n, m) = 27l . 338(") . 5lml . 7es(n)

where |n| is the absolute value of n, sg(n) =1ifn > 0, and sg{n) =0ifn <0.

It was shown in Handout 26 that “i = k™” can be expressed in Assn, so it is
easy to see that there is an Assn which means “k = mkpair(, 5).”

We can now define IOyhilesdoc in much the same way that we defined the
assertion “i = k™”. Let #;'(k) denote the base p representation of k. We say
that there is a sequence, #, 1(k) whose first digit is the code of (,,13, }, whose
last digit is the code of {j1,72), and every two consecutive digits code pairs in
the input-output relation of the body, ¢, of the while. Also, every pair but the
final one satisfies the guard, b, of the while.

Thus we can describe IOwhilesdoc(%1,%2,71,J2) € Assn as follows:

3k3p. “#,'(k) starts with digit mkpair(i;,2)” A
“#,1(k) ends with digit mkpair(j, j2)” A
(th k21 ll] 12-
“mkpair(k;, k;) and mkpair(l;,l;) are consecutive digits of #;' (k)"
= (b[kl/Xﬂ[kz/le A IOc(kl, kl, 11, 12))/\
=bljr/ Xa] (2 / X2]

6.044]/18.423]: Computability, Programming, and Logic Handout 31
Massachusetts Institute of Technology 17 November 1993

Problem Set 7

Due: 24 November 1993.

Reading assignment. Winskel, Appendix; Handout 30
Problem 1. Prove that [whilebdoc|A is a loop-invariant for while bdoc.

Now we extend the language IMP to a language IMPF with a feature for
calling “externally defined” partial functions on N. -

Let Funcvar be a set {f, fi,...,9,91,...} whose elements are called function
varigbles. For each f € Funcvar there is an associated nonegative integer called
its arity, written arity(f). IMPF is defined by adding one further case to the
grammar of IMP commands:

cx= ... | X:=fN,...,Y,)
where f € Funcvar, arity(f) = n, and X, Y;,...,Y, € Loc.

A interpretation, p, of Funcvar is an “arity respecting” map from Funcvar to
partial functions on N. That is, p(f) : N* — N where arity(f) = n, for every
function variable f.

The evaluation of IMPr programs is defined relative to an interpretation, p, of
Funcvar. We make the dependence on p explicit by a subscript in evaluation
assertions for Comg. Now all clauses in the natural semantics definition of the
evaluation relation for Compy are the same as the corresponding ones for Com,
but we add one further axiom for the new kind of assignment commands:

(X :=f(Nh,...,Yp),0) =€ alm/X],
where m = p(f)(e(V1),...,0(¥a)).
Similarly, we define the meaning of ¢ € Comp relative to p:
[c)(o)=0' iff (c,0) =7

And as in the Appendix of Winskel, we define {c}%, v, the function com-
puted by-c-with input locations X, ..., X, and output location Y, as follows:

{i,xa v (M, oma) = ([d°0) (),

where o is the state oo[m;/X1,...,m,/X,]. A partial function on N is said to
be IMP-computable relative to p, iff it equals {c}%, x_y for somec € Comp
and X1,...,X,,Y € Loc.

2 6.044J/18.423J Handout 31: Problem Set 7

Problem 2. An interpretation p is said to expressible iff p(f) is expressible
for every f € Funcvar. We will prove

Theorem: If p is an expressible interpretation of Funcvar, then every IMP-
computable function relative to p is also expressible.

To begin, we observe

Lemma: If p is expressible, then there is an assertion 10% expressing the in-
put/output relation of any ¢ € Comp.

To prove the Lemma, we construct the assertions I0? by induction on ¢ exactly
as in class and in Handout 30 for IMP, with one additional case for IMPz
commands of the form X := f(Y3,...,Y¥,). To simplify notation, we take n = 2
and assume X, Y7,Y; are distinct locations.

2(a) Describe how to construct an Assn,

Iogo,x,yhyz(ilvi2vi3)j1!j2)j3))

that expresses the input/output relation of the command ¢o = X := f(Y7,Ya).

2(b) Taking the above Lemma as proved, complete the proof of the above
Theorem.

2(c) For any total function f : N — N, define its iterate, f* : N— N as
follows:

- _ 0 ifn S 0,
f (”)‘{ f(f*(n—-1)) otherwise.

Show that if f is expressible, then f* is expressible.

Problem 3. Let H? be the set of IMPr commands that are “self-halting”
under interpretation p:

H? = {c| {c}’*(#(c)) is defined}

show that H” is not decidable relative to p, for any interpretation p. (That is,
“the characteristic function of H” is not IMP-computable relative to p.)

iy b

6.044J/18.423J): Computability, Programming, and Logic Handout 32
Massachusetts Institute of Technology 22 November 1993

Problem Set 6 Solution

Problem 1 [15 points]. Exercise A.6 from Winskel.

Describe how to transform a command c into one which meets the description
“do ¢ for S steps or until ¢ halts (whichever happens first).”

Answer: First we must decide what to call a “step”. The purpose of the
exercise is to show that we can construct a decider for a set M if we have
checkers for M and M. Thus the important properties of a “step” are:

e for any command ¢ and number S, “do ¢ for S steps or until ¢ halts
(whichever happens first)” always halts; and

o if ¢ is a command that halts, then there is some value of S such that ¢
halts in less than S steps.

A convenient notion of step satisfying these criteria is the number of executions
of while-loop bodies. (While-loops are the only source of non-termination in
the language; any while-free IMP-command is guaranteed to halt.) So our
transformation will consist of maintaining a counter of the number of steps, and
modifying commands so that they execute only if the counter has not passed S.

Let C be a fresh location, which we will use for the step counter. Then let

“do ¢ for S steps or until ¢ halts (whichever happens first)” ef (C :=1;8),

where ¢ is defined by:

s/kﬂ) def skip,
X =a¥ifc < Sthen X := aelseskip,

. def A A

Cg;C1 = Co,C1,

if bthen co elsec; = if bthen & else &,

whilebdo ¢ % while (bAC < S) do(&:C :=C +1).

2 6.044J/18.423J Handout 32: Problem Set 6 Solution

Problem 2 (30 points]. Exercise A.8 from Winskel.
(i) Produce IMP-commands Mkpair, Left, Right satisfying

{Mkpair}(n,m) = mkpair(n, m),
{Left}(n) = left(n),
{Right}(n) = right(n),
for all n,m € N.

Answer: Let A, N, and M be fresh locations. Then Mkpair and Left can be
defined as follows:

Mkpair = A:=1;

N =Xy,

M .= X,;

if (N < 0) then N:=—-1x N else A:= A x 2;
while (N >0)do(A:=Ax3N:=N-1);

if (M <0) then M := -1x M else A:= A x5;
while (M >0)do(A:=Ax ;M =M -1);
X1 = A

Left

A:=-1;
N :=0;
M:.=1,
while N =0do
A=A+1;
NZ=X1;
M:=M x 3;
while M < NdoN:=N-M
N =1,
while(2x N) < X; do N:=N+1;
if 2x N = X, then skip else A := -1 x 4;
X12=A

We*can define Right just like Left, except using 5 instead of 2, and 7 instead
of 3.

(ii) Let ¢ be a text which is of the form of an IMP-command, except that ¢
contains assignment statements of the form “X := left(Y').” Describe how to
construct an authentic IMP-command é which simulates ¢ up to temporary
locations.

Answer: Easy once we have Left from part (i). (We show how to handle
“X :=right(Y)” and “X := mkpair(¥, Z)” as well.)

skip & skip,

6.044J/18.423J Handout 32: Problem Set 6 Solution 3

— Qef
X:=a= X :=a,

. def ~

é; €1 = &p; €1,
if bthen co else c; % if bthen & else &,

while bdo ¢ = while bdo é,
X = left(Y)

Ef (X, = Y;Left; X := X3),
X = right(Y) ¥ (X, := Y;Right; X := X)),
X := mkpair(Y, 2) ¥ (X, := Y; Xa := Z; Mkpair; X := X,).

In each of the last three clauses, we are assuming that X;, X2, and the locations
used in Left, Right, and Mkpair are distinct from all the locations used in c.

(iii) Suppose that the definition of Aexp, and hence of IMP, was modified to
allow Aexp’s of the form “mkpair(a;,az)”, “left(a)”, and “right(a)” for a, a;,
and a; themselves modified Aexp’s. Call the resulting language IMP’. Explain
how to translate every ¢ € Com’ into a ¢ € Com such that ¢ simulates ¢'.

Answer: For any IMP'-command ¢, we define the IMP-command ¢ that
simulates it by taking each sub-command of ¢ of the form X := a and replacing
it with an IMP-command that simulates it:

X =a¥ (¢; X :=a'), where (c,ad') =a,

skip <f skip,
def —
Cp;C1 = Cp;Cy,
if bthen ¢y elsec; e (c;if b’ thentyelsetr), where (c,b') = b,

whilebdoc = (c';whilet’ doc), where (¢',b') = b.

For any modified Aexp a, d is a pair {c,a’) of an IMP-command and an Aexp
such that the value of a can be calculated by first executing c, then using the
value of a’:

where (c;,a}) = d; and (c2,a3) = d3,
and op € {+,—, x},
left(a) % (Y = o'} X = left(Y)), X),
where (c,a’) = @, and X and Y are fresh locations,

4 6.044J/18.423J Handout 32: Problem Set 6 Solution

right(a) & ((¢;Y = a'; X 1= right(Y)), X),
where (c,a’) = d, and X and Y are fresh locations,

—

mkpair(a;, az) def (Y :=a}; Z := a3; X := mkpair(Y, Z)), X),
where (c1,a}) = d1, {(c2,a3) = da,
and X, Y, and Z are fresh locations.
The definition of “X := left(Y)”, “X := right(Y')”, and “X := mkpair(Y, Z)”
is as for part (ii).

Finally, we define b for a modified boolean expression b in a similar manner.

true & (skxp,true)
false % (skip, false),
b &f (c,=b"), where (c,V') = b,
bl op b2 ((01, c2), b} op b3),

where (c1,b)) = by and (cz, by) = bg,
and op € {A,V},
e def
aiop az = {(c1;¢2), a1 op a3),
where (c1,a]) = dy and (cz, a5) = d3,
and op € {=,<}.

6.044J1/18.423J): Computability, Programming, and Logic Handout 33
Massachusetts Institute of Technology 1 December 1993

Expressibility, Checkability, and Decidability

These are supplementary notes covering lecture and problem set material not
in Winskel, Appendix A.

For any A € Assn, let #A4 be its Gédel number (as defined in the Appendix to
Winskel). Conversely, let A, be the assertion, if any, whose G6del number is n.
It is convenient to have A4, be defined for all n € N, so if n is not the Godel
number of an assertion by the numbering described in Winskell, define A,, to
be the assertion false.

Let Validity = {A-€ Assn| = A}.
Theorem 1. Validity is not expressible.
Proof: For convenience, in this proof we will write “A(n)” for the Assn A[n/%o],

where A € Assn, n € N, and ¢y is a fixed integer variable.

Suppose to the contrary that there was a V € Assn which expressed Validity.
That is, for all n € N,
EV(m) A

Using V we will construct D € Assn such that
FED(n) iff }E An(n))

(“D” is for “diagonal”). Since D € Assn, we know that D = A, for some
no > 0. So rewriting (1), we have for alln € N

E An(n) iff & An(n).
Now let n be ng for an immediate contradiction.

To construct D, let p(n,m) = #A,.(m). We let the reader explain why the
function p is computable. Now let D be

3.(io = § A (Bio.“i0 = p(j,)" A V).

We know that D € Assn because computability of p implies an Assn which
means “¢y = p(j,7).” Now

= D(n) iff [-V(p(n,n)) (by definition of D),
iff P Apnn (by definition of V),
if [An(n) (by definition of p).

2 6.044J/18.423J Handout 33: Expressibility, Checkability, and Decidability

Theorem 2. A set C C N is checkable iff C = f{D) for some decidable set
D C N and a total computable f : N — N.

Proof: (4=).Suppose d € Com is a decider for D according to the definition
in Winskel, Appendix, i.e., in the notation of Problem Set 8, {d} x, x, = charp,
the characteristic function of D. We construct a checker for f(D) by searching
through n = 0,1,-1,2,—2,... for an n such that the input equals f(n) and d
returns 1 on input n. Namely, the following command is a checker for f(D).

Y: = Xi; % save the input in Y;
X, :=0; % X, = 0 means keep searching
Y5:=0; % start the search at 0
while X; =0do
ifY # F(Y>) % is the input = f(¥2)?
then skip % if not, try another Y
else loc(d) := 0; % clear loc(d)
X, :=Y5; % if Y3 is in D, then setting
d; % X, to1 will end the search

ifY; <0thenY; :=1-Y;elseY; := ~-Y; % try Y2 = the next number

Here we assume that Y;, Y3 are “fresh”, namely, not in loc(d), and that F is a
function variable whose interpretation is f (cf. Problem Set 8, problem 4).

(=) Suppose c¢ is a checker for C. Let
D = {n| c halts on input left(n) in right(n) steps }.

Then clearly C = left(D), D is decidable (cf. Winskel, Exercise A.6), and
left : N — N is easily seen to be total computable. W

Definition 1. A proof system, P, consists of a countable set of objects dy, di,
dy, ..., called “proofs” and an IMP-decidable “is a proof of” relation between
proofs, d, and Assn’s, A, which we write “d Fp A”. (Saying the relation is
decidable means {mkpair(n, #A) | d, Fp» A} is IMP-decidable.) An assertion A
is provable in P iff there is a proof of A. Provablep is the set of provable
assertions. A proof system is sound when every provable assertion is valid.

Corollary 1. For any proof system, Provable is a checkable set.

Proof: The set of (G6del numbers of) the provable assertions equals right(D)
where D is the IMP-decidable set {mkpair(n,#A) |d, Fp A}. B

6.044J/18.423J Handout 33: Expressibility, Checkability, and Decidability = 3

Theorem 3 (Incompleteness). For any proof system,
Provable # Validity.

In particular, if a proof system is sound, then there is valid assertion which is
not provable.

Proof: Provable is checkable and therefore is expressible. Validity is not ex-
pressible, so Provable # Validity. In a sound system Provable C Validity,
so we must have (Validity — Provable) # §. B

(In class we proved Incompleteness simply using the fact that Validity is not
checkable. Noncheckability of Validity followed by a many-one reduction (<m)
of the Halting problem to Validity, which we deduced from the checkability of
the Halting Problem and expressiveness of Assn’s. The proof above does not
use checkability of the Halting Problem.)

It is important to realize that it doesn’t make sense to ask for a true sentence
which can never be proved somehow. For each sound proof system, P, there
is a valid assertion unprovable in P, but for any given valid assertion, there is
certainly a sound proof system which proves it, namely a proof system which
has the given sentence as an axiom. In sorting this out, it may help to con-
sider an analogue: think of “assertion” as “integer,” “valid assertion” as “even
number,” “provable assertions” as “finite or cofinite set of numbers.” We have
that no finite or cofinite set of integers equals the even numbers. A “sound”
set of “provable assertions” would correspond to a finite or cofinite set of even
numbers—which can only be a finite set of even numbers. So every “provable”
set in a sound system is missing some even number; on the other hand, there is
no even number which is not a member of some finite set of even numbers.

Theorem 2 can be usefully strengthened:

Theorem 4. The following are equivalent for C C N:

(i) C is checkable,
(ii) C is empty or C = range(f) for some total computable f: N - N,
(iii) C = g(C") for some partial computable g : N — N and checkable set C'.
Proof: By Theorem 2, we have that (ii) implies (i) which in turn implies (iii),
so we need only show that (iii) implies (ii). If C is empty we are done, so we

may assume there is a number mg € C. Let ¢’ € Com be a checker for C'
and ¢; € Com be a command computing g. Let mkquadruple be a coding for

4 6.044J/18.423J Handout 33: Expressibility, Checkability, and Decidability

quadruples of integers with decoding functions first, second, third and fourth.
Define

first(n) if ¢ on input second(n) halts in third(n) steps, and
¢g on input second(n) halts in fourth(n)

steps with output first(n),

mg otherwise.

It is easy to see that f is total computable and range(f) =C. B

Note that Theorem 4, part (iii) implies that, had we relaxed the condition that
proofs be decidable to be merely checkable, the provable assertions would still
be checkable and Incompleteness would still hold.

Definition 2. For S;,S5; C N, we say S) is many-one reducible to S, in sym-
bols Sy < Sg, iff there is a total computable f : N — N such that for all
n€N :

n €S iff f(n)€ S,.

Such a function, f, is called a many-one reduction from S; to Ss.

Lemma 1. The following are equivalent:

1. $1 &m 52
2. §) = f~1(S;) for some total computable function f : N =N,
3. charg, = charg, o f for some total computable f : N — N.

4. 51<m 53
Proof: From the definition of <,,,. W
Lemma 2. Many-one reducibility is transitive.

Proof: Suppose f is a many-one reduction from S; to Sz, and g is a many-one
reduction from S; to S3. Then g o f is a many-one reduction from S; to S;. W

Definition 3. A property, P, of sets inherits downward under <,, iff
[Sl <m S and P(Sz)] implies P({S))

Lemma 3. Expressibility, checkability, and decidability all inherit downward
under <.

6.044J/18.423J Handout 33: Expressibility, Checkability, and Decidability 5

Proof: Suppose f is many-one rednction from S; to S2, and ¢ is a decider (re-
spectively, a checker) for S;. Then X := F(X;); ¢ is a decider (resp., checker)
for Sy where F' is a function variable denoting f. So decidability (resp. checka-
bility) inherit down.

Suppose A € Assn means “ig € S2.” Then 3i;.“1 = f(i0)” A Aft1/i0] means
“i9 € S1,” so expressibility inherits down. @

Remark. It follows immediately that nonexpressibility, uncheckability, and
undecidability inherit upward under <,,.

A property of sets is a nontrivial property of checkable sets iff there is some
checkable set which- has the property and also some checkable set which does
not have the property. For any property, P, of sets let

Comp = {c € Com | c is a checker for some set S with property P}

Example: The Zero-Halting Problem is Comp where P is the “contains zero”
property, namely, P(S)iff 0 € S.

Theorem 5 (Rice). Let P be any nontrivial property of checkable sets such
that the empty set does not have property P. Then S <,, Comp for every
checkable set S.

Proof: Let cs be a checker for S, i.e., S = domain({cs}y, x,)- Since P is
non-trivial, there is some non-empty, checkable set Sy with property P; let cg,
be a checker for Sy.

Now let Y be a fresh location (Y ¢ loc(cs) Uloc(cs,)). For n € N define
d, € Com to be

Y :='Xy; X1 :=n; cg; loc(es,) :=0; X, :=Y;¢s, -

If n ¢ S, then d, diverges in all states, and so is a checker for the empty set.
On the other hand, if n € S, then d, acts like cg, in all states such that all
locations except X, have contents equal to zero, and so d,, is a checker for Sy.
Thus,

neSiff d, € Comp.

But the function f(n) = #d,, is another composition of the mkpair function with
itself with some substituted constants, and so is clearly total and computable.
Thus, S <,, Comp. B

Corollary 2. If P is a nontrivial property of checkable sets, then Comp is not
decidable.

6 6.044J/18.423J Handout 33: Expressibility, Checkability, and Decidability

Proof: 1f not P(®), Rice’s Theorem immediately vields

H <,, Comp
because the Halting Problem, H, is checkable. Since H is undecidable and
undecidablity inherits up <,,, Comp is undecidable also.

If P(@), then let P’ be =P. By the previous case, Comp: is undecidable. But
note that Comp: = ComNComp, so Comp must be undecidable (cf. the
next exercise).

Exercise. . (a) Show that if Sy = DN S, for sets S51,D,S52 C N such that
S1 # 0, D is decidable, and Sp # @, then S) <., S3.

(b) Describe S, So such that S; <., Se but S; # DN S, for any set D.

Some Examples: The valid equations between Aexp’s is an interesting ex-
ample of a decidable set. The Halting Problem, H, is a checkable set which is
not decidable. H is an expressible set which is not checkable. Let H(V) = H
and H(™*1) be the Halting Problem relative to H(™); then for n > 1, the set
H(™) is expressible but neither it nor its complement is checkable. Validity is
not expressible.

6.0447J/18.423J: Computability, Programming, and Logic Handout 34
Massachusetts Institute of Technology 1 December 1993

Problem Set 8

Due: 3 December 1993.
[This problem set builds on material introduced in Problem Set 7 (Handout 31).]

Let fo be some designated function variable of arity 1. For any set S, let ps be
the interpretation that maps f to the characteristic function of S, and maps any
other function variable f; to the “always 0” function of arity(f;). The purpose
of ps is to add the ability to decide membership in S to the language IMPp.

For sets S;, S; we say that S; is Turing-reducible to Sz, or S; is decidable
relative to Sy, iff S1ys IMP-computable relative to ps,. We write S; <7 S iff
Sy is Turing-reducible to S,.

C L\ <
Problem 1.
(a) Show that for any S, we have S <t S.

(b) Show that <r is transitive. That is, for any sets S;, Sz, and S5, show
that Sy <1 S2 and S; <7 S5 implies S <t S3.

[Hint: consider “inlining” of code.]

Problem 2. For any set S, let S’ be the set H?s.

(a) Show that S <,, S'.
[Hint: for any n € N, consider the IMP program cn, defined as follows:

en B (X, :=n; X1 = fo(X1); if X, = 1thenskip else),

where is some diverging (“infinite loop”) program.]

(b) We write S; <r S if $; <7 S2 and S; £r S;. Show that § <1 §' for
all S.

[Hint: consider problem 3 from Problem Set 7.]

6.044J/18.423]J: Computability, Programming, and Logic Handout 35
Massachusetts Institute of Technology 6 December 1993

Diophantine sets

A set S of numbers is diophantine iff for some polynomial p(z,...,zi) with
integer coefficients,

S ={n|p(n,mi,...,mg) =0 for some mi,...,my }. (1)

We say a set S’ of numbers is NNR (for non-negative range) iff for some polyno-
mial p'(zo, ..., zx) with integer coefficients,

S'"={n|n>0and n=p'(mog,...,m) for some my,...,mg }. (2)

We show that for any set S of non-negative numbers, S is diophantine iff S
is NNR.

First, suppose S is diophantine. Then there is some polynomial p(z,...,Zx)
satisfying the equation (1) above.
Define the polynomial p’(z, ..., z«) as follows:
def
P(o,...,z) = o — (1+23) x (p(x0,---, 7))

[Technically, the right-hand side of the above equation is not a polynomial; it
is an arithmetic expression (Aexp). However, any arithmetic expression can
be transformed into an equivalent polynomial expression, as indicated in the
Appendix of Winskel. We mean in the above definition that p’ is a polynomial
equivalent to the right-hand side.]

This defines for us a set S’ satisfying (2). We show § = §’.

e If n € S, then by (1) there are m,...,m, such that

p(n,mi,...,mk) =0.
But then
pl(namlv"-vmk) = n—(1+n2)x0
= n.

Since S contained only non-negative numbers, n > 0and son € §’.
o Now suppose n € S’. Then n > 0 and for some my,...,m, we have

n p'(mo,...,mk)

mg — (1 +m3) x (p(mo,...,m))2.

Since every square is non-negative, we have

(P(mo,.-- amk))z Z 0.

Consider the two following possibilities:

2 6.044J/18.423J Handout 35: Diophantine sets

1. If p(mg,...,m,) =0, then n = mg. And then
p(nimlv"'ymk) = Oa

so clearly n € S.
2. Else (p(myg, ...,mx))? > 0. Then since (1 +m2) > mo, we have

(1+m(2))x (p(m05'~‘amk))2 > my,
and thus
mo ~ (1 +md) x ((p(mo, - .., mx))?)
0.

Al

Since we assumed n > 0, clearly this case cannot hold.

Thus we have shownn e Siff ne€ §',ie. § = 5.

Now suppose S’ is NNR. Then there is some polynomial p'(zo, . .., zx) satisfying
the equation (2) above.

By definition, n € S’ iff for some my,...,m, we have both

n = p'(mo,...,m),
n 2> 0.

We will use the following number theoretic fact:

Theorem 1 (Four squares). Any non-negative number can be expressed as
the sum of four squares. That is,

n>0 iff n=a?+b%+c?+d? for some q, b, ¢, d.

By the Four Squares Theorem, n € S’ iff for some my,. .. ,msx, a, b, ¢, d, we have

n_p’(mOa"'vmk) 0,
n—(a®+¥+c2+d*) = 0.

Furthermore, for any integers n, and ng, we know
(ni=0andn; =0) iff n?+ni=0.
So define the polynomial
p(2, 30, T U, U2 U3, 0s) = (2= F(20,- .., Tk))?
+(z—(uf + 93 + 3 +4)*

This defines for us a set S by equation (1). And n € S’ iff for some my,. .. ,my,
a, b7 c, d7
p(n?m07"‘$mk1ayb,c,d) = 0.

Thusne S iffne S,ie. S=5".

6.044J/18.423]: Computability, Programming, and Logic Handout 36
Massachusetts Institute of Technology 8 December 1993

Problem Set 7 Solution

Problem 1 [10 points]. Prove that [whilebdoc]A is a loop-invariant for
whilebdoc.

Answer: We want to show that
= {[whilebdoc]A A b}c{[whilebdoc]A},

or in other words, we want to show that for all states ¢ and interpretations I,
if o =7 {whilebdoc]A A b and [c]o is defined, then [c]o ! [whilebdoc]A.

So suppose that

o k=1 [whilebdo c]A A b, (1)
and [c]o is defined. Then for some state o”,
le]e =o". (2)

We must show that ¢” =/ [whilebdoc]A. By definition of weakest precon-
dition, this is equivalent to showing that if [whilebdoc]o” is defined, then
[whilebdo cjo" |=! A. So assume

[whilebdoc]o” =o' (3)

By (1) we know (b,0) — true, and then from (2), (3), and the following rule
for while-loops,

(whilebdoc,0”) = o', {c,0) =", (bo)— true
(whilebdoc,o) — o

y

we know [whilebdoc]jo = ¢’. Then by (1) and the definition of weakest pre-
condition, we have [whilebdoc]o =/ A. Thus o’ =/ A as desired. [

Now we extend the language IMP to a language IMPp with a feature for
calling “externally defined” partial functions on N.

Let Funcvar be a set {f, fi,...,4,91,...} whose elements are called function
variables. For each f € Funcvar there is an associated nonegative integer called
its arity, written arity(f). IMPF is defined by adding one further case to the
grammar of IMP commands:

ci= ... | X :=f(Y1,...,Y,)

where f € Funcvar, arity(f) = », and X,Y;,...,Y, € Loc.

2 6.044J/18.423J Handout 36: Problem Set 7 Solution

A interpretation, p, of Funcvar is an “arity respecting” map from Funcvar to
partial functions on N. That is, p(f) : N® — N where arity(f) = n, for every
function variable f.

The evaluation of IMP programs is defined relative to an interpretation, p, of
Funcvar. We make the dependence on p explicit by a subscript in evaluation
assertions for Comp. Now all clauses in the natural semantics definition of the
evaluation relation for Comp are the same as the corresponding ones for Com,
but we add one further axiom for the new kind of assignment commands:

(X = f(N,...,Ya),0) =* om/X],
where m = p(f)(c(V1),...,0(Yn)).

Similarly, we define the meaning of ¢ € Comp relative to p:
[df(e) =0 iff (c,0) =P 0.

And as in the Appendix of Winskel, we define {c}%, v, the function com-

puted by ¢ with input locations X, ..., X,, and output location Y, as follows:
{c}[),(l,...,X",Y(mh s vmﬂ) = ([cﬂpo) (Y)’
where o is the state og[m1/X1,...,mn/X,]. A partial function on N is said to

be IMP-computable relative to p, iff it equals {c}%, ., forsomec€ Comp
and Xi,...,X,,Y € Loc.

Problem 2 [15 points]. An interpretation p is said to ezpressible iff p(f) is
expressible for every f € Funcvar. We will prove

Theorem: If p is an expressible interpretation of Funcvar, then every IMP-
computable function relative to p is also expressible.

To begin, we observe

Lemma: If p is expressible, then there is an assertion 107 expressing the in-
put/output relation of any ¢ € Comp.

To prove the Lemma, we construct the assertions I0? by induction on ¢ exactly
as in class and in Handout 30 for IMP, with one additional case for IMP ¢
commands of the form X := f(Y7,...,Y,). To simplify notation, we take n = 2
and assume X, Y7,Y5 are distinct locations.

2(a) Describe how to construct an Assn,

R o
107, x.v1.v, (41, 82,93, 71, J2, J3),

6.044J/18.423J Handout 36: Problem Set 7 Solution 3

that expresses the input/output relation of the command ¢y = X := f(¥1,Y3).

Answer: p is expressible, so p(f) is expressible. Therefore there is an assertion
that means “ = p(f)(¢',4")”, for any integer variables ¢, ¢/, i". We will use
this to ensure that the output value of X is the value of p(f) given the input
values of Y7 and Y;. Also, the values of Y; and Y5 should not be changed by

the command. Thus our Assn is:
“J1 = p(f)(i2,13)" Aj2 = ia A J3 = i3.
]

2(b) Taking the above Lemma as proved, complete the proof of the above
Theorem.

Answer: Suppose f is an IMP-computable function relative to p, and p is
expressible. Then we must show that f is expressible. That is, we seek an
Assn A such that

f)y=m i | A/i,m/5).
Since f is IMP-computable relative to p, by definition there must be some
IMP g-command c¢ such that

fn)=m it {c}x,y(n)=m
iff I0f x. y(n,m)
iff 107 y, y[n/i,m/j].

So just let A wf 10 x, v, which is an Assn by the Lemma above. |

2(c) For any total function f : N — N, define its iterate, f* : N—N as
follows:

. [0 ifn <0,
fr(n) = { f(f*(n —1)) otherwise.

Show that if f is expressible, then f* is expressible.

Answer: Let p be an interpretation such that p(fy) = f, for some designated
function symbol fy of arity 1, and p(f;) is the “always 0” function of arity(f;)
if f; is any other function symbol. Since f is expressible, and the “always 0”
function is expressible, we know p is expressible.
Then the following IMP g-program computes f*:
e y.= 0;
whilel < X, do
Y = fo(Y);
Xl = Xl -1

4 6.044J/18.423J Handout 36: Problem Set 7 Solution

That is, {c} x,,y(n,m) iff f*(n) = m. Therefore by the Theorem proved in 2(b),
f* is expressible. a

Problem 3 [10 points]. Let H” be the set of IMPz commands that are “self-
halting” under interpretation p:

H? = {c| {c}*(#(c)) is defined}

Show that H” is not decidable relative to p, for any interpretation p. (That is,
the characteristic function of H” is not IMP-computable relative to p.)

Answer: There seemed to be some common misunderstandings about this
problem, which I will try to clear up here.

Some people assumed that results which were proved about decidability also
held for decidability relative to p. For example, it was proved in the book that
for any set S of numbers,

S is decidable iff S and S are checkable.
It does not immediately follow that
S is decidable relative to p iff S and S are checkable relative to p.

The result does indeed hold, but it is not something that you can assume; it
must be proved. In fact, the proof for this property, and many other simple
properties, follow those in the book for decidability and checkability. I wouldn’t
expect you to write out the proofs again, but you should indicate that you are
aware of the issue.

One incorrect proof attempt was as follows: since H C H”, and H is not
decidable, it must be that H” is not decidable.

There are two things wrong with this attempt. First, note that if S; C S, and
S1 is not decidable, we do not necessarily have S, undecidable. For example,
take S; = H and S2 = N.

Second, we are not asking you to show H” undecidable; we are asking you to
show H” undecidable relative to p. These are two very different things; the p
can add a tremendous amount of power to the language. For example, there is
an interpretation pg such that H is decidable relative to pg! Just take po(fo) to
be the characteristic function of H.

Why doesn’t this argument show that we can find a p; such that H*! is decidable
relative to p;? Let’s try to define p; in the same way as we defined p;. We want
to define p, so that p1(fo) is the characteristic function of H??. In other words,

def [1 if for some ¢, n = #(c) and {c}**(#(c)) is defined,
pi(fo)ln) = { 0 otherwise.

6.044J/18.423J Handout 36: Problem Set 7 Solution 5

However, it is not immediately clear whether this is a good definition. The
problem is that we are trying to define p; in terms of itself. The value of p, on
fo is to be determined by the evaluation of a command which might use the value
of p1(fo) in the course of its execution. Sometimes such recursive “definitions”
have a solution, and sometimes not. For an example of a non-sensical recursive

“definition,” just consider

T d=-'3-f r+1.

In fact, the “definition” of p; is non-sensical. This can be seen as a corollary of
the result we asked you to prove, and which we will prove here. The proof just
follows the proof in the book for the undecidability of H.

It is easy to see that if a set S is decidable relative to p, then its complement
S is decidable relative to p, and in fact S must be checkable relative to p (the
proofs are just as in the book).

So if H” is decidable relative to p, then Hpe is checkable relative to p. We reach
a contradiction by showing that H? is not checkable relative to p.

By definition of H?, we have for all ¢ € Comp,
ce Hr iff {c}?(#(c)) is not defined. 1)

Now suppose H? is checkable relative to p. Then by definition of checkable
relative to p, there is some cy € Comp such that for all c € Comp,

ce Hr iff {co}?(#(c)) is defined. (5)
Combining (4) and (5), we have for all ¢ € Comp,
{c}?(#(c)) is not defined iff {co}?(#(c)) is defined.

But ¢y € Comp, so we must have

{co}?(#(co)) is not defined iff {co}?(#(co)) is defined,

a contradiction. Thus H” is not checkable relative to p, so H” is not decidable
relative to p. (]

6.044J/18.423J: Computability, Programming, and Logic Handout 37
Massachusetts Institute of Technology 8 December 1993

Problem Set 8 Solution

[This problem set builds on material introduced in Problem Set 7 (Handout 31).]

Let fo be some designated function variable of arity 1. For any set S, let ps be
the interpretation that maps fo to the characteristic function of S, and maps any
other function variable f; to the “always 0” function of arity(f;). The purpose
of ps is to add the ability to decide membership in S to the language IMPF.

For sets S;, S2 we say that S; is Turing-reducible to Sy, or Sy is decidable
relative to S, iff chars, is IMP-computable relative to ps,. We write 5; <1 S,
iff Sy is Turing-reducible to S,.

Problem 1.

(a) Show that for any S, we have § <r S.

Answer: We must show that chars is IMP-computable relative to pz.
That is, we must find a cp € Comp such that

chars = {co}’,’éy. (1)

Define ot
o = Y:i=fo(X)
if(Y =0)thenY :=lelseY :=0.

Then for all n € N,

0 ifn¢gs,
{cYsy(n) = {1 if n €S,

S0 ¢o satisfies (1) as desired. B
(b) Show that <r is transitive. That is, for any sets S, S;, and S3, show

that S; <1 S3 and S; <7 S3 implies S; <t Ss.

[Hint: consider “inlining” of code.}

Answer: Suppose S; <t S; and S; <t S3. Then there are commands
C12,C23 € Comp such that ¢;» computes charg, relative to ps,, and co3
computes charg, relative to ps,. To show that S; <r S3, we must find
c13 € Compy that computes charg, relative to pg,.

The command c;2 is almost what we want: it computes chargs,, but rela-
tive to pg, instead of pg,. That is, it computes charg, by asking questions

6.044J/18.423J Handout 37: Problem Set 8 Solution

about membership in §,. We want to eliminate questions about member-
ship in Sg, and allow questions about membership in S; instead. We can
do this by “inlining” the program cp3 (that computes membership in S
relative to pg,) for any S2 query in ¢)s.

In more detail, suppose w.l.o.g. that the locations of ¢;2 and the locations
of co3 are disjoint. And assume that the input and output locations of co3
are X, and Y; respectively. Then the command ¢,3, obtained from c;2 by
replacing each sub-command of the form

X := fo(Y)

by the command
X1:= Xje Y i =1,
computes charg, relative to pg,.]

Problem 2. For any set S, let S’ be the set H?s.

(a)

(b)

Show that S <,, §'.
[Hint: for any n € N, consider the IMPr program c,, defined as follows:

en & (X1 :=m; Xy := fo(X1); if X1 = 1thenskip else),

where (2 is some diverging (“infinite loop”) program.|
Answer: It is not hard to see that
neS iff c, halts under —,;
if c,€S'.

And the function f mapping n to ¢, is total computable (this is a straight-
forward application of the GGdel numbering of commands as in the Ap-
pendix of Winskel).

Thus we have found a total computable function f such that n € S iff
f(n) € §’, and therefore S <, S’.]

We write S; <r 2 iff §1 <7 S and Sy £7 S1. Show that S <7 S’ for
all S.

[Hint: consider problem 3 from Problem Set 7.]

Answer: First, S <,, S’ implies § <r §’. (Write a program that com-

putes the function f from part (a) and then uses ps:(fo) to test member-
ship in §’ on the output of f.)

And $' £r S if HPS £1 S
iff charyes is not IMP-computable relative to pg.

Problem 3 from Problem Set 7 proved that for any p, charg, is not IMP-
computable relative to p, so we have §' £ S. =

6.044J/18.423J: Computability, Programming, and Logic Handout 38
Massachusetts Institute of Technology 8 December 1993

Quiz 4 and Solutions from 1991

(This was a closed book, closed notes exam. There were four (4) problems.)

Problem 1 (17 points]. For any sets S,T’, let S —T be the set of all elements
of 5 which are not elements of T.

1(a) [10 points]. Show that if S and T are decidable subsets of N, then S — T
is decidable.

Solution A: There are two reasonable solutions to this problem. The first solu-
tion uses the fact that the set of decidable languages is closed under intersection
and complement.

We observe that § — T = SNT. In class we were told that the set of decidable
languages is closed under intersection, so if we can show that S and T are
decidable then we are done. By the premise we have S decidable. It is then a
simple task to show that if T is decidable then so is T. Specifically, if d is a
decider for T, then

d;if X; =0thenX; :=lelse X; :=0

is clearly an IMP command which decides T

Solution B: Let d; be a decider for S and d; be a decider for T, and let T; be
a fresh location. Then the following IMP command is a decider for § — T'.

To = X1
dy;
ifX;=0
then T : =0
else X; :=Ty;
da;
To:=0;

if X, =0then X, := lelseX; :=0

We then verbally argue that this does the job....

1(b) (7 points]. Give an example of two checkable (r.e.) subsets S and T of N
such that S — T is not checkable. No explanation is required.

Solution: Let S =N, and T be any set which is checkable, but not decidable,
for example T'= H. Then N — T is simply T = H which is not checkable.

2 6.044J/18.423J Handout 38: Quiz 4 and Solutions from 1991

Problem 2 [20 points]. Let
Divergent def {n > 0| [com,]s(k) = L for all k}.

Prove that Divergent is not checkable. (Here com, is the command with
Godel number n, and s(k) is the state with k in location X; and 0 in all other
locations.)

Hint: J[comyp]s(n) =1L iff [X :=n;com,]s(k) = L for all k.

Solution: Assume ¢ € Com is a checker for Divergent. Then the command:
“X, := mkseq(mkassign(mkloc(1), mknum(n)},n)”;c

will, by the hint, check NOT-SELF-HALT—a contradiction (since the NOT-
SELF-SET is not checkable). Thus our assumption that Divergent was check-
able is incorrect, and so Divergent is not checkable.

Problem 3 [28 points]. An assertion A is satisflable iff there exists a state
o and interpretation I such that o =7 A.

3(a) [10 points]. Let SAT e {#(A) | A is satisfiable}. (Here #(A) € N

is the Godel number of A € Assn. The assertion A need not necessarily be
closed.) Prove that SAT is not checkable.

Hint: Consider closed, location-free assertions.

The valid, closed, location-free assertions are not checkable. But the subset .5,
of Godel-numbers of assertions which are Godel numbers of closed, location-free
assertions is a decidable set. As a closed, location-free assertion is valid iff it is
satisfiable then SAT N S = the valid, closed, location-free assertions.

Suppose SAT were decidable. As S is obviously decidable, and decidable sets
are closed under intersection, then SAT N S would be decidable—which it is
not. Thus SAT is not decidable.

6.044J/18.423J Handout 38: Quiz 4 and Solutions from 1991 3

Let BSAT = {#(b) | b € Bexp and b is satisfiable}.

3(b) [10 points]. Explain why BSAT tis checkable.

Hint: We don’t expect you to write an IMP program. Just describe in high-level
terms an algorithm to decide whether or not a Bexp is satisfiable.

Solution: We can evaluate B:

Just check all possible assignments of numbers to X, X3, ..., Xk € loc(b) (there
must be a finite number of locations, wlog assume these are them). If B is
satisfiable, one will yield true and the algorithm stops. Note: it is possible to
canonically order the assignments of the locations.

When checking a particular assignment, plug the values of the X;’s into b. (This
is easy to do). Then replace all Aexp’s in b by their value (as the Aexp’s no
longer have locations or integer variables, this is easy to do). We can then replace
all the equalities and inequalities by their appropriate truth values (again this
is easy as they are of the form n; < ng or ny = n;. Finally, we simply have
a boolean combination of true and false which is also easy to evaluate. If
the result is true then B was satisfiable, if it was false, we go on to the next
assignment. This process of checking an assignment will always terminate, and
give the right answer.

3(c) [8 points]. Prove that BSAT is not decidable.
Hint: Hilbert’s 10! Problem.

Solution: Suppose BSAT were decidable. Let d be a decider for BSET. As
satisfiability of polynomial equalities is a special case of BSAT, the following
command would be a decider for Hilbert’s 10" Problem.

“X) := mkeq(X;, mknum(0))";d

Since there can be no decider for Hilbert’s 10! Problem, we have a contradic-
tion, and so BSAT is not decidable.

4 6.044J/18.423J Handout 38: Quiz 4 and Solutions from 1991

Problem 4 [35 points]. We consider axioms for symmetries (rigid, “in place”
transformations) of an equilateral triangle. For example, given the triangle with
vertices labeled as in Figure 1, we can apply

Transformation “r”: rotate 120° clockwise, obtaining the triangle in Fig-
ure 2;

Transformation “f”: flip about the vertical axis, obtaining the triangle in
Figure 3;

Transformation “/”: leave unchanged, obtaining the triangle in Figure 3 again.

2 3

Figure 1: The original triangle.

3 1

Figure 2: The original triangle after performing transformation r, a 120° clock-
wise rotation.

3 2

Figure 3: The original triangle after performing transformation f, a flip about
the vertical axis.

Let W be the set of finite sequences (of length at least 1) of the letters r, f,
and [. Elements of W are called words over the alphabet {r, f,1}.

6.044J/18.423J Handout 38: Quiz 4 and Solutions from 1991 5

By interpreting concatenation of letters as composition of permutations, we
can associate with any word, w, a permutation, Jw], of {1,2,3} indicating the
movement of vertices of a triangle. So the basic permutations defined by r and f

FI) = 2 [@ = 3 [1Q)
AW = 1 (@ = 3 G

Note that [!] is simply the identity function. Inductively, let [aw] = [a] o [w]
for a € {f,r,1}. For example, [rfri}(z) = r(f(r(l(z)))), so

i) =1, [fril@) =3, [rfri}3)=2.
Define “truth”, |=, of a “triangle” word equation as follows:
l= (w1 = 1U2) lff [w1] = [’lU2]|.

For example, = rfrl = f.

1.
2.

I
0ol
Il

4(a) [3 points]. Exhibit w; and wsz, such that

F wiwy = waw.

Solution: For example, w; =r and w2 = f.

4(b) [7 points]. The “standard” rules for equality are reflexivity, symmetry,
transitivity, and congruence. State these rules for the case of word equations.

Solution:
Fw=w (reflexivity)
Fw =w;
P— (symmetry)
Fup=wy Fwy=ws
Fw =w; (transitivity)
+ w1 = We

Fow; = aws (left congruence)

where a € {r, f,1}

I—wl = w2

Fuwa=wea (right congruence)

where a € {r, f,1}

6 6.044J/18.423J Handout 38: Quiz 4 and Solutions from 1991

4(c) [10 points]. Show that if a sound axiom system is strong enough to prove
any word equal to one of the six “canonical” forms below, then we can obtain
a sound and complete axiom system by adding the standard rules for equality.
The six canonical forms are:

lv r, rr, f1 va ’I"I'f‘

Solution: Suppose |= w1 = wa, i.e., [u1] = [we]. By the presumption, there
are canonical forms %, and w2 such that F w; = #,, and F wy = w,. Since the
system is sound, | w; = @;. [in] = [wi1] = [we] = [we].

In addition, each of the six “canonical” forms have different meanings. So, we
have
Fw, =w and Fwy =1y

and by symmetry and transitivity, we conclude F wy = ws.

4(d) [15 points]. Consider the complete proof system for triangle word equa-
tions whose rules are just the standard rules for equality plus the axioms:

rrr=ff=ll=1 (unit)
rl=lr=r, fl=Ilf=f (identity)
fr=rrf (swap)

Briefly explain why this proof system is sound and complete. Hint: Show how
to prove that an arbitrary word equals one of the six canonical forms of prob-
lem 4(c).

Solution Assuming the result of Problem 4(c), it should be clear that ali we
need to do is show, using the above axoims and the rules for equality, that it
is possible to prove that any triangle world is equal to one of the six canonical
forms.

The following process will halt and reduce an arbitrary word to a canonical
form.

Step 1 Erase all I’s (unless w = [, in which case we are done). This follows
from the identity axioms, plus the rules for equality.

Step 2 Move all f’s to the right. This is possible from the rules for equality

and the swap axiom. So now we have a word containing only r’s and f’s
with all f’s on the right.

Step 3 Replace rrr (if it occurs) by I. This is possible from the rules for
equality and the unit axiom.

6.044.1/18.423J Handout 38: Quiz 4 and Solutions from 1991 7

Step 4 Erase all I’s (unless w =, in which case we are done)
Step 5 If there is still rrr left in w go to Step 2.

Step 6 Replace ff (if it occurs) by I. This is possible from the rules for equality
and the unit axiom.

Step 7 Erase all I's (unless w = [, in which case we are done)

Step 8 If there is still ff left in w go to Step 5.

Clearly this will halt, as we are always making the word shorter.

Clearly if it halts it will have f’s to the right of r's, if there are any I’s left then
the result is {. If there are r's left, they all must be adjacent on the left, thus
by Steps 3 to 5, there can be no more than two r’s. If there are f’s left they
all must be adjacent on the right, thus by steps 6-8, there can be no more than
one f. This paragraph now precisely characterizes the canonical forms.

6.044J/18.423J: Computability, Programming, and Logic Handout 39
Massachusetts Institute of Technology 8 December 1993

Quiz 3 and Solutions from 1992

[This is a copy of Quiz 3 from 1992, with handwritten solutions.]

Problem 1.

1(a) Exhibit a while-loop invariant suitable for a Hoare logic proof of

{X=iAY =j}whileX#Ydo Y =Y +1{i <j}.

The simplest we found wac (Jé Y aX=t) ., Cleat L s
\S |m‘)f|c¢{ bs? "bw(pré,(.onc{lelon) Cened 'Dt ConJJncfton of < an<{
= (X # v) IMP"CS the Pos‘t(.onc(l'(:lom .

1(b) Give a formal proof in Hoare logic of
{X =0}while truedo(Y :=Y + 1; X := X - 1){X =3}.
Hint: false is a loop invariant.

Simce trvelx-1/x) E €rve and “FrueL7+1/9]) = €re

we L\Av(,

bﬂ assiqn ment

férue,$ Yr= Y+ | ffruei §éme} X:= X1 §€rue? ooy S‘c‘;.uencm,,
$truel V. =yl X=X+l §€rve}

donse il

Zéwc’i whllt_ %do Y= ‘f-r[) Ki=Xx-t f%/uga'vérucs ?f ervc—\tr.l(?: {(—""")

A while -
% trvel while - - . . 3 C.l5¢3 ‘mj ConsC Quence
£ x=03} while - - - - ix=33 by Consejuence

(Ex=03 =2 fGua} A
Z¥415c5=7f\(=5§)

Problem 2. Show that Bexp is expressive for while-free commands. That
is, if ¢ € Com contains no while-loops and 4 € Bexp, then the weakest pre-
condition {true}c{b} is equivalent to some &' € Bexp.

Hint: Induction on c.
Ac shown n B expressiveness grodk
Wiskp,8) = b
W (Xizab) = L e/) (which s « Bexgp Sinee

Becgs Are clossd unde
306‘5‘6! éu{-,‘")

Then, by l\nalud:(;.,/
‘yp (A)(Co)b) ,‘3 rd.prdSM\':nH(AT A Be.ﬁ Foe Cv.u L)
M U\)(C‘ ,[3') Ji:ul'kr‘A?) “lren)y.,) ,;‘Ju(;é(,‘,,,

. - L2
L\)(Co')c\)!"’) = W (C L\)(Cz:L)) ‘.A)CCo)
Ly)) VJLO(«)S Cren

S(:or. Sare Beﬁ(

rerrumx’zblc as & §¢Kf.

el 5‘;;{“,1]
Wt o B ¢, else ¢, , b)
= (b’ Wile,, b))~ (b ENPYANS)
= bW v Wlesb))a (b v w&,,;,))
a5 a Bexp by mdw(-zan; '

3 f eyfc‘ggm table

Problem 3.

Sketch how to transform any Assn into an equivalent Assn of
the form

(Qii1) ... (Qnin)[a = 0]

where each Q; is either V or 3 and a € Aexpv.

0) Convert A=HB ¢t =A vR

everquwhere.

D) Push all 1 awaed as Tur as ?oséfblg us:;,7

T{AAB)Z AV R —'(A"B)E"AA-IB

‘13)'_;\ T ¥y.7A "V)‘-A = 3;.7A
’\‘lA:A
2) Bephee (a,¢ a)y with (a,¢a, 2 7 (a,za,))

3) Replace #1(a,=4a,) wth

4, L. Q=)= (N gty
4) Replace o, ¢ A, Wity
3(,’)).‘,4)1’ C"e“A‘:l*_).zf{-z'*-zz:a&’

5) Replace aF A, wp\fk' 6{_0-4.1..'—-0
£) Move all q,uan-é.;clérs

‘0
¢4 Ar3IB = 34 Bre))
‘WL\t,r{_ 1 5 Ressh.

ovt, f‘ena,mmé, Varulles
AS ANeécessan

?) Eh;un;ée A goad v wl:@‘

4020 ~ K‘ =0 =

Z
4.°+4'Z:Q

Ao=0 YV A,Z0 = a,xa, =0

=

Problem 3. Sketch how to transform any Assn into an equivalent Assn of

the form

(@viv) .. '(Qnin)[a =0}

where each Q; is either ¥V or 3 and a € Aexpv.
Cor\ver’t A=>B & - A v

0)
a.” -1 mmm(ay &, o (OSS;L/Q

V) Posh
I A
~(pAvB) = —“A~-B

T3).A = Y, 04

"\lJA = BJ'."A

.

‘l"lA -:-_A

1) reglace n(aga)y Wt (a,<a, A (< =al))

3) replace all 1 (a,=a,) it oo : s

...3.515’ é,-@; (;La%,_)f(é‘_q,)_, Lz_)”z_iz_‘cz_l =0

4 replace all a ¢a, with
3 At -ty -ijiolr im0

5’) (‘((rlq,c_(_ all o= A, wiBn CLo— A, =0

AY

é) MDVQ» a.“ q.u“*‘g“pl‘tls Od-t) % f\"nﬂ_ﬁﬂl’v“ V'ﬁl‘{ﬁ‘,é/e(AS Necessa,

C‘c;.’\A'\g.)B = 9‘4A AE["/jJ where ks brasl,

T‘L) E“"£m¢£¢ A aad Vv wcfh

. — Z
Qo= 4 a, =0 = 0, +a,%°=z0

Co=0 V a_(-_o = "ta""t,rO

7.

Problem 4. The grammar for ezponential constant ezpressions, Ecexp, is
ex=l]le+elexe|e

Meaning is defined as for arithmetic expressions, with superscript denoting ex-
ponentiation, e.g., the meaning of (14 (14 1))(1+1x((1+1)+(1+1)) {g 324 namely,
6,561. An expression Ecexp is said to be a canonical form if it is a sum of 1’s
(parenthesized to the left).

4(a) Write down a simple set of sound axioms for equations between Ecexp’s,
which, together with the usual inference rules for equations (reflexivity, symme-
try, transitivity, congruence), allow one to prove that any ¢ € Ecexp equals a
canonical form canon(e). Also, briefly explain how to use your axioms to prove
that e = canon(e).

% S.:“p‘(,(f .SCf)'c f\)les e '@Ovrv(Was

e+ e
l\ ea. = €.,%X&

&

-
N ex (e, +1) =(e.xe)+e,
W) exi = e
5) eo+ (e, +1) = e, +e,))+ |

-~ N .

Ag. an a,[»)on"b\m.' S'(‘A.rﬁx‘m) at the u:\ntrﬂos'ﬁ/ up/un.._s-t'
expressiong | ‘W’f(‘) “fflléa_éh roles From left-hand-sude

to righthand-side . Thi will evontually Cenvort ang

Ece,cp -{:a. Comonten form.

4(b) Prove that your axiom system is complete.

G,:,M tnt te rvles are roord cd sBicient 4

prove - e= Canon () Lor 41/\\1 <, we hauv,

W Eese, WW« Feo,=cavonle,) a~d (x)

t_,el = Cason (c_,} (x*)
by Sovndlness) 'Uwu\, Fe. = Cawon(e,) 4~¢(
\:—.e v = Camon (Cl\)
So bv) atldey Sj‘""“é"‘? 2 Qms‘xé-w;@
E Canon (€)= Camon (c,)

Since Cmonlctl./ Forms Car Onlv Lhu/c, ‘é—(

9"_"“ valoe L lue la(u-ﬁ‘a,f (sc.:-//e
,Pfoot é") "‘W(VCGC;-\ 0n e (vn?‘aq)/

camon (o) cud Comon (¢,) dre e sane
Efpresson, Then) b 5.,),“,,%;6,.7 From (%)

“Cfvvww(dl)':C, (% #%)
o 17') é’""ﬂsz'éw.:é,) from

}-CO:E,

(=) a~d (‘-i*)

A Hoare Logic

Aziom for skip:
{A} skip {A}

Aziom for assignments:

{Bla/X]}X :=u{B}

Rule for sequencing:
{A}eo{C}, {C}er{B}
{A}coie1){B}

Rule for conditionals:

(4 A8)eo(B). T4 A ~b)ei(B)
{A}if b thgfxco elsec, { B}

Rule for while loops: - "
" {AAb)c{A)})
{4}whilebdoc{A A b}

Rule of consequence:

{A'}e{B'})

~taeE (providing k= (AéA’)A(B' = B))

6.044J/18.423]): Computability, Programming, and Logic

Massachusetts Institute of Technology

Handout 40

8 December 1993

Quiz 4 and Solutions from 1992

(This was a closed book, closed notes exam. There were five (5) problems

of roughly equal weight.)

Problem 1 (20 points].

which properties it has (/) or does not have (x):

For each of the following problems indicate

has
is is checkable is
decidable | checkable | complement | expressible

the self-halting problem X v X v
H = {#c| c € Com and c halts on input #c}
the valid equations between Aexp’s v v v v
(arithmetic expressions)
the valid Bexp’s (Boolean expressions) X X Vv Vv
the unsatisfiable Assn’s X X X X
(first-order arithmetic formulas)
{#c | ¢ € Com and c halts on some input} X Vv X Vv
{#c | c € Com and c is while-free } v v Vv v
{#c| c € Com and c halts

on input 0 in at most 1000 steps} v v v v
{n € N |n > some element of J J J J

the self-halting problem H}

Ezplanation:

Recall that a set is decidabie iff it is both checkable and co-checkable, and if a
set is checkable or co-checkable then it is expressible.

¢ The self-halting problem was shown in class to be checkable but not de-

cidable.

e The appendix to Winskel gives a proof that the valid equations between

Aexp’s are a decidable set.

" o If we could check the validity of Bexp’s, then we could check the validity
of inequations of the form —(a = 0) where a € Aexp, which was shown to

2 6.044J/18.423J Handout 40: Quiz 4 and Solutions from 1992

be uncheckable in the appendix. However, if a Bexp, b, is not valid, then
there is a substitution of numbers for its locations such that b is false. So,
a checker for non-validity of Bexp’s only needs to run through all possible
substitutions of numbers for variables in loc(b) until it finds one for which
b evaluates to false.

e If the unsatisfiable Assn’s were expressible then so would the satisfiable
ones be. A closed Assn is true iff it is satisfiable, so this would allow
us to construct an expression for Truth, which has been shown to be
inexpressible.

¢ This can be checked by gradually checking each machine against each
input to see if that machine halts in n steps, gradually increasing n. If
this set were decidable, though, then we could construct a decider for the
“halts on 0” problem, Hy.

e It requires only a bounded, syntactic check to detect the presence of while-
statements in a command, so this is decidable.

o This can be decided by running ¢ on 0 for 1000 steps, and checking if ¢ is
done. This procedure will always terminate.

o Since all codes of machines are nonnegative, all elements of H are as well.
Thus, there is a least #c € H. This set can be decided by comparing any
given n against #c.

Problem 2 [20 points]. OQOutline a proof that if a set D and its comple-
ment D are checkable, then D is decidable.

If D and D are checkable, then they both have checkers, cp and cg. We can
construct a decider for D by generating a program which saves its input, picks
with some positive value S, and then alternately runs c¢p and on that input for §
steps and c; on the same input for S steps, repeating and gradually increasing
S until one of cp or cj halts. Since any given n € N is either in D or D, exactly
one of the checkers must eventually halt. If ¢p halts then return the value 1,
and if ¢ halts then return the value 0.

6.044J/18.423J Handout 40: Quiz 4 and Solutions from 1992

Problem 3 [15 points].

For each of the following classes of sets indicate
which closure properties it has (/) or does not have (x):

mapping a set | mapping a set
intersection | complement S to f(S) S to H(S)
decidable sets Vv Vv X x
checkable sets N4 X N4 X
expressible sets Vv N4 N4 Vv
finite sets Vv X Vv X

where f is any total computable function and H(®) is the self-halting
problem relative to S (i.e., H(S) = {c € Comy, | {c},; x, x,(#c) halts}).

Ezplanation:

. The intersection of two decidable sets can be decided by running the
two deciders in sequence and returning 1 if either returned 1, and 0
otherwise.

. The complement can be decided by running a decider and returning
1 if it returns O, and O if it returns 1.

. The right projection of a decidable set can be undecidable, so the
decidable sets are not closed under arbitrary computable functions.

. Even taking the trivially decidable set §, H® = H, which is unde-
cidable.

. The intersection of two checkable sets can be checked by interleaving
steps from the two checkers, and halting if either halts.

2. The complement of a checkable set may not be checkable; e.g., H.
3. Handout 33, Theorem 4 [from 1993] states that f(C) is checkable

if f is computable and C is checkable.

. In the solutions to Problem Set 9 [from 1992] we demonstrated that
S < S' implies S <7 S’ and that H(S) £1 S for any S. Thus, in
particular, H#) £, H; but all checkable sets are <,, H, so H(#) is
not checkable, even though H is.

e We've already seen how to express most of these. The only tricky one
is constructing H(5) for an expressible S, but we’ll leave this one as an
exercise for the reader.

4 6.044J/18.423J Handout 40: Quiz 4 and Solutions from 1992

e 1. The intersection of two finite sets is finite.
2. The complement of a finite set is always infinite.

3. If we map a finite set through any function, we’ll get only a finite set
of results.

4. See above under “decidability.”

Problem 4 [20 points]. For S C N, let 25 = {2n | n € S} and likewise
S+1={n+1|ne€S} For S5;,S; CN, prove that (25;)U(2S2+1)is a
least upper bound of S; and S; under many-one reducibility, <,,.

The proof is virtually identical to that for the definition of “join” given in
Problem Set 9 [from 1992]. Here the reductions from S; and S2 to (251) U
(2S5 + 1) are f(n) = 2n and g(n) = 2n + 1 respectively. (25;)U (252 +1)isa
least upper bound, because if S; <,, S and S; <., S with reductions f' and ¢’,
then (25;) U (2S; 4+ 1) <,n S with reduction

_) f'(n/2) if n is even
h(n) = {g'((n ~1)/2) ifnisodd

Problem 5 [25 points].

5(a) [5 points]. Explain why if a set S is many-one reducible to H (in
symbols, S <,, H), then S is checkable. You may cite without proof
any relevant properties of H and <,, established in class or notes.

H is checkable, and checkability inherits downwards.

5(b) [20 points]. Prove conversely that every checkable set is <,, H.
Hint: Similar to the proof that H <,, Hy or the proof of Rice’s Theo-
rem. But Rice’s theorem does not apply.

Any checkable set S with checker cs can be reduced to H under the function
f(n) = #(X; :=n;cs).

This program code returned for n represents a function that will halt on its own
number (or any input) iff cs halts on input n. Thus, f(n) € H iff n € S, so
S<nH.

6.044J1/18.423J: Computability, Programming, and Logic Handout 41
Massachusetts Institute of Technology 15 December 1993

Final Exam

Instructions. This is a closed book, closed note exam. There are six prob-
lems, on pages 2-14 of this booklet. Write your solutions for all problems on this
exam sheet in the spaces provided, including your name on each sheet. Don’t
accidentally skip a page. Ask for further blank sheets if you need them.

At the end of the exam we have included an Appendix listing the syntax of IMP,
and a Glossary of notation. You have seen all of the material in the Appendix
and Glossary before; it is included for your reference only.

GOOD LUCK!

NAME:

Problem | Points Score
1 30
2 20
3 20
4 20
5 20
6 20
Total 130

2 6.044J/18.423J Handout 41: Final Exam

Problem 1 {30 points].

1(a) [10 poixfts]. Carefully state Godel’s Incompleteness Theorem.

1(b) [10 points]. Carefully state Rice’s Theorem.

6.044J/18.423J Handout 41: Final Exam
NAME

1(c) [10 points]. Let Validity, = {b€ Bexp| Eb}.
Show that Validity, is not checkable.

4 6.044J/18.423J Handout 41: Final Exam

Problem 2 [20 points]. Give an example for each of the following.

2(a) [4 points]. A nonexpressible set.

2(b) [4 points]. A decidable set containing a nonexpressible set.

2(c) [4 points]. A decidable subset of N that is infinite and whose complement
is infinite.

2(d) [4 points]. A set whose every subset is decidable.

2(e) [4 points]. Sets S; and S; such that S; <r S2 but S; £, Ss.

6.044J/18.423J Handout 41: Final Exam
NAME

Problem 3 [20 points]. Define the set Sp3 by
S23 .= {c€ Com|{c}(2)| and {c}(3)T}.

3(a) [7 points]. Show that Sy3 is not checkable.

6 6.044J/18.423J Handout 41: Final Exam

3(b) [6 points]. Show that Sy is not checkable.

6.044J/18.423J Handout 41: Final Exam
NAME

3(c) (7 points]. Explain why S23 is expressible.

8 6.044J/18.423J Handout 41: Final Exam

Problem 4 [20 points]. For i = 0,1, define the set S; of commands that
“self-halt” at i:
Si = {ceCom|{c}(#c)=1}.

Let D be a set such that So C D and S; C D.

4(a) [10 points]. Suppose that {c} is a total, 0-1 valued function. Prove that

charp(#c) =1 iff {c}(#c) #1,

where charp is the characteristic function of D.

6.044J/18.423J Handout 41: Final Exam
NAME

4(b) {10 points]. Conclude that D is not decidable.

10 6.044J/18.423J Handout 41: Final Exam

Problem 5 [20 points]. We write Bexp, for the set of arithmetic-operation-
free boolean expressions. If b € Bexp, and a; = a2 or a; < a2 appears in b,
then @, and ao can only be locations or numbers.

A signature S is a finite set of locations and numerical constants. For example,
the set
{X,Y,2,-3,7}

is a signature.

If o is a state and n € N, we define o(n) el .. This will allow us to apply

states to any element of a signature.

For any state ¢ and signature S, we define RS, a binary relation on S, by the
following rule:
81 RS s iff o0(s1) < o(sq).

5(a) [7 points]. Describe a computational procedure that takes as input an
expression b € Bexp, and a k x k table describing a relation RS, and outputs
the truth value [b]o, where S contains all the locations and numbers in b, and
k=S|

6.044J/18.423J Handout 41: Final Exam
NAME 11

5(b) [6 points]. Describe a computational procedure that takes as input a
signature S and a table describing a binary relation R on S, and outputs true
if there is some state ¢ such that R = Rf, and false otherwise.

12 6.044J/18.423J Handout 41: Final Exam

5(c) [7 points]. Let Validity, = {b€ Bexp, | = b}.
Show that Validity, is decidable.

6.044J/18.423J Handout 41: Final Exam
NAME 13

Problem 6 [20 points]. In this problem we consider the subset Comg of
commands which are arithmetic-operation-free. That is, all assignments must
be of the form X := Y or X := n, and all Boolean expressions are in Bexp,
from Problem 5.

Let £ be an abbreviation for the “infinite loop” command while true do skip.
We say a command is simple iff it contains no while-commands other than 2.

6(a) [12 points]. Prove that Bexp, is expressive for the simple Comy'’s.

That is, show that for any simple ¢ € Comyg, and any b € Bexp,, there is
some W (c,b) € Bexp, expressing the weakest precondition for b under c.

14 6.044J/18.423J Handout 41: Final Exam

Actually Bexp, is expressive for all Comy’s because
Fact 1. For every ¢ € Comy there is a simple ¢’ € Comyg such that [c] = [¢].
We will not prove this fact, but ask you to work out an example:

6(b) [8 points]. Give a simple Comg equivalent to

while X, = X3 do (X1 := Xz; X3 1= X3; X3 := 4).

6.044J/18.423J Handout 41: Final Exam

Appendix: Syntax of IMP

The arithmetic expressions Aexp:
ax=n|X|a+a |a~a|a xa
The boolean expressions Bexp:
bu=true|false|ap=a1|ao <ay|-b|bgAb |bpVh
The commands Com:

¢ ::= skip |>X :=a| co;c1 | if b then ¢ else ¢; | while b do ¢

15

16 6.044J/18.423J Handout 41: Final Exam

Glossary
{c} " The partial function on N computed by command ¢ with
input register X, and output register X,.
Ff(n)l The partial function f is defined on argument n.
Ffn)1 The partial function f is not defined on argument =.

51 <m S2 The set S; is many-one reducible to S, that is, there is a
total computable function f such that for all n, n € Sy iff
) f(n) € S,.
z ' The set of states.

[6] : =T The meaning of the boolean expression b.
[c]: £ —>Z The meaning of the command c.

S <7 Sq The set S, is Turing-reducible to S;, that is, the charac-
teristic function of S; can be computed by a program that
has the characteristic function of S, available as a built-in
primitive.

6.0447/18.423J: Computability, Programming, and Logic Handout 42
Massachusetts Institute of Technology 15 December 1993

Final Exam Solution

(This was a closed book, closed note exam. There were six problems, worth 130
points total).

Problem 1 {30 points).

1(a) {10 points]. Carefully state Godel's Incompleteness Theorem.
Answer: For every ‘sound proof system P, Provablep ¢ Validity.

1(b) {10 points]. Carefully state Rice's Theorem.

Answer: Let P be any nontrivial property of checkable sets such that the empty
set does not have property P. Let

Comp = {c€ Com]|cisa checker for a set with property P }.

Then S Sm‘Comp for every checkable set S.

1(c) [10 points]. Let Validity, = {b€ Bexp| =b}.
Show that Validity, is not checkable.

Answer: We will show that Hyjg <m Validity,. Since Hjo is not checkable,
and non-checkability inherits up, this implies that Validity, is not checkable.

Recall the definition of Hio:
Hig={a€ Aexp| ==(a=0)}.
Note that for any a € Aexp,

a€Hyp if E-(a=0)
iff =(a =0) € Validity,.

Furthermore, there is a total computable function f: N — N satisfying
f(#a) = #(~(a=0))
for all € Aexp. Thus Hyg < Validity,.

Problem 2 [20 points]. Give an example for each of the following.

2 6.044J/18.423J Handout 42: Final Exam Solution

2{a) {4 points]. A nonexpressible set.
Answer: The set Validity = {A€ Assn| A}.

2(b) [4 points]. A decidable set containing a nonexpressible set.
Answer: The set N(or any other infinite decidable set).

2(c) [4 points]. A decidable subset of N that is infinite and whose complement
is infinite.

Answer: The set of even integers, the set of odd integers, the set of primes,
etc.

2(d) [4 points]. A set whose every subset is decidable.

Answer: The empty set, or any other finite set.

2(e) [4 points]. Sets S; and S such that S; <7 S; but 51 £, Sa.

Answer: Take S, = H and S, = S, or replace H by any checkable set which
is not decidable.

Problem 3 (20 points]. Define the set S23 by
Ss3 = {ce€ Com]| {c}(2)] and {c}(3)T}.

3(a) (7 points]. Show that S23 is not checkable.

Answer: We show H <,, Sa3. H is not checkable, and non-checkability inherits
up, so this implies that S23 not checkable.

Recall the definition of H:
H = {ceCom|{c}(#)1}.
For any ¢ € Com, let é € Com be defined by
é = if X; = 2thenskipelse (X, := (#c¢);c).
Then for any ¢ € Com,
{e}2)l, and {E}(3)7 iff {c}(#)T.
Thus ¢ € H iff ¢ € Sy3. Furthermore, there is a total computable function
fi : N— N satisfying
fil#c) = #(e).

Therefore H <,, S23, and hence Sy3 is not checkable.

6.044J/18.423J Handout 42: Final Exam Solution 3

3(b) [6 points]. Show that S,3 is not checkable.
Answer: Note that
Sa3. = {ce Com| {c}(2)1 or {c}(3)}}.
For any ¢ € Com, let é € Com be defined by
é = if X; = 3thenQelse(X; := (Fc);¢),

where 2 is any “infinite loop”. Then for any ¢ € Com,
{eH2)1iff {cH#c)T, and {E}(3)T.

Thus ¢ € H iff ¢ € Sz3. Furthermore, there is a total computable function
fo : N — N satisfying
* fa(#c) = #(2)-

Therefore H <,, So3, and hence Sz; is not checkable.

3(c) [7 points]. Explain why Sp3 is expressible.
Answer: For i = 2,3, define the sets
Si = {c€Com]|{c}(®)]}.

The sets are checkable (by a program that simulates the execution of its argu-
ment ¢ on input 2 or 3), and therefore expressible. Furthermore,

S;s = S208,
and expressibility is closed under complement and intersection. Thus Si3 is

expressible.

Problem 4 [20 points]. For i = 0,1, define the set S; of commands that
“self-halt” at i:
Si = {ce€Com]|{c}(#c)=1i}.

Let D be a set such that So € D and S; C D.

4(a) [10 points]. Suppose that {c} is a total, 0-1 valued function. Prove that
charp(#c) =1 iff {c}(#c) #1,

where charp is the characteristic function of D.

4 6.044J/18.423J] Handout 42: Final Exam Solution

Answer: Because {c} is a total, 0-1 valued function, either {c}(#c) = 0 or
{c}(#c) = 1. So we have

ce€Sy iff cé& 8.

b

Then we reason as follows:

charp(#c)=1 iff ceD
if c€ S
if c¢gS
i {ch(#o) # 1

4(b) {10 points]. Conclude that D is not decidable.

Answer: Suppose by way of contradiction that D is decidable, that is, there is
a d € Com for D such that {d} = charp. So by part (a),

{d}(#c)=1 iff {c}(#c)#1,

for all ¢ € Com such that {c} is a total, 0-1 valued function. But {d} is a
total, 0-1 valued function, so we can choose c to be d in the above “iff” to get
an immediate contradiction.

Problem 5 [20 points]. We write Bexp, for the set of arithmetic-operation-
free boolean expressions. If b € Bexp, and a, = a2 or a; < ay appears in b,
then a; and a3 can only be locations or numbers.

A signature § is a finite set of locations and numerical constants. For example,
the set
{X,Y,Z,-3,7}

is a signature.

If o is a state and n € N, we define o(n) 4l 1. This will allow us to apply
states to any element of a signature.

For any state o and signature S, we deﬁne RS, a bma.ry relation on S, by the
following rule:

sy RS sy iff o’(sl < o(ss).

5(a) [7. “pomts] Describe a computatxona.lA procedure that takes as input an
_expression b € Bexp, and a k x k table describing a relation R‘s, and outputs

: the truth value [b]o, where S contains all the locations and numbers in b, and
=15l. ‘

Answer: We define a procedure by induction on b.

6.044J/18.423J Handout 42: Final Exam Solution 5

e If b= sy < 3, then check the table to see if 5o RS ;.
If s9 RS s, holds then answer true, otherwise answer false.

o If b= sy = s1, then check the table to see if so RS s; and s; RS s.
If both hold then answer true, otherwise answer false.

e If b = true then answer true.

e If b = false then answer false.

e If b = —(bp), then by induction, we can compute [bo]o. If [bo]oc = true
answer false, and if [bg]Jo = false answer true.

o If b = (bo A by), then by induction we can compute [bp]o and [b1]o. If
[bo]o = true and [b;]o = true answer true; otherwise answer false.

e If b = (bo V b1), then by induction we can compute [b]o and [b;]o. If
[bo]o = true or [bi]o = true answer true; otherwise answer false.

5(b) [6 points]. Describe a computational procedure that takes as input a
signature S and a table describing a binary relation R on S, and outputs true
if there is some state o such that R = RS, and false otherwise.

Answer: We need to check that

o For every s € S, we have s R s.
o For every 51,32 € S, we have s; R s, or s2 R 8; (or both).
e For every 31,392,383 € S, if 31 R 32 and 32 R s3, we have s; R s3.
¢ For all numbers n;,ny € 8, we have ny < ny if n; R n,.
Since & is finite, we can list all the elements of S and use the table to perform

the first test; then list all pairs of elements of S and perform the second and
fourth tests; and list all triple of elements of S and perform the third test. -

If R passes all the tests, we answer true, otherwise we answer false.

5(c) [7 points]. Let Validity, = {b € Bexp, | k= b}.
Show that Validity,, is decidable: '

Answer: To decide if b € Bexp, is valid, let S be the set of locations and
numbers that appear in b and let.k = |S|. For each possible k x‘k table of
_truth values representing a:binary relation on S, use the procedure of part (b)
to check whether the.table represents an RS for some o; if so, use ‘the procedure
of part (a) to compute [b}o. Then b is vahd iff the procedure returns true for
every one of the (at most 2") tables. :

6 6.044J/18.423J Handout 42: Final Exam Solution

Problem 6 [20 points]. In this problem we consider the subset Comg of
commands which are arithmetic-operation-free. That is, all assignments must
be of the form X := Y or X := n, and all Boolean expressions are in Bexp,
from Problem 5. 4

Let ©2 be an abbreviation for the “infinite loop” command while true do skip.
We say a command is simple iff it contains no while-commands other than Q.

6(a) [12 points]. Prove that Bexp, is expressive for the simple Comy’s.

That is, show that for any simple ¢ € Comyg, and any b € Bexp,, there is
some W{(c,b) € Bexp, expressing the weakest precondition for b under c.

Answer: We define W(c,b) by induction on c.

W((c1;¢2),b)
W (if by thenc, elsecy, b)

W(Clv W(Cg,b)),
(bo => W(Cl,b)) A ("‘bo => W(Cz,b)).

W(Q,b) = true,
W(skip,b) = b,
W(X:=Y,b) = bdY/X],
W(X :=n,b) = bn/X],

Clearly if b € Bexp, and c;,c; € Comy, then every right-hand side above is
in Bexpy.

End answer.

Actually Bexp is expressive for all Comyg’s because
Fact 1. For every c € Com, there is a simple ¢’ € Comy such that [c] = [¢'].

We will not prove this fact, but ask you to work out an example:

6(b) [8 points]. Give a simple Comy equivalent to
while Xl = X2 do (X1 = Xg; X2 = X3; X3 = 4)

Answer:

if ~(X; = X;) then skip

else if (X1 = X3) A =(X2 = X3) then (X3 := X3; X3:=4)

else if (X1 = X3) A (X2 = X3)A~(X3=4) then (X3 :=4; X3:= 4)
else if (Xl =X3) A (X2 = X3) A (X3 = 4) then Q.

6.044J/18.423J Handout 42: Final Exam Solution

Appendix: Syntax of IMP

The arithmetic expressions Aexp:
al)::=.nIX |ao+ a1 |ao—a]aoxa;
The boolean expressioné Bexp:
bu=true|false|ap=a;|ap <a; | b|bpAb|by Vb
The commands Com:

c:=skip | X :=a | co;c1 | if b then co else ¢, | while b do ¢

o, e

3

8 6.044J/18.423] Handout 42: Final Exam Solution

Glossary
{c} The partial function on N computed by command ¢ with
* input register X; and output register X,.
f(n)} The partial function f is defined on argument n.
f(n)1 The partial function f is not defined on argument n.

S1<m S2 The set S, is many-one reducible to S,, that is, there is a
total computable function f such that for all n, n € 5; iff
f(n) € S,.

z The set of states.
[o] : =T The meaning of the boolean expression b.
[c} : X=X The meaning of the command c.

Sy <1 8> The set S, is Turing-reducible to Ss, that is, the charac-
teristic function of S; can be computed by a program that
has the characteristic function of S, available as a built-in
primitive.

