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Massachusetts Institute of Technology 11 September 1992

Course Information

Staff.
Lecturer: Prof. Albert R. Meyer NE43-315 x3-6024
meyer@theory.lcs.mit.edu
Teaching Assistant: David Wald NE43-334 x3-5866
waldQtheory.lcs.mit.edu
Secretary: David Jones NE43-316 x3-5936

6044-secretary@theory.lcs.mit.edu

Lectures and Tutorials. Class meets MWF from 1:00-2:00 PM in 2-146.
There will be no recitation sections, but tutorial/review sessions may be orga-
nized in response to requests. The TA will have one regularly scheduled office
hour to be announced the first day of class. Further meetings with the TA or
instructor can be scheduled by appointment.

Prerequisites. The official requirement for the course is either 18.063 Intro-
duction to Algebraic Systems, or 18.310 Principles of Applied Mathematics. If
you know the basic vocabulary of mathematics and how to do elementary proofs,
then you may take this course with the permission of the instructor.

Contrarequisites. There will be less overlap between 6.045J/18.400J and
this course than in previous terms, so Course 6 students gung-ho for theory will
no longer be discouraged from taking both courses. There will also be a smaller
overlap with 6.840J/18.404J; students, especially Math majors, may routinely
take both this course and 6.840J/18.404]J.

Textbook. The required text for the course is Introduction to the Formal Se-
mantics of Programming Languages by Glynn Winskel. The book is in manu-
script form and copies of the portions covered in the course will be handed out
in class. Students will be minimally charged for reproduction costs.

Grading. There will be regular problem sets, and four one hour quizzes—two.
in class, one evening quiz, and one during final exam period. The problem sets
and quizzes count about equally toward the final grade. The grading is nonlinear:
ace the homework or the quizzes and you get an A, but shortchanging homework
is imprudent.
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Problem Sets. There will be likely be six to eight problem sets. Homework
will usually be assigned on a Friday and due 7-10 days later.

Handouts and Notebook. You may find it useful to get a loose-leaf note-
book for use with the course, since all handouts and homework will be on stan-
dard three-hole punched paper. If you fail to obtain a handout in lecture, you
can get a copy from the file cabinet to the right of the -door to room NE43-311.
If you take the last copy of a handout, please inform the course secretary, and
get instructions on making more copies.

Handouts will also be available on-line in the 6.044 directory. To access this
directory from Athena, type

attach -m /theory/€.044 -e theory.lcs.mit.edu:/pub/ftp/pub/6.044
source /theory/6.044/.athena startup

(We recommend adding these lines to your .environment file, causing them
to be executed every time you log in.) You will get a warning that “the-
ory.lcs.mit.edu isn’t registered with kerberos,” which is entirely accurate but
irrelevant. This will make the 6.044 directory available to you as /theory/6.044
and tell KTEX where to find the additional files it needs. All handouts are writ-
ten in BTEX.

If all else fails, the handouts can be retrieved via anonymous ftp or by mail from
Theory. To retrieve these files by ftp, run £tp theory.lcs.mit.edu, supplying
“anonymous” as the name (account) and “guest” as the password. Files may
then be fetched by first typing “cd pub/6.044” to change directories and then
typing “get filename”. If you get the files in this way, you will also need to
get the files 6.044.8ty, handout.sty and handouts-6044-£all-92.tex from
pub/6.044/input in order to run IATEX on the handout files. To find out about
retrieving files by mail, send mail to archive-server@theory.lcs.mit.edu
containing the single word “help” in the body of the message.

Electronic mail. All students are encouraged to subscribe to the course mail
list by sending email to 6044-secretaryQ@theory.lcs.mit.edu; other admin-
istrative requests should also be directed to this address.

To facilitate communication in the class, there are three electronic mail ad-
dresses:

6044-secretaryQtheory.lcs.mit.edu
6044-forum@theory.lcs.mit.edu
6044-staffQtheory.lcs.mit.edu
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The 6044-forum mailing list is for general communication by students, the
instructor, and the TA to the class; a message sent here will automatically be
distributed to those on the mailing list. Students are strongly encouraged to use
6044—-forunm to arrange study sessions, discuss ambiguities and problems with
homework, and send comments to the whole class. The TA and instructor may
also post bugs and corrections to homeworks and handouts to 6044-forum.

Messages to the instructor, TA, or grader should be sent to 6044-staft.

Pictures. You can help us learn who you are by giving us your photograph
with your name on it. This is especially helpful if you later need a recommen-
dation.
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Diagnostic Quiz

You will not be graded on this quiz. Take it sometime after class, and return
it in class on Monday, September 14. Be sure to indicate your name, the date
and “6.044 Diagnostic Quiz” on your answer sheet.

Problem 1. Describe the function which is the composition of the integer
successor function with itself (successor(z) = z + 1).

Problem 2. How many strings of length 4 are there over the alphabet {a, b, c}?

Problem 3.

(a) Which of these says that a mapping is injective (a synonym for “injective”
is “one-to-one” or “monomorphism”)?
1. Each element is mapped onto some element, possibly itself.
2. Each element is mapped onto an element different from itself.
3. No two elements are mapped onto the same element.
4. Every element has some element that maps onto it.

(b) What sets have the property that there is no injection from the set into a
proper subset of itself?

Problem 4. Define a binary relation, <, between sets A, B as follows:
A X Biff (3f : A — B)(f is injective).

That is, A < B means that the cardinality of A is less than or equal to the
cardinality of B.

(a) What is the definition of “uncountable set”? Now express the definition
in terms of <. Give an example of an uncountable set.

(b) Which of the following properties does the relation < have? For those
properties it fails, describe some simple sets A, B,... which provide a
counterexample.

1. reflexivity
2. symmetricity
" 3. transitivity
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Problem 5. Two Boolean formulas, Fi(z,,...,z,) for i = 1,2, are equivalent
iff they yield the same truth value for all truth assignments to the variables
Z1,...,Z,. (Electrical engineers typically use {0, 1}, but in this course we use
{true, false} as the set of truth values.)

(a) The Boolean binary operation conjunction (and), which our text writes
as “&”, is commutative, namely z; & 3 is equivalent to z3 & z;. Describe
a Boolean binary operation which is not commutative.

(b) Describe an infinite set of equivalent Boolean formulas.
(c) Explain why “equivalence” is actually an equivalence relation on formulas.

(d) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z1,...,z,.

(e) How many?

Problem 6. For each of the following properties, describe a partial order of
the set {1,2,3,4,5} with the property that
(a) it is a total order,

(b) glb’s (“greatest lower bounds” or “meets”) exist for every pair of elements,
but the lub (least upper bound) of 4 and 5 does not exist,

(c) glb’s and lub’s exist for all pairs, but the order is not total.

Problem 7. For any set, A, let Pow(A) be the powerset of A, namely, the set
of all subsets of A. Exhibit the members of Pow(Pow(Pow(0))).
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One-Step Rewriting Rules

Throughout this document, we will use op to range over syntactic operator
symbols, and op to range over corresponding arithmetic or Boolean operations.

1 Rules for Arithmetic Expresssions, Aexp

(X,0) =1 (0(X),0)

(ao, o) —1 (ap, o)
(ao op ay,0) —1 (aj op ay,0)

(al’a) —1 (all’a)
(nopai,0) =1 (nopay,0)

(nop m,o) —; (n op m, o)

op | op

+ | the sum function

the subtraction function

x | the multiplication function

Notice that
5+7,0) =1 (12,0)

is an instance of the rule (n op m,¢) —1 (n op m, g}, but that
(5+7,0)—1(5+7,0)

is not derivable at all.

2 Rules for Boolean Expressions, Bexp

{ag, 0) —1 {agy,q)
{(ao op ay,0) —1 {ag op ay,0)

(a1,0) —1 {a},0)
(nop ai,a) —1 (nop aj, o)

(nop m,g) —1 (n op m,5)
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op | op
= | the equality predicate
< | the less than or equal to predicate

We next have the rules for Boolean negation:

(b)a) —1 (bl’a)
(—b,a) —1 (¥, 0)

(- true, o) — (false, o)
(— false, o) —; (true, o)
Finally we have the rules for binary Boolean operators. We use op and op to

range over the symbols and functions in the chart following the rules. We let
t,tp,t1,... range over the set T= {true,false}.

(bO:a) -1 (b67a)
(bo op b1,0) —1 (b; op by, 0)

{b1,0) —1 (b7,0)
(to op b1,0) —; (to op b}, 0)

(to op t1,0) —1 (to op t1,0)

op | %p
A | the conjunction operation (Boolean AND)
Vv | the disjunction operation (Boolean OR)

3 Rules for Commands, Com

Atomic Commands:

(Skipa 0') 10

(a,0) =1 {(a’,0)
(X :==a,0) =1 (X :=d,0)

(X :==n,0) =1 o[n/X]
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Sequencing:
(co,0) =1 (cp, o)
{(co;€1),0) =1 {(ch; 1), 0”)
(co,0) =1 0’
((CO; Cl), U) -1 (Cl, Ul)
Conditionals:

(bx U) —1 (bly U)
{(if bthencpelsec;, o) —; (if b’ thencyelsecy, o)

(if true then ¢ elsecy, o) —; (¢, o)

(if falsethen cp else ¢y, o) = {¢1,0)

While-loops:

(whilebdoc, o) —; (if b then(c; whileb do c) else skip, o)
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Problem Set 1

Reading assignment. Winskel Chapters 1-2.

Due: 21 September 1992.
Problem 1. Winskel, Exercise 1.5.

Problem 2. Let Intsqrt € Com be the IMP command
while~(N < M x M)doM := M +1,
and let g € X be a state such that oo(M) =1 and o¢(N) = 9.
2(a) Using the evaluation rules in Chapter 2 for the “natural semantics” of
IMP, exhibit a derivation tree for an evaluation assertion of the form
(Intsqrt, o) — oo[m/M]
for some (necessarily unique) integer m.
2(b) Using the one-step rules of Handout 3, exhibit a sequence of one-step
evaluation assertions which demongtrate that ‘
(Intsqrt, oo) —] oo[m/M].
Problem 3. Prove that for any arithmetic expression gy € Aexp and state

o € X there is exactly one integer n € N such that (e, 0) — n. (Hint: Induction
on the definition of Aexp, i.e., structural induction.)
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Instructions for Problem Sets

1 Form of Solutions

Each problem is to be done on a separate sheet of three-hole punched paper. If
a problem requires more than one sheet, staple these sheets together, but keep
each problem separate. Do not use red ink. Mark the top of the paper with:

e your name,
o “6.044J/18.423J”,

o the assignment number,
¢ the problem number, and

o the date.

Try to be as clear and precise as possible in your presentations. Problem grades
are based not only on getting the right answer or otherwise demonstrating that
you understand how a solution goes, but also on your ability to explain the
solution or proof in a way helpful to a reader.

If you have doubts about the way your homework has been graded, first see
the TA. Other questions and suggestions will be welcomed by both the instructor
and the TA.

Problem sets will be collected at the beginning of class; graded problem sets
will be returned at the end of class. Solutions will generally be available with
the graded problem sets, one week after their submission.

2 Collaboration and References

You must write your own problem solutions and other assigned course work in
your own words and entirely alone. On the other hand, you are encouraged to
discuss the problems with one or two classmates before you write your solutions.
If you do so, please be sure to

indicate the members of your discussion group

on your solution.

Similarly, you are welcome to use other texts and references in doing homework,
but if you find that a solution to an assigned problem has been given in such a
reference, you should nevertheless rewrite the solution in your own words and
cite your source.
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3 Late Policy

Late homeworks should be submitted to the TA. If they can be graded without
inconvenience, they will be. Late homeworks that are not graded will be kept for
reference until after the final. No homework will be accepted after the solutions
have been given out.
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Diagnostic Quiz Solutions

Problem 1. Describe the function which is the composition of the integer
successor function with itself (successor(z) = z +1).

The composition of the successor function of itself is the “add
two” function, add2, because

(successor o successor )(z) = successor(successor(z))
= successor(z + 1)
=(z+1)+1
=z+2
= add2(z)

Problem 2. How many strings of length 4 are there over the alphabet {a, b, ¢}?

With three possibilities in each of four positions, there are 3% =
81 possible strings.

Problem 3.

(a) A mapping, f, is “injective” or “one-to-one” or a “monomor-
phism on sets” if f(z) = f(y) implies that z = y. Another way
to say this is:

3. No two elements are mapped onto the same element.

Note that a mapping from a set A to a set B is fotal if every
element of A is mapped onto some element (of B, of course). A
mapping from a set A to a set B such that for every element
of B, there is some element of A which maps onto it, is surjective
or onto. A mapping that is both injective and surjective is a
bijection.

{b) What sets have the property that there is no injection from the set into a
proper subset of itself?

The finite sets. (Note that an infinite set must have an in-
jection into a proper subset of itself; in fact, a set is infinite iff
it has such an injection.)
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Problem 4. Define a binary relation, <, between sets A, B as follows:
A =X Biff (3f : A— B)(f is injective).

That is, A < B means that the cardinality of A is less than or equal to the
cardinality of B.

(a) What is the definition of “uncountable set”? Now express the definition
in terms of <. Give an example of an uncountable set.

A set A is uncountable iff there is no one-to-one and onto (bi-
jective) correspondence between A and a subset of the integers.
Thus, if N is the set of integers, then an uncountable set is any
set A such that A £ N. The real numbers, R, are a well-known
example of an uncountable set, as is the powerset of any infinite
set.

(b) The relation < is reflexive (A < A for all sets A) and tran-
sitive (if A <X B and B <X C then A < C), but not symmetric
(there are sets A and B with A < B but B £ A, for example N
and R).

Problem 5. Two Boolean formulas, Fi(z,...,z,) for i = 1,2, are equivalent
iff they yield the same truth value for all truth assignments to the variables
Z1,...,25. (Electrical engineers typically use {0, 1}, but in this course we use
{true, false} as the set of truth values.)

(a) Describe a Boolean binary operation which is not commutative.

The “implies” operation, often written =, is non-commuta-
tive: false = true, but true % false, so z; = z5 and z9 = z;
are not equivalent.

(b) Describe an infinite set of equivalent Boolean formulas.

Define the formulas F; as Fy < 2o and Fina def (F; & xo)

for all ¢ > 0. These formulas are all equivalent, since for any
truth assignment they all have the same truth value as z,.

(c) Explain why “equivalence” is actually an equivalence relation on formulas.

An equivalence relation is a binary relation on a set A, that
is, R C A x A, which is reflexive (a R a for all a € A), transitive
(if a R a’ and @’ R a” then a R o), and symmetric (a R o' iff
a Ra).

Take any three formulas Fy, F; and F3. Given any truth
assignment to z,,...,Zn:



6.044J/18.423J Handout 6: Diagnostic Quiz Solutions 3

o Fj yields the same truth value as itself, so “equivalence” is

reflexive.

o If Fy yields the same truth value as F, then F; yields the

same truth value as F, so “equivalence” is symmetric.

o If Fy yields the same truth value as F, and F; yields the

same truth value as F3, then clearly Fy yields the same truth
value as Fy, so “equivalence” is transitive.

Thus, “equivalence” is an equivalence relation on formulas.

(d) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z,,...,z,.

(e) How many?

Formulas are equivalent iff their truth tables agree, so there

are as many equivalence classes as there are truth tables. Given
n variables, there are 22" possible truth tables. To see this, think
of a truth table as having a row for each possible truth assign-
ment. A truth assignment consists of a true or false value for
each variable, so there are (size of {true, false})" = 2" possible
truth assignments. Then, a truth table consists of an assign-
ment of true or false to each truth assignment, so with 2"
truth assignments there are 22" possible truth tables, giving us

22"

Problem 6.

equivalence classes of formulas.

For each of the following properties, describe a partial order of

the set {1,2,3,4,5} with the property that

(a) it is a total order,

The ordering (A, <) (in other words, 1 <2<3<4<5)is

a total order: every pair of elements in the set is ordered.

(b) glb’s (“greatest lower bounds” or “meets”) exist for every pair of elements,
but the lub (least upper bound) of 4 and 5 does not exist,

A lower bound of two elements a and b in a partial order is an

element ¢ (possibly equal to either a or 4) which is less than or
equal to both a and 5. A greatest lower bound is a lower bound
which is greater than or equal to any other lower bound. An
upper bound and a least upper bound are defined analogously.

Thus, take the ordering in which 3 is less than or equal to

any other number, but all other numbers are incomparable:
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12 45

N

3

Then every pair of distinct numbers has a unique lower bound
in the ordering, namely 3. Since there is only one lower bound
possible, it is clearly the greatest lower bound. However, 4 and
5 have no upper bound at all, let alone a least upper bound.

(c) glb’s and lub’s exist for all pairs, but the order is not total.

A slight variant, in which we leave 3 as the least element but
make 2 the greatest, gives us an ordering in which every pair
of elements has both a least upper bound and a greatest lower
bound, but the ordering is still not total. :

2

1 4 5

N

Problem 7. Exhibit the members of Pow(Pow(Pow(d))).

Given the empty set, #, with no members, the only subset is the
(non-proper) subset @. Thus, if Pow(0) is the set of all subsets of @,
then

Pow(d) = {0}.

Moving along, the subsets of Pow(0) are @ and {0}, so
Pow(Pow (D)) = {0, {0}}.
Then, Pow(Pow(®)) has subsets 0, {0}, {{0}}, and {0, {0}}, so
Pow(Pow(Pow(0))) = {0, {0}, {{0}}, {0, {0}}}
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Problem Set 2

Due: 28 September 1992.

In this problem set, we examine an extension of IMP by a further expression
construct

cresultisa

where ¢ is a command and a is an arithmetic expression. To evaluate such an
expression, the command c is first executed and then a evaluated in the changed
state.

We call the extended language IMP,. In contrast to IMP, the expression
evaluation in IMP, now has side effects—the evaluation may change the state.
To model this in natural operational semantics, we modify evaluation assertions
for expressions to be of the form

(a,0) — (n,0'),
where ¢’ is the state that results from the evaluation of a in original state a.
The evaluation relation, —,, for IMP.is given at the end of this handout.
Problem 1. Recall that for ag,a; € Aexp of IMP
ap~a; iff (Vn€NVo €ZX. (ap,0)— niff (a;,0) — n).
The corresponding notion of ~ for IMP, is

ap~a; Iff (Vn€NVo,o' €X. (ap,0) — (n,d') iff (a1,0) — (n,d’)).

(a) Prove that a +a ~ 2 x a for a € Aexp of IMP.

(b) Exhibit a simple a € Aexp, of IMP, for which this fails.

Problem 2. Note that IMP is a subset of IMP,, in the sense that any
command ¢ € IMP can be evaluated using either the natural semantics of
IMP or of IMP,. Prove that these semantics agree, i.e., prove that for any
¢ € IMP, (c,0)—,0' iff (c,0) — o'. (Hint: Formulate a similar if-and-only-if
connection between IMP and IMP,. natural semantics for Aexp’s and Bexp's,
and prove all three “iff” statements simultaneously by induction on derivations,
rule induction, or some similar method.)
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Problem 3. Describe a one-step semantics for IMP, in the same style and
with similar properties to that for IMP. In particular, it should be the case
that —, is a total function on configurations and that one-step and natural
semantics are “equivalent” in the precise sense that:

(c,0) =1, ' iff (c,0)—r0’
Problem 4., Briefly describe how to extend to IMP, the proof of the equiva-

lence of natural and one-step operational semantics of IMP. Note in particular
which induction hypotheses have to be modified and how.



6.044J/18.423J Handout 7: Problem Set 2 3

Evaluation Rules for IMP,

Formally, we’ll define the following —, relation on a language IMP,, which is
IMP extended with the resultis construction:

Rules for Aexp,
(n,0)=(n, )
(X, 0)—=r(o(n), 0)

<a()7 0')—’;-(710, U”), (ali U,,)_’r(nla UI)
(ag + a;,0)—-(n, o)

where n 1s the sum of ng and n;.

There are similar rules for x and —.

(c,0)—,0", (a,0")—¢(n, o)
(cresultisa, o)—,(n,o')

Rules for Bexp,

(t,0)= (t,0)

(007 a'>_’r<n0: 0'"), (ala a'”)—’,-(nl, 0")
(ap = a1,0)—-{t,0")

where t = true if ng and n; are equal, otherwise ¢ = false.

There is a similar rule for <.

(b,0)—-(t,0')
(b, o} —,(t', o)

where t' is the negation of ¢.

(bo, 0)—r(to, "), (b1, 0"}, (t1,0')
(bo A bl, O')—n-(t, 0")

where t is true if {g = true and #; = true, and is false otherwise.

There is a similar rule for V.
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Rules for Com,
(skip, o)—,0

(a,0Y—r(n, o)

(X :=a,0)—r0'[n/X]

(CD, 0'>-’r0'”v (Cll 0JI>—>"0J
{(co; c1),0)—r0’

(b, 0)—,(true,o”), (cp,0")—,0’
(if bthency elsecy, 0)—, 0’

(b, 0)—,(false, "), (c1,0")—0’
(if bthencpelsecy, o)— .0’

(b, 0)— (false, o'}
(whilebdoc, o)—, 0’

{b,0)—r(true,0"), (c,0")—.0", (whilebdoc,d")— o'
(whilebdoc, o)—,0'
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Solutions to Problem Set 1

Problem 1. Assume that we have sets X and Y, and that Y has at least two
distinct elements yo and y,. We can extend Cantor’s argument about power-

sets to demonstrate that there is no one-to-one correspondence between X and
(X -Y).

First, assume that there ts some one-to-one correspondence, ¢, between a set X
and the set of functions (X —Y). Thus, for each element £ € X there is a
corresponding function #(z), and for all functions f : X =Y there is some
z’ € X such that §(z’) = f. Consider then the function f: X —Y defined by

fz) = {yo if (0(2))(2) # vo,

1 otherwise.

Now, by this definition, f(z) # (8(z))(z) for all z € X. But f = 8(z’) for some
' € X,soforall z € X, (6(z'))(z) # (8(z))(z). Now let z = z’, and we obtain
a contradiction.

Problem 2. For typesetting convenience, let

S« Intsqrt = while=(N < (M x M))doM =M +1

C¥ M. =M4+1

Thus, we have S = while—(N < (M x M))doC. This will let us shrink the
following derivation trees a little. They need it.

2(a) Here we have a “natural semantics” derivation for (Intsqrt, oo). A deriva-
tion of this sort forms a single large tree, often with several preconditions for
any given conclusion. Due to the size of the derivation tree, the tree has been
broken in two places. The connections are indicated by the boldface numbers.

(M, ao[3/M])—3
(N,00[3/M])—9 (MM, a0[3/M])—9
(N < (MxM),00[3/M])— true
(~(N < (M xM)),00[3/M])— false
(5, o3/ M)—~al3/M] (1)
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(M, 002/ M])—2
(N,00[2/M)—~9  (MxM,o0[2/M])—4 (M, 00[2/M])—~2 (1,00[2/M])—1
(N < (MxM), 00[2/M])— false (M +1,002/M])—3
(~(N < (MxM)), 00[2/M])— true (C, 00(2/M])—00[3/M] (1)
(S, 002/ M])—00[3/M]  (2)

(M, do)—'l
(N,o0)—9 (MxM,00)—1 (M,00)—1 (1,00)—1
(N < (MxM),o0)— false (M +1,00)—2

{(=~(N € (M xM)),00)— true (C,a0)—00[2/M] (2)
(S, 00)*60[3/M]

Thus, according to this derivation, we wind up in a state identical to the original
one, but with M having the value 3.

2(b) (Intsqrt, oo) evaluates to og[3/M]in 31 “steps,” shown here without their
individual derivation trees:

l

1 (if - false then(C; S) else skip, 7o[2/ M]) (17)
— (if true then(C; S) else skip, 0o[2/M]) (18)

(S, a0) =1 (if ~(N < (M x M))then(C; S) else skip, o0) 1)
—1(if ~(9 < (M xM)) then(C; S) else skip, o¢) (2)
—1{(if (9 < (1xM)) then(C; S) else skip, o) 3)
—1{(if ~(9 < (1x1)) then(C; S) else skip, o¢) )]
—1 (if ~(9 < 1) then(C; S) elseskip, o) 5)
— (if - false then(C; S) else skip, o¢) (6)
— (if true then(C; S) else skip, o¢) M
—1{(M =M+ 1,5),00) (8)
—1((M :=1+41;5),00) (9)
—{(M := 2;5), 0) (10)
—1(S, 00[2/M]) (11)
—1(if °(N < (M x M)) then(C; S) else skip, o¢(2/M]) (12)
—1(if (9 < (M xM)) then(C; S) elseskip, 0o[2/M]) (13)
— (if =(9 < (2x M)) then(C; S) else skip, 0¢[2/M]) (14)
—1(if =(9 < (2x2)) then(C; S) else skip, 0o[2/M]) (15)
— (if =(9 < 4) then(C; S) elseskip, 0¢[2/M]) (16)

(if
(
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—1{(M =M + 1;8),00[2/M]) (19)
—1((M =2+ 1;5), 0o[2/M]) ; (20)
—1{(M := 3;S), 0o[2/M) (21)
—1(S, 5o[3/M]) (22)

—1(if +(N < (M xM)) then(C; S) elseskip, o4[3/M]) (23)
—1(if (9 < (M xM)) then(C; S) else skip, 0[3/M]) (24)

—1(if =(9 < (3x M)) then(C; S) else skip, oo[3/M]) (25)
—1(if =(9 < (3x3)) then(C; S) elseskip, 04[3/M]) (26)
—1(if =(9 < 9) then(C; S) else skip, o[3/M]) (27
—1 (if ~truethen(C; S) else skip, oo[3/M]) (28)
— {if false then(C; S) else skip, 04[3/M]) (29)
—1(skip, 00[3/M]) (30)
—100[3/M] (31)

Problem 3. See Proposition 3.3, on page 30 of Winskel’s text.
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Full Derivation Trees for 2b on Problem Set 1

Though it wasn’t required for the problem set, we thought it might be helpful to
see the derivations for each step in the solution to problem 2b. As in Handout 8,
we’ve introduced the following abbreviations:

S % Intsqrt = while=(N < (M x M))doM := M + 1

C¥M.=M+1

The derivations are then as follows:

1. (8, 00)—=1(if ~(NV < (M x M)) then(C; S) else skip, oo)

(N,00)—19
(N < (MxM),00)—1(9 < (MxM),00)

(if ~(N < (M xM)) then(C; S) else skip, 0)—1
(if ~(9 < (M xM)) then(C; S) else skip, a¢)

(M, 0'0)—'11
(MXM, Uu)—n(l)(M, Uo)
3. (9 < (M xM),00)—1(9 £ (1xM), 00)

(if ~(9 < (M x M)) then(C; S) else skip, go)—
(if ~(9 < (1xM)) then(C; S) else skip, a0)

(M, 00)—’11
(1xM,a0)—1{1x1, 00)
4. (9 < (1xM),00)—1(9 < (1x1),00)

(if =(9 < (1x M)) then(C; S) else skip, go)—1
(if =(9 < (1x1)) then(C; S) else skip, 00)

(IXIyUO)_'ll
(9 < (1x1),00)—1(9 < 1,00)

(if ~(9 < (1x1)) then(C; S) else skip, 0)—
{(if -(9 < 1) then(C; S) else skip, g0)

(9 <1, ao)—n(false, a’o)
6.
(if ~(9 < 1) then(C; S) elseskip, 0o)—1 (if — false then(C; S) else skip, 00)
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{~false, #o)—1 (true, oo)

7.
(if - false then(C; S) else skip, go)—1 (if true then(C; S) else skip, o0)

8. (if true then(C; S) elseskip, o¢)—1{(C; S), 00)

(M, 00)—11
(M +1,00)—1(1 + 1, 00)
(M =M +1,00)~1(M :=1+1,00)
{((C; 9),00)~1{M :=1+1;5,00)

{1+ 1,00)—1(2, 00)
10. (M :=141,00)—1(M :=2,00)
((M =14+ l;S), do)—*l(M =2;85, Uo)

(M =2, 0’0)—*1 do[Z/M]

11.
(M :=2;5), g0)—1(S, 50[2/M])

1

~

" (S, 00[2/ M])—1 (if ~(N < (M x M)) then(C; S) else skip, 002/ M])

(N, 0’0[2/M])—*19
(N < (MxM),00[2/M])=1(9 < (M x M), 00(2/ M])

(if ~(N < (M x M)) then(C; S) else skip, go[2/M])—
(if ~(9 < (M x M)) then(C; S) else skip, 00[2/M])

13.

(M, 00(2/M])—12
(Mx M, 50[2/ M])—1(2% M, oo[2/ M])
4. (9 < (MxM),00[2/M])=1(9 < (2x M), 00[2/M])

(if =(9 < (M xM)) then(C; S) elseskip, go[2/M])—
(if -(9 < (2x M)) then(C; S) else skip, go[2/M])

(M, g0[2/ M])—12
(2)<M, 00[2/M])—>1(2X2, 0’0[2/M])
15, (9 < (2xM),00[2/M])—1(9 < (2x2), 00[2/ M])

(if ~(9 < (2x M)) then(C; S) else skip, go[2/M]}—
(if =(9 < (2x2)) then(C; ) else skip, 00[2/M])
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(2x2, 0o[2/M])—14
(9 < (2x2), 00[2/M])—1(9 < 4, a0[2/ M)

(if ~(9 < (2x2)) then(C; S) else skip, ao[2/M])—,
(if ~(9 < 4) then(C; S) else skip, o0[2/M])

16.

(9 < 4,00[2/M))— 1 (false, 00[2/M])

17 (if (9 < 4) then(C; S) else skip, ao(2/M])—,
(if ~false then(C; S) else skip, a0[2/M])

(—false, oo[2/M])—1 (true, ao[2/M])

18.  (if -~ false then(C; S) elseskip, ao[2/M])—
(if true then(C; S) elseskip, oo[2/M])

19. (if true then(C; S) else skip, ao[2/M])—1((C; S), ao[2/ M])

(M, 002/ M])—12
(M +1,00[2/M))—1(2 + 1, 50[2/M])
(M =M+ 1, 00[2/ M) =1 (M =2 + 1, 0o[2/M])
((C;S),00(2/M])—>1(M := 2 +1; 5,002/ M])
(2+1,00[2/M])—1(3,00[2/M))
21, (M :=2+1,00[2/M))—1(M := 3,002/ M)
(M =2 + 1, 8), 00[2/M])—1(M := 3; S, oo[2/M))

20

(M :=3,00[2/M])—100[3/M]

2 = 3, 9), 0oz M))—1 (5. 50l3/M])

3-S5, 0o[3/ M])—1(if (N < (MxM)) then(C; S) else skip, oo[3/M])

(N, ”0[3/M])_’19
(N < (MxM),00[3/M])—1(9 < (M x M), 00[3/M))

(if =(¥ < (M xM)) then(C; S) else skip, 00[3/M])—,
(if ~(9 < (M x M)) then(C; S) else skip, a0{3/ M)

24.

(M, a0[3/M])—13
(M xM,a0[3/M]))—1(2x M, 003/ M))
2. (9 < (MxM),00[3/M))—1(9 < (3xM),00[3/M))

(if =(9 < (M xM)) then(C; S) else skip, oo[3/M])—:
(if ~(9 < (3x M)) then(C; S) else skip, 00[3/M])

3
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26.

217.

28.

29.

30
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(M, a0[3/M])—13
(3XM, 60[3/M])—“1<3X3, 00[3/M]>
(9 < (3xM), 50[3/M])—1(9 < (3x3), 00[3/M])

(if (9 < (3xM)) then(C; S) else skip, 00[3/M])—
(if (9 < (3x3)) then(C; S) else skip, 003/ M])

(3x3,00[3/M])—19
(9 < (3x3),00[3/M])—1(9 < 9,00[3/M])

(if (9 <€ (3x3)) then(C; S) else skip, 40[3/M])—1
(if ~(9 < 9) then(C; S) else skip, 00 [3/M])

<9 s 9, 60[3/M])—'1 (true, 0’0[3/M])

(if ~(9 < 9) then(C; S) else skip, 00[3/M])—
(if -~ true then(C; S) else skip, 60[3/ M})

{~true, go[3/M])—1(false, 00[3/M])

(if — true then(C; S) elseskip, 6o[3/ M])—
(if false then(C; S) else skip, 50[3/M])

" (if false then(C; S) else skip, oo [3/M])— (skip, 00[3/M])

31 (skip, 7o[3/M])~100[3/M]

Thus, after 31 “steps,” we are able to conclude that (Intsqrt, oq) —% oo[3/M].
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Equivalence of —; and —

The goal is to prove

Theorem 1. For all ¢ € Com and 7,0’ € %,

(c,0) =% o' iff {c,0) = o'
The proof can proceed in three stages:
(A) Prove (a,0) =} (n,0) iff (a,0) — n;

(B) Prove {(b,0) —7 (t,0) iff (b,0) — ¢, using (A);

(C) Prove (c,0) = o' iff (¢,0) — o', using (A)and (B).
1

Let’s assume that (A) and (B) are proven. Then, there are two “directions” to
prove:

“Only if” (=). We want to show

(c,0) =10’ = (c,0) =o'
Proof: For this stage, we will need the following lemma:
Lemma 1. If (c,0)—{c,0)” and {¢',0") — ¢' then (c,0) — o'.

Intuitively, this means that we can prepend a single step evaluation to a natural
evaluation, and get a derivable natural evaluation.

Proof: The proof of the lemma is by induction on the (natural) derivation of
(¢, o) — o’. We can break the problem down into cases, based on the value
of c.

First, we note that ¢ cannot be either skip or X := n, with n € N. In either of
these cases, (c,0)—10’, ¢/ 45, and the condition of the lemma is not satisfied.
For the other cases:



2 6.044J/18.423] Handout 10: Equivalence of —; and —

[c = X := a] (where a is not a numeral.) We have (X :=a,0)—1(X :=d,0)
and (X :=a',0) — o’. There is only one possible derivation with the
conclusion (X := a’, ) — o', and that is of the form

(d',g) = n

(X :=d,0) = oln/X]

for some n € N. By case (A), (¢’,0) — n implies (a’, 5} =7 (n,0), so
(aaa)_’l(alia)_’lt(n7a)’
so {a,0) —} {n,s). Again, by (A), this implies {a,5) — n, which gives

us the derivation
(a,0) > n

(X :=a,0) — o[n/X]

[c = ¢o0;¢1] Here there are two subcases

[{co, 0)—10"] We start off with (c1,0”) — ¢/, by assumption. We also
know from the rules for —; that ¢y must be either skip or X :=n,
for n € N. In the former case, 6 = ¢, and in the latter ¢"’ = o[n/X],
giving us either

(skip,0) — o, (c1,0)— 0’

(skip;c1,0) — @’

. (X :=n,0) - o[n/X], {c1,0[n/X])—> o

(X :==n;c1,0) = o

- [{eo, 0)—1{ch, ¢'")] We have d I+ {(cj,c1,0”) — o', for some d. Then d is
of the form

(66,0'”) — O_III (CI,UI”) —_ a_l

(¢p, 1,0y — o'

Now, we have derivations of (co,o)—1(ch, ") and (cf, o”) — o’".
The derivation of the latter is a subderivation of d, so, by induction
on derivations, we have (¢, ) — o'”’. But that gives us

(CO,U) — 0'”/, (cl,a_lll) — 0,/

(607 cl)a) - al

{c = if bthencoelsec;] Again there are two subcases:
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[b € {true, false}] Assume for now that b = true. Then, we have
(c,0)—1{co,0) and  (cp,0) = o',
And we get the derivation

(true, o) — true, (cg,0) — o’

{c,q) =o'

The case for false is analagous.

[6 ¢ {true, false}] In this case, we have derivations

(b,0)—1 (¥, 0)

{¢,0)—1{if ¥’ thencp elsecy, o)

and
¥ o) —t, {(cio)—d

{c,q) = o

for some t € {true, false} and i € {0,1}. By (B), (§',a) — t implies
(¥, o) =1 (t,0), s0

(b) 0')—>1<b’, 0')—’1*<t, ‘7)
which, again by (B), implies (b, o) — ¢, so we have

(b,0) = t, {ci,o) >

(c,0) = o’
[c = whilebdoc’] Here, there is only one one-step derivation:
(¢, 0)— 1 (if b thenc'; celseskip, o)
The two cases are
[(b, ¢y — false] Here, the derivation is easy, since the natural derivation

must be
(b, 0) — false

(if bthen’; celseskip, o) — o
meaning that ¢’ = ¢, so the derivation we are looking for is just
(b,0) — false

{c,o) -0
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[(b, ) — true] The derivation of (ifbthenc’;celseskip,o) — ¢’ must
be of the form

(c',a') — " (c, a,ll) -0

(b,0) — true (¢;e,0) — 0’

(if bthen('; celseskip, o) — o’
Now, look at this tree. We have a derivation of
(b, 5) — true,

a derivation of

1

(¢,o) — 0",

and a derivation of
(whilebdod',0") — o'.
But these are enough to give the following derivation:
(b,0) — true, (c',0) > o, (whilebdoc,o") — o’

(whilebdod’, o) — o’

as desired.

Now that we have our lemma, the actual proof is relatively simple. We’re trying
to prove that
Ye,0,0'. {c,0) =] 0’ = {(c,0) — ¢’

Now, we can prove this by induction on the length of —;*:

Base case: Assume (c,0)—10’. Then either {skip,s)— 0, in which case we
have (skip, 0) — &; or (X := n,0)—0[n/X], in which case we get (X :=n,s) — o[n/X].

Induction: Assume the implication holds for all —,* chains of length n. Then,

if (¢, ) —1 ¢’ by an evaluation of length n+-1, we know from the definition
of —1* that

<C, 0')—>1<CI, 0'”)—>1~U,
for some ¢’ and 0", where (¢/, ¢"’) —} ¢’ by an evaluation of length n. But,
since the implication we’re proving is assumed to hold for evaluations of
g
length n, we have
{c',0") — o'.
But now, since (¢, o)—1{c’, "), the lemma applies, which gives us
g

(c,0") = o'
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“If” («<). We’re now ready to prove the other direction:

Ve,0,0'. (c,0) =] 0’ < (c,0) = d’.

Proof: Assume we have some derivation d Ik {¢,¢) — ¢’. Our proof then
proceeds, as above, by induction on the derivation d. We have the following
cases:

[c = skip] Then ¢’ = 7, and, by the definition of —1 we have (skip, c)—;0.

[c = X := a] The derivation d must be of the form

(a,o).—>n

(X :=a,0) = o[n/X]

for some n. By (A), (a,0) — n implies (a, ) -3} (n,o). It then requires
a trivial induction on the length of —1* to show that

(X :=a,0) =] (X :=n,0).
By the definition of —1, (X :=n,c)—10[n/X], so we have

(X :=a,0) 7 o[n/X]

[c = ¢g;e1] Then d must be of the form

(co,0) = 0" (c1,0") — o’

(co;€1,0) — o’

Let dg and d; be the left and right subderivations above. Then, by induc-
tion, from dy we have {cg, o) —} 0", and from d; we have {(¢;,0") -3 o’.
We now need the following lemma:

Lemma 2. Forallo,o',0" € L,

(co,0) =1 0" & (c1,0") =] 6/ = {(co;c1,0) =] 0’

Proof: Again by induction on the definition of —1* as the transitive
closure of —; The basis step (—;* has length 0) holds trivially.

For the induction step. Suppose (cg,o)—1y and y—1*¢”. Moreover,
suppose {c¢1,0"”)—10’. There are now two cases:
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e 7 is of the form (e, 0p). Then, by the induction hypothesis (applied
to (cp, 00)), (cp; ¢1,00) —1 ¢'. But since (co, 0)—1(cp, 7o) we have by
the definition of — that (ep;c1, 0)—1{c}; c1,00). Combining things
gives us (cg;c1,0) =1 o'.

o v is of the form . The result then holds trivially, since {co, ¢)—10"
implies that (co;c1,0)—1(c1,0"”). Combining this with our original
presumption of (ci, 0"} —} o’ gives us our desired result.

Now, by this lemma, since we have (co,0) —1 ¢”, and (c;,0") -] o/, we

also have

(co;e1,0) =7 o'.

[c = if bthencgelsec,] The derivation d is of one of the forms

(b,0) — true {co, a).—> o or (bo) . false (cl,o')‘—> o

(c,o) = o' (c,0) = o’
Let us call the right-hand subderivation of either derivation, d’.

Now, assume the true case. Then, by (B), since we have a derivation
for (b,0) — true, we also have one for (b,s) —} (true,s). Again, by
induction on the length of —1*, we have

(if bthency elsec;, o) —] (if truethency elsecy, o)

Then, by the induction hypothesis (applied to d’) we have (¢q, 0) —1 o',
so we have

(if bthencg else ¢y, 0)— " (if true thencp elsecy, o)
-1 (CQ, U)
—’I*UI
The false case is analagous.

[c = whilebdoc’] We will treat the simpler case first: If d is of the form

(b, o) — false
(whilebdoec,0) - o
Then ¢’ = o, and, by (B), we have
(b,0) =1 (b,0)
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Once again, by induction on the length of —;*, this gives us
(if bthen(c'; ¢) elseskip, o) —] (if false then(c’; c) elseskip, o).
Thus we have

(whilebdoc', o) —; (if bthen(c’; ¢) elseskip, o)
1" (if false then(c’; c) else skip, o)
-1 Skip) U)

|

_;lo'

On the other hand, if (b, 5) — true, then d must be of the form

(b,0) — true (c,0) = 0" (c,0")— o’

(e,0) =o'
As in the previous cases, from the subderivations we can conclude

(b, 0)—1*(true, o)
(CI, 0’)_'1-0'”

(C,O’”)—'l.o'

by (B) and by induction on derivations.

Then, by Lemma 2, we can conclude
(c;e,0) =1 o
Putting the pieces together with the definition of —,, this gives us

(¢, o) — (if b then(c'; ¢) else skip, o)
—,*(if true then(c’; ¢) else skip, o)

—1{(c;¢),0)
o8

~

thus proving the final case in the theorem.
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Problem Set 3

Due: 5 October 1992.

Reading assignment. Winskel Chapters 3-4, except §3.3.

Problem 1. Winskel’s text §2.5 proves that a simple “unwinding” of a while-
loop preserves natural semantics, namely,

whilebdoc ~ if b then(c; whilebdoc) elseskip.

Prove that this equivalence also holds in IMP,, the extension of IMP with
a cresultisa expression construct (cf., Problem Set 2). Indicate, without re-
peating them, those portions of the proof for IMP which apply unchanged to
IMP,.

Problem 2. The operational behavior of IMP expressions and commands
depends only on the locations occurring in them. In this problem we give a
precise definition of this dependence and verify it. (It may be helpful to look at
Winskel §3.5 and Prop. 4.7 for related ideas.)

For L C Loc define a relation = between states by
oy = 02 iff 01(X) = 02(X) for all X € L.
Define a relation, ~p, between commands by
¢y~ ¢ iff (6y = 02 =
({c1,01) — o} for some o iff (co, 72) — 0% for some o%) &

(({er, 1) = 01 & (e2,02) — 03) =0} =1 03)).

(a) Give a structural inductive definition of loc(a), the set of locations occur-
ring in a € Aexp. Do likewise for loc(b) and loc(c) (cf. Winskel 3.5).

(b) Prove that ¢ ~joc(e) ¢ for all ¢ € Com.

(c) We referred to the natural semantics and the one-step semantics of IMP
as “operational,” but since Loc is an infinite set, and therefore so is each
state, these “operational” semantics involve copying and updating infinite
objects in derivations. Briefly explain how the result of part 2(b) leads
to a more truly “operational” version of natural and one-step semantics
using finite portions of states. Then say precisely how the original versions
of operational semantics can be retrieved from the versions using finite
portions of states.
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Problem 3. The natural evaluation conirol states of a command ¢ are de-
fined to be the commands ¢/ such that {¢’,03) — o4 occurs in a derivation of
{e,01) — o9 for some states oy,03,05,04. Likewise for the one-step control
slales.

(a) List the natural evaluation and the one-step control states of the command
Intsqrt from Problem Set 1.

(b) Prove that IMP,, so ¢ fortiori also IMP, has finite-state conirol, i.e., for
any ¢ € Com,, there are only finitely many natural evaluation control
states of e.

(c) Show the same result for the one-step control states.

(d) Briefly discuss how this observation could be used to improve the efficiency
of an interpreter for IMP, based on the natural or one-step operational
semantics.
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One-step vs. Natural Evaluation

This is a revised, more polished version of Handout 10, “Equivalence of —
and —.” We prove

Theorem. For all c € Com and 7,0’ € &,

(c,0) =} o' iff {c,0) = o'
The proof proceeds in three stages:

(A) Prove (a,0) —1 (n,0) iff (a,0) — n;

(B) Prove (b,0) —1 (t,0) iff (b,0) — ¢, using (A);

(C) Prove (c,0) =} o' iff (¢c,0) — o', using (A) and (B).

The proofs of all three parts are similar, except that where structural induction
serves to prove a version of Lemma 1 below for expressions, induction on deriva-

tions is needed to prove it for commands. We will henceforth assume that (A)
and (B) are proven, and present (C) only.

We first prove (C) from left to right, namely
(e,0) =10 = {e,0)—0.
The proof is based on

Lemma 1. If (¢,0)—(c’,0"”) and (¢, 0") — o', then (c,0) — o’'.

Assuming this lemma, a simple induction on the definition of the transitive
closure, —,*, of the one-step evaluation relation, —), completes the proof of
(C) >

Base case: Suppose (c,0) —] o’ because (c,0)—10’. Then either ¢ is skip
and 0’ is o, or c is X := n and ¢’ is o[n/X]. In either case, (c,0) — ¢’
follows immediately by a natural evaluation axiom.

Induction: Suppose (c,o) —] ¢’ because (¢, 0)—1(c’,6”) for some ¢/, o" such
that (¢/,0”) —} ¢’. Then by induction, we have that (¢/,6"”’} — ¢’. But
now Lemma 1 immediately implies (¢, ¢} — o', as required.
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So we need only prove Lemma 1, which we do by induction on the derivation of
(¢’,0"”) — o’. The induction breaks into cases according to the form of c.

First, we note that ¢ cannot be either skip or X := n where n € N, because
in both these cases, (¢, o) moves in one step to a state rather than a command
configuration (¢, ¢"), and the condition of the lemmais not satisfied. The other
cases are:

ofc is of the form X := a where a ¢ Num)] There is a unique one-step rule by
which (X := a,0)—1(c’,0") could be derived, and by this rule ¢’ must be X :=
a' where (a,0)—(a’,0), and " must be . We are given that (¢/,¢") — o',
and there is only one possible derivation with this conclusion:

(@’ o) = n

(X =d,0) = o[n/X]

We conclude that
o’ must be ¢[n/X] for some n such that (a’,0) — n.

But (a’,0) — n implies (a’, o) —1 (n, o), by (A). Thus, we have
(al (7)—>1<al, (7)—“‘(11, (7).

By (A) again, we conclude that (a, o) — n. Now the assignment rule for natural
evaluation gives the derivation
(a,0) = n

(X :=a,0) — o[n/X]

So indeed, {c,0) — o’.

o{c is (co; c1)] There are two ways that the given condition {c, 7)—1(c’,c") could
be derived, namely,

[{co,o)—10" and ¢ is ¢1] Since {co, o}—10", the rules for —; imply
that either ¢y must be skip and ¢” = o, orelse cp is X = n
and ¢ = o[n/X]. So

(skip,0) — 0, ({c1,0) =o'

((skip; ¢1),0) — a

o (X :=n,0) = an/X], (c1,0[n/X]) -7

(X :=n;5¢1),0) =0

is a derivation of {c,o) — ¢’, as required.
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[(co, 0)—1(ch,0") and ¢ is (ch;cy)] We have
d it ((coicr),0") — o',

for some d which must be of the form

(CB, U”) —_ U’” (cl, U”I) — U,

((66; c1), U”) -0

Thus we have a derivation of (¢}, c"”) — ¢'’. This derivation is
a subderivation of d, and we are given that (co,o)—1(cj, o'},
so by induction we deduce

(co, ) — ™.

But that gives

(CO,U) —_ U”I, <CI,U,I,) —_ U’

(c,0) = o

o[c is if b thencq elsec;] There are two subcases:

[6 € T and ¢’ is ¢;] Then we have
(e,0)—1(ci,0) and  (c,0) — o,
and we get the derivation

(b,o) = b, (ci,o)—0'

(¢,0) = o'
[b ¢ T] Then we have derivations
(b,0)—1 (¥, 0)

(¢,0)— 1 (if b’ thency elsec;, o)

and
(¥',0) =t, (ci,o) =o'

(if b’ thencg elsecy,0) — o’

for some t € T and i € {0,1}. By (B), (¥',0) — t implies
(b, 0) =1 (t,0), 0

(b, a)—»l(b', oy—1*(t, o)
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which, again by (B), implies {b,0) — t. So we have

(b,0) = t, (ci,o) =o'

(¢,0) = o
o[c is whilebdo "] There is a unique one-step derivation
(¢, 0)— 1 (if b then(c”; ¢) elseskip, o},

so ¢ is if b then(c”; ¢) else skip and ¢” is &. But we know (Winskel Prop. 2.8)
that ¢ ~ ¢, and are given that (¢’,0) — &', so we conclude {¢,o) — o'

This completes the proof of Lemma 1. B

It remains to prove the converse implication:

(e,0) =0’ = (c,0) =70
The proof requires some simple facts about —1*.
Lemma 2.

1. {a,0) =} {d',0') => (X :=a,6)—-] (X :=d, ),
2. (b,0) =71 (V',0') = (ifbthencoelsec;, o) —} (if ¥’ thencgelsecy,o’),
3. [{co,0) =1 0" & {er,0") =1 0] = ((co501),0) =1 0"
Proof: All three parts follow by straightforward induction on the definition
of the transitive closure, —;*, of —;. We omit 1 and 2, and do only the

slightly more complicated part 3. In particular, we prove 3 by induction on the
derivation of (cg,0) —7 o”.

Such a derivation must consist of {co,0)—17 and a derivation of y—;*¢" for
some state or configuration v. So there are two cases:

[y is a state o] The result then holds easily, with (co,oc)—10" implying that
{(eo; 1), 0)—1{c1,0"). Combining this with our original presumption of
(e1,0") —1 o' gives the desired result.

is a configuration (cj, d9)] Then, we can apply the induction hypothesis to
7 g 0
the evaluation (cj, oo) —} o/, and we conclude that {(cp;¢1),00) —7 o'.
But since {co, o) —1(ch, 00), we have by the definition of —; that

((co; 1), 0)—1((ch; c1), o0) =7 o’

So {(co; ¢1),0) —1 o' as required.
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Proof: We now prove the converse implication of (C) by induction on the
derivation d of (¢,06) — ¢’. The induction breaks into cases according to the
form of c.

o[c is skip] By the definition of —, we have (skip, 6)—10, so 6/ = &, and hence
(skip, o) —1 o, as required.

e[c is of the form X := a] The derivation of (¢, ¢} — ¢’ must be of the form

(a,a)'—v n

(X :=a,0) = o[n/X]

so ¢’ is o[n/X]. By (A), (a,0) — n implies
(a,0) =] (n,0).
But then by Lemma 2.1
(X :=a,0) > (X :=n,0).

Now (X :=n,0)—10[n/X] is an — rule, so we have

(X :=a,0) =] o[n/X] =o'

e[c is (co;¢1)] Then d must be of the form

(co,0) = " (c1,0") =0’

{(co;€1),0) = o’

Let dg and d; be the left and right subderivations above. Then, by induction
we have (¢, 0) —1 0" and (c1,0"") —} ¢’. Now by Lemma 2.3 we conclude

((coic1),0) =1 0.
o[c is if b then ¢ elsecy] The derivation d is of the form

(b,0) =t (ci, a)‘—v o

(¢,0) = o’
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fort € T. Let us call the right-hand subderivation d’. Since (b, 5) — t, we know
by (B) that {b,c) —1 {t,0), and hence by Lemma 2.2

(if b thencg elsec;, o) —1 (if t thencyelsecy, o).

Then, by the induction hypothesis (applied to d') we have (¢;,0) —1 0’, so

(if bthencg elsec;, 0)—1*(if t thencq elsecy, o)

—1 (ci, o)

—1%0

o[c is whilebdo '] The simpler subcase is when d is of the form

(b, o) — false

(whilebdoc',0) — o

Then ¢’ = o, and, by (B), we have
(b,0) —1 (false, o),
so by Lemma 2.2
(if b then(c’; c) elseskip, o) —] (if false then(c’; c) else skip, o).
Thus,

(whilebdoc’, o) —; (if bthen(c’; c) elseskip, o)
—1*(if false then(c’; ¢) elseskip, o)
— {skip, o)

—1 0.

The other subcase is when d is of the form

(b,0) — true (c',o) > 0" (c,0") >0’

(c,0) =o'
As in the previous cases, from the subderivations we can conclude
(b, 5)—1* (true, o)
(c/, 0')—'1'0'”

(c’ 0‘”)—*1'0’
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by (B) and induction hypothesis. Then, by Lemma 2.3, we can conclude
((c';¢),0) =1 o'
Putting the pieces together with the definition of —, this gives us

(¢, o) —1 (if bthen(c'; ¢) elseskip, o)

|

1*(if true then(c’; ¢) else skip, o)

d;c), o)

/
’

-1

(
1o

|

thus proving the final case in the theorem.
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10.
11.

12.

13.

14.
15.
16.
17.
18.

Outline: Lectures 1-19

. (Fri, 9/11) Administrivia. Sample IMP while-program, Euclid, p.34; brief sketch of partial correctness

and termination.

. (Mon, 9/14) Syntax of IMP and “natural” evaluation semantics of for Aexp. Derivation tree for

(M + N) x N, o[10/N][6/M]) — 160.

(Wed, 9/16) Natural eval rules for Com. Derivation tree for (Euclid, o[10/N][6/M]} — ¢[2/M][2/N].
Uniqueness of derivation tree for each configuration; exists for Aexp, Bexp, and while-free Com, but
(whiletruedoc, o) 4 for all ¢,0. No proofs.

. (Fri, 9/18) One-step rules. Example (Euclid,c[10/N][6/M]) —} ¢[2/M][2/N]. Remark: — is total,

functional, computable relation. Inductive def of transitive closure. Statement of“equivalence” of
one-step and natural rules: y—1*§ iff ¥+ — § for all configurations 4 and values § e NUT UX.

(Mon, 9/21) Proof of equiv of natural and one-step semantics.

(Wed, 9/23) Proof by induction on deriv. of functionality of command evaluation (Winsk, 3.11). Proof
by minimum principle that (whiletruedoc, s} / (Winsk. 3.12).

. (Fri, 9/25) Formal def of derivations, and induction on them (§3.4). Set R of rule instances determines

a monotone, continuous, operator R on sets (§4.4) with derivable elements = fiz(R).

. (Mon, 9/28) (Winskel §5.4) Def and examples of cpo’s, monotone and continuous functions. Contrast

with usual (epsilon-delta) continuity.

. (Wed, 9/30) Proof that R is continuous. Monotone functions are a cpo under pointwise order. Least

fixed points of continuous functions on cpo’s. Motivation for fixed points as explanation of recursion:
While-loops as fixed points of command mappings.

(Fri, 10/2) QUIZ 1, IN CLASS, on lectures 1-8

(Mon, 10/5) Function def by structural induction, eg, length and depth of a derivation, def of locg
(§3.5) and statement w/o proof: ¢ only effects locy(c) (Winskel 4.7). Discussion of well-formed and
non-wellformed recursive function def’s, eg, e(z) = e(z + 1), f(z) = f(z + 1)+ 1, for g, h functions on

w¥: g(z +y) = 9(2) + 9(v), h(z +y) = h(=z) +2h(y).

(Wed, 10/7) Meanings of expressions will be total functions from states to Num or T. Command
meanings will be partial functions € ¥ — X. Statement of equivalence of denotational and natural
semantics. Then define denotational semantics by structural induction assuming I'yhile (Winskel p.62)
is continuous.

(Fri, 10/9) Prove that 'yhite (Winskel p.62) is continuous: product cpo’s and continuity of functions
of several arguments. Continuity of command operators, and closure of continuous operators under
composition.

(Mon, 10/12) COLUMBUS DAY

(Wed, 10/14) Proof of equivalence of natural and denotational semantics (Winskel Thm. 5.7).
(Fri, 10/16) First-order arithmetic: Assn’s and their meaning.

(Mon, 10/19) Valid assertions and sound inference rules.

(Wed, 10/21) Hoare logic and examples.

(

Fri, 10/23) Soundness of Hoare rules.
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20.
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23.
24.
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26.
27.
28.
29.
30.
31.

32.
33.
34.
35.
36.
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(Mon, 10/26) Expressiveness of Assn’s and relative completeness of Hoare logic.
EVENING QUIZ 2, Mon, 10/26, on lectures 9, 11-18

(Wed, 10/28)
(Fri, 10/30)

(Mon, 11/2)

(Wed, 11/4)

(Fri, 11/6)

(Mon, 11/9)
(Wed, 11/11) VETERAN’S DAY

(Fri, 11/13)

(Mon, 11/16) QUIZ 3, IN CLASS, on lectures 19-25
(Wed, 11/18)

(Fri, 11/20) DROP DATE

(Mon, 11/23)

(Wed, 11/25)
(Fri, 11/27) THANKSGIVING HOLIDAY

(Mon, 11/30)
(Wed, 12/2)
(Fri, 12/4)
(Mon, 12/7)

(Wed, 12/9)
(Exam Period) QUIZ 4 2 hours, on lectures 26, 28-36
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One-Step Rewriting Rules for IMP,

Throughout this document, we will use op to range over syntactic operator
symbols, and op to range over corresponding arithmetic or Boolean operations.
The only completely new rules are for Aexp,’s of the form cresultisa, but
most have changed to account for the presence of side effects in Aexp,’s.

1 Rules for Arithmetic Expressions, Aexp,

(X, 0)=r,1(0(X), 0)

(c;0)=ra(c, o)
(cresultisa,o)—, 1{c' resultisa, ¢’)

(c,0)—r 10"
(cresultisa, o)—, 1(a, o)

(ﬂo, a’)"’rll <061 ‘7’)
Tawop a1,o)—r1(@h op 1,

<017U)—’r,1<a’1,”’)
(nop a;,0)—1(n op aj,o’)

{n op m,o)—, 1{n op m, o)

op | op

4+ | the sum function

— | the subtraction function

x | the multiplication function

2 Rules for Boolean Expressions, Bexp,

{ag, o) —r,1{ap, ')
(ag op a1, 0)—+ 1{aj op a1,0")

{a1,0)—r,1{a},0')
{nop a1,0)—, 1(n op d, o)

(n op m,o)—, 1(n op m,o)
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op
the equality predicate
the less than or equal to predicate

A0S

We next have the rules for Boolean negation:

(b,0) =1 (¥, 0")
(—b, o) —r 1 (b, ")

(—true, o)— 1 (false, o)

(—~false, o) — ; {true, o)

Finally we have the rules for binary Boolean operators. We let ¢, tg, ¢y, ...

over the set T = {true, false}.

{bo, ) —r 1 (b5, o)
(bO op bl ) a>_'r,l (b6 op bl ) ”/>

(b, 0)—r,1(b1,0)
{to op b1, 0)—r1(to op ¥}, 0")

(toop t1,0)—r1(to op t1,0)

op | op
A | the conjunction operation (Boolean AND)
V | the disjunction operation (Boolean OR)

3 Rules for Commands, Com;,

Atomic Commands:

<Skipa 0)—'1‘, 10

{a,0)—r1{d, ')

(X :=a,0)—r1(X :=d,0')

(X = n,0)—r10[n/X]
Sequencing:
{co,0)—r1{cp, ')
((Co; Cl)yU)_’r,l<(66;Cl)’Ul>

{co,0)—=r10’
((CO; Cl), a>_'r,l (CI) U/>

range
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Conditionals:

(b, 7)=r1 (¥, 0")
(if bthenco elsecy, o) — ., (if ' then cp elsec;, ')

(if true thencg else cy, o) — 1 {co, o)

(if false then cg elsecy, 0)—, 1{c1, o)

While-loops:

(whilebdoc, 6)—, 1 (if b then(c; whilebdoc) else skip, o)
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Last Year’s Quiz #1, and Solutions

Instructions. For your reference, there is an appendix listing the definitions
of the “evaluates to” relation —, and the one-step rewriting relation —; on
configurations of the language IMP.

For Problems 1 and 2, let w be the IMP command
while4d5 < Xdo X =X -3;) Y =X -1, X =Y -1

and let o be a state such that ¢(X) = 1000 and «(Y') = 2000.

Problem 1 [10 points]. According to the inductive definition of evaluation,

the assertion
(1, 0) — o[40/X][41/Y]

has a unique derivation. How many instances of the sequencing rule scheme

(seq —) given below appear in this derivation? 384

{co,0) = ", (c1,6") — 0o’
{(co;a1),0) — &’

(seq —)

Note: The quiz did not ask for any ezplanation. One will be asked for on problem
set 4.

Problem 2 [15 points]. By definition, (w,s) —} ¢[40/X][41/Y] because there
is a (unique) sequence of the form:

(w, o)—1{e1,01)—1(c2,02) =1 - - —1{Cn, 0n)—10[40/ X][41/Y]

where n happens to be 2500.

Notice that oy must equal ¢, and ¢; must be

if45 < Xthen(X (=X -3;Y:=X-1; X :=Y - 1; w) elseskip.
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2(a) [6 points]. What are

e2?| if45<1000then(X =X -3;Y:=X ~1; X :=Y — 1, welseskip

027 o

c3? iftruethen(X :=X-3;Y =X -1, X :=Y ~ 1; w) elseskip

o037 o
cn? skip
0,7 o[40/X][41/Y]

The answers for cs and o3 were graded relative to the answers for co and 0.

2(b) [4 points]. How many ¢;’s are of the form whilebdoc?| 193 | Actu-
ally the correct answer is really 192. We forgot that the first configuration in the
chain ((w, o)) was not explicitly described to be cg. Thus the first while in the
chain does not really contribute to the count. If we had let (co,00) = (w, o) then
there would not have been a problem. Full credit was given for either answer,
unless it was clear that 192 was arrived at via @ mistake (and thus two wrongs
making a right).

2(c) [5 points]. There are k times as many c¢;’s which are of the form
if b’ thencelsec

than are of the form
while b’ doc”.

What is k7 3 Due to the slight miscounting in the preceding answer
the correct answer is really (193 * 3)/192 ~ 3.0156. Credit was given for either
answer.
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Problem 3 [20 points]. It was noted in class that every Aexp configuration
evaluates to a number. Likewise, one can prove by structural induction on Bexp
that every Bexp configuration evaluates to a truth value, namely,

for all (b, o), there is a t € {true, false} such that (b,0) — 1.

3(a) [10 points]. List the cases of the structural induction and indicate what
must be shown for each case.

The base cases are:

[6 =t € {true, false}] We must show that, under no additional assumptions,
there ezists a t' € {true, false} such that (t,0) — 1.

[b=ao =a;] We must show that there ezists a t € {true,false} such that
(ap = a1,0) —t. To do so, we may use the analogous property for Aexp,
viz. to assume that there erist ng and n, such that (ap,0) — ng and
(ay,0) — ny.

[6 = ap < a1] Similar to the preceding case.
The non-base cases are:

[b = ~¥] Under the assumption that there ezists a t € {true,false} such that
(b, 0) — t, we must show that there ezists a t' € {true,false} such that
(—b, o) >t

[b = bo Abi] Under the assumption that there exist to,t) € {true,false} such
that (by,0) — tg and (by,0) — t1, we must show that there ezists a t €
{true, false} such that (bg Aby,0) —t.

[6 =boVby] Similar to the preceding case.

3(b) [10 points]. Pick a non-base case and prove it!
We pick the non base-case [b = bo A by).

Under the inductive assumption that there ezist to,t; € {true,false} such that
(bo, o) — to and (by,0) — t1, we must show that there exists at € {true, false}
such that (bg A by, o) — 1. But by rule (and —), there is such a t, namely the
conjunction of tq and t;.
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Problem 4 [25 points]. We define a “parallel evals to” relation, <, which is a
variation of the “evals to” relation, —. The rules to define «— are obtained from
the rules defining — by replacing all occurrences of “—” by “~”. In addition,
there is one further “parallel if” rule:

(co,0) = ', (c1,0) — ¢
(if bthencpelsec,, o) — o’

(par-if =)

4(a) [5 points]. Give a simple example of a command, ¢, such that {¢,s} — &
has more than one derivation for any state o.

if b thenc' elsec’, for any ¢’

Although the definition of — differs from that of — it turns out to specify the
same relation on configurations as —. The nontrivial direction of this remark
is the implication

(c,o) >0 = (c,0)— 7.

This implication can be proved by induction on the definition of — (that is by
rule induction on the rules for —).

4(b) [10 points]. Briefly explain what the cases of the induction are, and why
there is only one non-trivial case.

There is one case for each of the inference rules of — on Com-configurations
(or on Aexp, Bexp, and Com configurations. This was slightly ambiguous but
unimportant, since either reading gave the same definition of — ).

So there are the base cases for the Com-configuration rules: (skip — ), (assign

The inductive cases are for the rules: (seq — ), (if-true —), (if-false —) (while-
false — ), (while-false — ), and finally a case for the new rule (par-if — ).

The only non-trivial case is for the new rule (par-if — ), because the other
rules for — are the same as the corresponding rules for —. In particular,
if (¢,0) — o' follows from some (— )-rule, R, other than (par-if —), then the
antecedents if any, of R which involve —, each implies by induction, the corre-
sponding antecedent with “—” replaced by “—”, so (c,0) — o’ follows trivially
by the —-version of R.

4(c) [10 points]. Prove the non-trivial case. (You may assume the results
mentioned in Problem 3.)

So, we suppose that (c,o) — o' because of the rule (par-if — ).
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Then c must be of the form if b thencg elsec;, where (¢y, o) — ¢’ and {(¢1,0) — o’
(so by induction, we may assume that {co,0) — o' and {¢;,0) — o’).

By Problem 3, we know that there erists a t € {true, false} such that (b, o) — t.
This gives us two cases based on t.

Suppose t = true. Since (b,o) — true, rule (if-true —) applies, and so then
(c,o) = o'

The case of t = false works similarly. Since (b, o) — false, rule (if-false —)
applies, and so then {c,o) — o'
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A Appendix

We use n, sometimes with subscripts as in ng, n;, to denote arbitrary elements
of Num. Similarly, we assume X,Y € Loc; a € Aexp, t € {true, false};
b € Bexp; ¢ € Com; and o € the set of states.

A.1 “Evals to” Rules for IMP

Notice that we give a name for each rule in parentheses to its right.

A.1.1 Aexp Rules

(n,0) > n (num —)
(X,0) — o(n) (loc —)
(00,0) — g, (01,0') —
{@o +a1,0) = n (plus —)
where n is the sum of ng and n;.
Similarly, there are rules (times —) and (minus —).
A.1.2 Bexp Rules
{t,o) — ¢ (bool —)
<001 U) — g, (aly U) — Ny (equal __})

(a0 = a1,0) >t

where t = true if ng and n; are equal, otherwise t = false.
Similarly, there is a rule (< —).

bo) >t
—(_£|—5,_5'_>)_—>—t’__ (not —-»)
where t' is the negation of ¢.
(b016> "’t()’ (bl,O') _’tl
(bo A bl,a) — 1

where t is true if g = true and ¢; = true, and is false otherwise.

(and —-»)

Similarly, there is a rule (or —).
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A.1.3 Com Rules

(skip,0) — ¢ (skip —)

(a, 0‘> —n .
(X :=a,0) — a[n/X] (assign —)

(cﬂy ‘7) - 0'//, (C],O’”) — g (Seq —»)

((co;e1),0) = o'

(b, 0) — true, {co,0) — o’ ‘ .
(ifbthencgelsecy, o) — o' (if-true —)

(b, o) — false, {c¢,,0) -0’ . ~
(if bthencoelsec;, o) — o’ (if-false —)

(br 0') — false . -
{whilebdoc,0) — 0 (while-false —)

<b,0') — true, (c,a) — o"’, (whilebdo c, a'") -0 ) ~
(whilebdoc,o) — o' (while-true —)

A.2 Rewriting rules for IMP

A.2.1 Aexp Rules
(X,0)—1(0(X), ) (loc —1)

(GO,U)—Pl(aa,O’) —
(a0 + a1, 0)—1{ag +a1,0) (plus-left —1)

(a: U)'_’l(a’, 0') . _
{(n+a,0)—>1({n+d,0) (plus-right —)

{ng + ny, 0}—1(n, o) (plus-num —)

where n is the sum of ng and n;.

Similarly, there are rules (times-left —;), (times-right —;), (times-num —),
(minus-left —;), (minus-right —), and (minus-num —).
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A.2.2 Bexp Rules

(a0, 0)—1(ag, 7)
{ag = a1,0)—1{a} = a1,0)

(equal-left —)

(a,0)—{d, 0)
(n=a,0)—1{n=2d,0)

(equal-right —)

(ng = ny,0)—1(t,0) (equal-num —)

where t = true if ng and n; are equal, otherwise t = false.

Similarly, there are rules (<-left —1), (<-right —1), and (<-num —).

(b, 5)—1{t',0)
(=b,0)=1 (=¥, o)

(not-eval-arg —1)

(=t,o)—1{t', 0) (not-bool —)

where t’ is the negation of ¢.

(bO’ 0)—’1(”6»")
(bo A bl, a)—>1(66 A bl, U)

(and-left —)

(6, 0)—1 (¥, 0)
AL o)1 (LAY, )

(and-right —)

{to At1,0)—1(t, o) (and-bool —1)

where t = true if tg = true and ¢; = true, otherwise t = false.

Similarly there are rules (or-left —), (or-right, —1) and (or-bool —1).

A.2.3 Com Rules
(skip, 0)—10 (skip —1)

{a,0)—1{d’, 0)
(X :=a,0)—{X :=d,0)

(assign-eval-arg —1)

(X :=n,0)—>10[n/X] (assign-num —1)

>
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(Co, 0')—>1(66, a")
{(cos e1), 0)=1{(ch; c1), ')

(seq-start —)

(CQ,a')—yla-’
{(co; 1), 0)—1(c1,0")

{seg-finish —;)

<b’ U)_’l(b” ‘7)
(if bthencqelsec;, o)—(if b thencyelsec,, o)

(if-eval-guard —1)

(if true thencq else ¢y, 0)—1{cq, ) (if-true —)
(if falsethencp else ¢, 0)— 1 {c1, o) (if-false —)

(whilebdoe, 0)— (if b then(c; whileb do ¢) else skip, 7) {while —;)
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Quiz 1

Instructions. This is a closed book exam; no notes either. There are four (4)
problems, worth 25 points each, on pages 2-7 of this booklet. Write your so-
lutions for all problems on this exam sheet in the spaces provided, including
your name on each sheet. Don’t accidentally skip a page. Ask for further blank
sheets if you need them.

For your reference, there are appendices listing the definitions of the “evaluates
to” relation —, and the one-step rewriting relation —,; on configurations of
the language IMP,.

GOOD LUCK!

NAME

il problem | points | score ||

1 25
2 25
3 25
4 25
Total 100
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Recall from Problem Set 2 that IMP, is the extension of IMP by a further
expression construct, cresultisa, where ¢ is a command and a is an arithmetic
expression. On this quiz, arithmetic expressions, a, ao, . . ., Boolean expressions,
b, by, ..., and commands, ¢, ¢y, ..., are understood to be those of IMP,. The
natural evaluation rules (—,) and one-step (—,1) rules of IMP, are attached
in an appendix to this quiz. To avoid clutter, the subscript “r” on the arrows
will henceforth be dropped.

In IMP,., every command is equivalent to an assignment statement, namely

¢ ~ X :=cresultisX

(Recall that ¢; ~ ¢; means that for all 0,07,
{e1,0) = o' iff {e1,0) — ')
Problem 1 [25 points]. One way to prove this equivalence would be by appeal
to the one-step semantics. Thus, if
{e, 0’)—>1(61,0'1)—'1 "'—>1(Cn,6n)—'10'

for some sequence of configurations (¢;,0;) and n > 1, then —

H / ! '3 ! / !
(X := cresultis X, 6)—1{c],01)—1 - —1{c;,0n)—1 - -—>1<cn+k,aﬁ,+k>—>1a’
for some sequence of configurations {¢}, ;) and k > 1.

177

Note that ¢}, is an assignment of the form X := m.

1(a) [18 points]. Which of the following correctly describes m? (circle all
those which are correct):

1. n 6. ¢'(X)

2. n+1 . oX)+k
3. n+k 8. d(X)+k
4. n+k+1 9. ol(X)

5. o(X) 10. o', (X)

1(b) [7 points]. What is k7 k =
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Problem 2 [25 points]. There is another, direct way to prove this equivalence:
describe how to find a derivation of

2(a) [12 points].
(X :=cresultis X, o) — o’

from a derivation of
(e,o) — o,
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2(b) [13 points]. and vice-versa.
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NAME

Problem 3 [25 points]. We define four (4) sets of rule instances over the

numbers:
Ry = - 5 _1:_ 5 n1,11:_+21 for n € Num
Ry = - =3 _1:_ 5 n;ln++21 for n € Num
R3 ::= - ni? 1’3’5"2'7‘1’271—*_1 for n € Num
Ry = T 5 nn_—’+-n:n_ for n € Num
3(a) [16 points]. For i = 1,2,3,4 give a simple description of Ig,, the set of
‘numbers derivable from R;.
Ip, =
Ir, =
Ip, =
Ig, =

3(b) [9 points]. Which i satisfy the property that every number in Ig, has
a unique R;-derivation? For the others, what is the smallest integer with two

derivations?
unique derivation If “no,”
(yes/no) smallest integer
R
R,
R3
Ry
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Problem 4 [25 points]. Say that b € Bexp, is side-effect free iff, for all
states oy, 0,
(b,U’l)—P(t,Ug) > 01 =03.

4(a) [20 points]. Suppose b is side-effect free. Carefully prove that

(whilebdoc,0) —» o' = (b,0') — (false, o).

(Part 4(b) is on the next page.)
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4(b) [5 points]. Give a simple b (with side-effects) which is a counterexample to

the implication of part 4(a).
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Appendix A: Natural Evaluation Rules for IMP,

As mentioned earlier in the quiz, we’ll be omitting the r subscripts to reduce
clutter. Otherwise, these definitions are the same as those given in Problem
Set 2.

Rules for Aexp
(n,o) — (n,0)
(X,0) — (o(X),0)

{(ag, 0} — (no,0"), (a1,0") — (n1,o’)
(ao + a1,0) — (n,o")

where n is the sum of ng and n;.

There are similar rules for x and —.

(c,0) = 0", {a,d") — (n,o)
(cresultisa, o) — (n,o")

Rules for Bexp

(t,o) — (t,0)

(0010) - (nO'nUII)a (al’au) . (nl’al)
(a0 = a1,0) — (t,0')

where t = true if ng and n; are equal, otherwise ¢ = false.

There is a similar rule for <.

(b,0) — (t,0)
(=b,0) — (t',0')

where ' is the negation of ¢.

(b01 0) i (tO,all)y (b],O’”) — (tlyal)
(bo A b],O’) — (t, 0’)

where t is true if {; = true and ¢; = true, and is false otherwise.

There is a similar rule for V.
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Rules for Com

(skip,0) — o

(a,0) — (n,o')
(X :=a,0) = o'[n/X]

{co,0) =", (c1,0") =0’

((cosc1),0) — o

(b,0) — (true,d”), (co,0")— 0’

(if bthencg elsec;, o) — o’

(b,0) — (false,0"), (c1,6") >0’

(if bthencg elsec;, o) — o

(b, o) — (false, o’)
(whilebdoc, o) — o

(b,0) — (true,o”), (c,0”) — o', (whilebdoc,s"’) — o’

(whilebdoec, o) — o’



6.044J/18.423J Handout 16: Quiz 1
NAME 10

Appendix B: One-Step Evaluation Rules for IMP,

As in previous handouts, we will use op to range over syntactic operator sym-
bols, and op to range over corresponding arithmetic or Boolean operations.
Also, as elsewhere in the quiz, we will be dropping the r subscripts to avoid
clutter. The language involved is still IMP,, however.

Rules for Arithmetic Expressions, Aexp
(X,0)—1(0(X),0)

(e, 0)=1({c’,0’)
(cresultisa, 6)—1(c’ resultisa, o)

{c,0)—10’
(cresultisa, 6)—1(a,o’)

{ag, 0)—1(ap, o’)
{ao op a1,0)—1{ap op a1, ")

(a1,0)—1(a}, ')
(n op a1,0)—1{n op a}, ')

(n op m,o)—1{n op m,o)

op | op

4 | the sum function

the subtraction function

x | the multiplication function

Rules for Boolean Expressions, Bexp

(a0, 0)—1{ap, 0’)
(ao op a1, 0)—1(ag op a1, 0’)

{a1,0)—1(ay,0’)
(n op a1,0)—1{n op a},d’)

(n op m,o)—1(n op m, o)
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op
the equality predicate
the less than or equal to predicate

A IS

We next have the rules for Boolean negation:

(b, o) =1 (b, o)
(b, 0)—1 (b, ")

(— true, g)— (false, o)

{—false, 6)— (true, o)

Finally we have the rules for binary Boolean operators. Welet t,4q,1,...

over the set T = {true, false}.

(bo,a)—>1(b6,o")
(bo op by, o)y —1 (b op b1, ')

(bl,a)_n(bll’al)
(tg op by,0)—{tg op b},")

(to op t1,0)—1(to op t1,0)

op | op
A | the conjunction operation (Boolean AND)
V | the disjunction operation (Boolean OR)

Rules for Commands, Com
Atomic Commands:

(Skip, U)_’IU

(a,0)—1(a’,0’)
(X =a,0)— (X :=d,d)

(X :=n,0)—10[n/X]

Sequencing;:
(co, o) —1(cp, o)
{(co; e1), o) —=1{(cp; €1), o)

<C0, U)_’lal
((CO; c1)7 J)_’1<C1’ OJ)

11

range
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NAME
Conditionals:
(b, 0) =1 (¥, o)
(if bthenco elsecy, o)— (if ¥’ thencg elsecy, o)
(if truethen ¢y else ¢y, 0)—1{cy, 0)
(if false then ¢y elsecy, o) — 1 {c1, o)
While-loops:

(whilebdoe, o)— (if b then(c; whileb do ¢) else skip, o)

12
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Quiz 1 Solutions

(This was a closed book exam; no notes either. There were four (4) problems,
worth 25 points each.)

Recall from Problem Set 2 that IMP,. is the extension of IMP by a further
expression construct, c resultisa, where ¢ is a command and a is an arithmetic
expression. On this quiz, arithmetic expressions, a, ag, . . ., Boolean expressions,
b, bg, ..., and commands, c,cg, ..., are understood to be those of IMP,. The
natural evaluation rules (—,) and one-step (—, 1) rules of IMP, were attached

({95}

in an appendix to this quiz. To avoid clutter, the subscript “r” on the arrows
will henceforth be dropped.

In IMP,., every command is equivalent to an assignment statement, namely

¢ ~ X :=cresultisX

(Recall that ¢; ~ ¢z means that for all ,0”,

(e1,0) = o' iff {e1,0) — )

(Note that the second command should have been “c;”.)

Problem 1 [25 points]. One way to prove this equivalence would be by appeal
to the one-step semantics. Thus, if

(C, U)_’l<clyal)_’l o '_’l<cm Un)_"lal

for some sequence of configurations {c;, ¢;) and n > 1, then

: / / / / ! / /
(X := cresultis X, o) —=1(c}, 01) =1 - —1(ch, op) =1 =1 {Chyk> Tnyk) =10
for some sequence of configurations (c}, o}) and k > 1.

Note that ¢}, is an assignment of the form X := m.

1(a) [18 points]. Which of the following correctly describes m? (circle all
those which are correct):

n o' (X)

n+1 a(X)+k

n+k d(X)+k

n+k+1 ol (X)

7.
8.
9.
a(X) o (X)

(ST S
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1(b) [7 points]. - What is k? & =

From the evaluation rules for —1, we know that every (c}, o) must be ezactly
(X = ¢iresultis X, g;), for i < n. Further, since (¢cn,0,)—10", we know that
¢n is one of skip, X := m, or Y := m’ (for some numeral m’), where Y is
a different location from X. This gives us three possible classes of evaluations,
starting with {c},,07,):

(X := (skipresultis X), 0,)—1{X := X, 0,)

—1{X :=m,0,)

—10n
or
(X :=(X := mresultis X), 0,)—1(X := X, on[m/X])
—1{X := m, o[m/X])
—>10',.[m/X]
or

(X = (Y := m'resultis X), 0, ) =1 (X := X, 0,[m'/Y])
—1{X :=m,o,[m'/Y])
—10n[m' /Y]

Note, first, that all of these are of the form

(cns ‘7:1)—*1<C::+1 ) ‘7::+1>—’1(C::+2» ‘7::+2>“*1‘7”

so k = 2. Next, each c}, ., is of the form X := 07, 4(X), so answer 10 applies.
Finally, note that in each case o' = 0}, ,,, so answer 6 applies as well. Answer9
is true 1n some cases (like the first and third), but not true in general, as the
second case shows.
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Problem 2 [25 points]. There is another, direct way to prove this equivalence:
describe how to find a derivation of

2(a) (12 points].
(X := cresultis X, o) — o'

from a derivation of
{e,0) — o',

Given a derivation d I+ (¢, o) — o', we have the following derivation:
4 (X,0) —~ (o'(X),0)
(cresultis X, o) — {¢'(X), ')
(X :=cresultis X, o) — o'[¢'(X)/X]

Since o'[0'(X)/X] = o', we have a derivation of

(X :=cresultisX,s) — o',

2(b) [13 points]. and vice-versa.

Given a derivation d IF (X := cresultis X, o) — o', we know that d must end

with the rule
(cresultis X, o) — (m, o)

(X :=cresultis X, o) — ¢’
where o' = ¢''[m/X].
Then, the derivation of (cresultis X, o) — (m, 0"} must end with the rule
(c,0) — " (X,O'I”) - (m,a")

(cresultis X, o) — (m,o")

Now,
(Xy 0_///) — (m’o,ll>

is an aziom; but for this axiom to hold, it must be the case that ¢"'(X) = m
and o' = ¢''. But this means that

o = U'll[m/X] — O'H[m/X] -0
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Thus, we know that d is of the form:

(0.0) =o' (X, ) = (¢'(X), )
(cresultis X, o) — (0/(X), ")

(X = cresultis X, o) — ¢’

which contains a derivation for (c,o) — o' as a subderivation.

e
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Problem 3 [25 points]. We define four (4) sets of rule instances over the
numbers:

n n,n+1

R, == = Thyo —— for n € Num
— n n,n+1
Ry = 7 8 —— ——? for n € Num
— n 1,3,5,...,2n+1
R = 1 n+?2 5 for n € Num
Ryi= — —— _nm for n € Num

4 6 n+m

3(a) [16 points]. For i = 1,2,3,4 give a simple description of Ig,, the set of
numbers derivable from R;.

Ig, = The odd integers > 7
Ig, = The integers > 7

Ip, = The integers > 1 (or > 0)
Ip, = The even integers > 4

(The set Num in the above definitions was really intended to be the natural
numbers w = {0,1,2,...} rather than all the integers, and both n and m were
intended to range over w.) There was an unintended ambiguity in the definition
of R3: it was not clear from the definition whether the set of rules refered to by

1,3,5,...,2n+1
2n

for n € Num

was
1,3 1,35 1,357
2 '~ 4 ' 6

or
1 1,3 1,35 1,357
0 1 2 3 4 ’ 6 )

The second set of rules makes 0 a member of Ir,, while the first set does not.
We accepted either answer, and graded the enswer to part 3(b} accordingly.
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3(b) [9 points)]. Which i satisfy the property that every number in Ig, has
a unique R;-derivation? For the others, what is the smallest integer with two
derivations?

unique derivation If “no,”
(yes/no) smallest integer
R1 Yes
R» No 9
R No 4 (or 2)
Ra No 12

If the description of Ig, in part 3(a) included 0, then the answer for Rz should
be 2; otherwise the answer is 4. )
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Problem 4 [25 points]. Say that b € Bexp, is side-effect free iff, for all
states 0y, 09,
(b,01) — (t,02) = o1 =02

4(a) [20 points]. Suppose b is side-effect free. Carefully prove that

(whilebdoc,0) — 0’ = (b,o’') — (false, o’).

This is a very simple induction on dertvations.

Suppose d I+ (whilebdoc,o) — o'. Then:

Base case: If the last rule of d is

(b, o) — (false, 0’)
(whilebdoc, o) — o

then, since b is side-effect free, o = o’, so we have (b, o’} — (false, o').

Induction: If the last rule of d is not the while-false rule, then it must be
while-true:

(b,0) — (true,d”) (c,0"”) = 0" (whilebdoc,o"’) — o’
(whilebdoec, o) — ¢

But, since the derivation of (whilebdoc, o'’} — o’ is a subderivation of d,
by induction we have ‘

(whilebdoc,d")y » o' = (b,o') — (false,o').

So (b, 0’} — (false, o').
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4(b) [5 points]. Give a simple b (with side-effects) which is a counterexample to

the implication of part 4(a). [(if X = 0then X := lelse X := Oresultis X) = 0

It was required to find a Bexp, b, such that
(whilebdoc,o) — ¢’ and  (b,0’) £ (false, o’)

for some ¢, o and o'. The eastest way is simply to ensure that b always changes
the state; thus, if b is (X := X + lresultisQ) = 1, then, if o(X) = 0 we have

{whileb doskip, ¢) — o[1/X] and (b,0[1/X]) — (false, ¢[2/X])

The ezxpression we have given in the answer boz is slightly more complez, and
actually yields true as well as changing the state. With b as in the answer boz
and o(X) = 0:

(whilebdoskip, o) — o[1/X] and (b,0[1/X]) — {true, c[0/X])

Yet another possibility would be for (b,0’) to fail to evaluate to anything in
state o/, as with ((while X = 1doskip); X := X + lresultis0) = 1.

Finally, there is the possibility of a Bexp, b, such that
(b,0') — (true,o’). -

We leave this as an extra-credit exerctse.
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Problem Set 4
Due: 14 October 1993
Reading assignment. Winskel Chapter 5, §1-4.

Problem 1. (Diagnostic, no credit) Indicate how you have fulfilled the pre-
requisites for 6.044J/18.423J, e.g., prior course and grade, concurrent course,
“permission of instructor”, ....

Problem 2. Let S be a set, and P be Pow(S) with the set containment
relation (C).

2(a) Prove that P is a partial order in which the lub of a family & of subsets
of S exists and in fact equals |JS. Likewise for glb’s and intersections (7).
Conclude that Pow(S) is a cpo.

2(b) Why isn’t Pow;(S), the family of finite subsets of S, a cpo under con-
tainment?

2(c) Prove that in P, the binary operation lub is continuous in each argu-
ment, i.e., for any fixed p € P, the function fp jub : P — P is continuous where
fpub(z) = lub(z, p) = z U p. Likewise for glb.

Problem 3. Let U = [0, 1] be the closed unit interval with the usual order.
Since U is a totally ordered cpo, a function f : U — U may be order-continuous
as well as real-continuous in the usual (¢-6) sense. For each of the f;’s below,
indicate whether it is monotone, real-continuous, and/or order-continuous.

3(a) fo(z) =0.0for £ < 1/2, fo(x) = 0.1 for z > 1/2.
3(b) fi(z) = 0.0 for z < 1/2, fi(z) = 0.1 for = > 1/2.

3(c) fo(z)=1/(z+1).
(over)
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Problem 4. Let (P, <) be a poset. Define f : P—Pow(P) by f(z) =
{yePly<z} -

4(a) Prove z <y iff £(2) C £(y).

4(b) Suppose P is a cpo. Prove that f is continuous iff there is no strictly
increasing infinite chain of elements in P.

In the following two problems we consider denotational semantics for IMP,.,
the extension of IMP considered in previous problem sets.

Problem 5. Define the denotational semantics of IMP,. by structural induc-
tion, omitting the case of while-loops. (Notation: let A, = ¥ —(Num xX) be
the domain of values of Aexp,, likewise B, for Bexp,, and C' = £ —X for
Com,.)

Problem 6. Let w € Com, be whilebdoec.
6(a) Carefully define the function [y, : C — C such that CJw] = fiz(Ty).

6(b) Prove that I, is continuous.
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Grade Statistics for Quiz 1

Number of quizzes taken: 32
Grade range: 2-98

Mean: 46

Median: 47
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Problem Set 5
Due: 21 Qctober 1993
Reading assignment. Winskel Chapter 6.

Problem 1. Let C = £ —X be the “command meanings,” namely, partial
functions from ¥ to £. For f € C, let graph(f) be {(s,0') | f(¢) = o'}. Par-
tially order C by the rule that f; <c fa iff graph(f;) C graph(f2).

Prove that C is a cpo.

Problem 2. Let £ be the set of states, X, along with a “fresh” object, L,
called the “bottom state.” Partially order ; by the rule that

o1 <g, o2iff[(e1 =1) or (01 = 03)].

Let S be the set of total functions ¢ : ¥; — X such that g(L) =L (such func-
tions are called “strict”). Partially order .S by the rule that g; <s g2 iff g;(0) <3,
g2(o) foralloe ;.

2(a) Describe a bijection taking any f € C to an f* € S such that

fi<c hiff f{ <s f3.
2(b) Conclude that S is a cpo.

In the next two problems we explore the expressive power of formulas in Assn,
culminating in construction of a formula POW € Assn which means “i = k".”
The key technical trick on which the construction rests is the coding of any finite
sequence of numbers into a single number, in such a way that the relationship
between the code and the numbers it codes can be expressed by a formula in
Assn. Lemma 7.3 of Winskel describes one ingenious way of expressing such
a sequence-coding formula using the Chinese Remainder Theorem of number
theory. We illustrate an alternative approach based on treating nonnegative
numbers as strings of digits and expressing string concatentation by Assn’s.
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For n > 0,p > 2 we write (n), to denote the string of digits (between 0 and
p—1) representing n in base p notation, and we use - to denote the concatenation
of strings. For example:
(5)3 = «19”
(21)3 = “210”
(5)s - (21)3 = “12210”
=(1x3*+2x334+2x324+1x3' 4+0x3%;
= (156)3

Problem 3.

3(a) Write a formula POWP € Assn with free variables p,i which means “p
is prime and ¢ is a power of p”.

Hint: i is a power of p iff i > 1 and any divisor of ¢ other than 1 must itself have
p as a divisor.

3(b) Write a formula LEN € Assn with free variables i, j, p, such that LEN

means “p is prime and j = p’ where [ is the length of the base p representation
of i.”

Hint: j is the largest power of p with a certain relation to i.

3(c) Write a formula CONCAT € Assn with free variables p, 1, j, k which
means: “p is prime and (i), - (j)p = (k)p.”

Hint: k = plength(@))  § 4 j.
Problem 4.

4(a) For k,n > 1, let s(k,n) be the string of numbers 01k02k%...0nk".
Describe a formula KNS € Assn with free variables j, k, n which means “(j), =
s(k,n) for some p.”

Hint: Use several copies of CONCAT, with some variables renamed, as subfor-
mulas of KNS.

4(b) Describe a formula POW € Assn with free variables ¢, k, n which means
“i = k".”

Hint: Use KNS.
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Problem Set 2 Solutions

Problem 1.

(a)

(b)

We want to show that a +a ~ 2 x a for a € Aexp of IMP.

Pick an arbitrary state og9. Then, as we have previously shown, for all
a € Aexp there is a unique integer n such that (a, o9) — n. But then, by
the rules for —:

(a,00) = n and (2,00) =+ 2, (a,00) = n
(a+a,00) = n+n (2xa,00) = 2n

80, since 1 + n = 2n, and evaluations are deterministic, we have
(a+a,d0) = miff (2 x a,00) — m.

But, since we have proven this with no assumptions about g, this proof
holds for all o¢, so
a+a~2xa.

We know from the proof above that if a + a £ 2 x a then a must be an
expression in Aexp, that is not in Aexp; i.e., it must contain at least one
resultis expression. A simple example is

a = (X := X + lresultis X).

To see that a + a # 2 x a in IMP,, take a state o such that o(X) = 0.
Then

(X := X +1,0)=0[1/X] (X, o1/ X])—r(1,0[1/X])
(a,0)—+(1,0(1/X])

and

(X := X +1,0[1/X])=r0[2/X] (X, 0[2/X])=+(2, o2/ X])
(a,0(1/X])—(2,0(2/ X])

(a,0)—r(1,01/X]) (a,0[1/X])—r(2,0[2/X])
(a+ a,0)—(3,0{2/X])
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but
(X = X +1,0)=r0(1/X] (X, 0[1/X])=r(1,0[1/X])

(2,0)—(2,0) <a’a)_"‘<11‘7[1/X])
(2 x a,0)—,(2,0[1/X])

Problem 2. (As noted in an email message to 6044-forum, the hint given
for this problem was slightly misleading. While it was helpful to do the proof
separately for Aexp then Bexp then Com, it was not necessary to prove the
statements simultaneously by induction. The latter part of this hint more prop-
erly applied to problem 4.)

The proof can proceed in three stages:

(A) Prove (a,0)—.(n, o) iff (a,0) — n;

(B) Prove (b,0)—,(t, o) iff (b,0) — t, using (A);

(C) Prove {c,o0)—,0’ iff (¢,0) — o', using (A) and (B).

Note that cases (A) and (B) not only imply that Aexp’s and Bexp’s evaluate
to the same number or truth value under — and —,, but also that the evaluation
leaves the state unchanged. This condition is important for proving case (C).
(A) This case can be proven by induction on the structure of a term a € Aexp.

Base cases

a is a numeral m: This case follows immediately from the rules for
IMP and IMP,.:

(m,o)—(m, o) and (m,o) > m "~
a is a location X: Similarly,
(X, 0)—=r(0(X), o) and X,0) = o(X)

Inductive case

Assume a = ap op a; and a € Aexp. First of all, ag and a; are in
Aexp by the definition of Aexp. Then, if (a,0)—,(n,c’), we know
by the rules for —, that

(a0, 0)—¢(no, 0"") and (a1,0"Y—>¢(n1,0")
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for some state ¢, with n = ng op n, (where op is the operation
corresponding to the symbol op). But, by induction, since ao and a;
are subterms of a, we know that ¢ = ¢ = ¢/, and that (ag, o) — ng
and (a1, o) — n;. Then, by the rules for IMP,

(a@0,0) = ng {a1,0) = ny
(a,0) > ngopny=n

Conversely, if {ag op a1, 0) — n, then {ap, 0) — ng and {a;,0) — n;.
Again, by structural induction we have

<a0, a)_’r<n0,d) and <a1?d)_”'<nl’a)
yielding

(ag, 0)—=+(no,0) (a1,0)—+(n1,0)
(a,cr)—»,.no opny=n

(B) The case for Bexp’s is proved similarly, using case (A).

(C) The case for Com’s must, as usual, be proved by induction on derivations
(or rule induction), but the proof is straightforward, now that we have
shown Aexp’s and Bexp’s to be side-effect free.

Base cases

¢ is skip: The only derivations are

and ——_——(c, P

(¢c,0)—r0
¢ is X := a: We know from case (A) that
(a,0)—¢(n,0) iff (a,0) — n.

Thus, the derivations must be

(a,0)—r(n,0)

{c,0)—,0[n/X]

(a,0)—,n

{e,0) = on/X]

and

Note how we made use of the absence of Aexp side-effect effects in
the second case, ensuring that an assignment would evaluate to the
same state under either set of rules.

Inductive cases

Most of the other cases follow straightforwardly by induction, as.
long as we take care to keep track of when the state does and cannot
change. A typical case is that for conditionals. Take

c = if bthencpelsec;.
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From case (B) we know that (b, ¢)—,(true, o) iff (b, 5) — true, and
similarly for false. Take the case for (b, 0) — true. Then, the deriva-
tions are

(b, 0)—,(true, o) (co,0)—r0’
(c,0)—r0’

and
(b,0) — true {cp,0) — 0"
(c,0) = o

By induction, we can conclude that ¢/ = ¢”, since the derivation

of {(co,0) — ¢ is a subderivation of the derivation of {c, o) — ¢”;
we have thus shown (¢, 0)—,0’ iff {¢,0) — ¢”. The false case is
analagous.

Problem 3. We’ll use op to range over syntactic operator symbols, and op to
range over corresponding arithmetic or Boolean operations. The only completely
new rules are for Aexp,’s of the form cresultisa, but many other rules have
been changed to account for the presence of side effects in Aexp,’s.

Rules for Aexp,

(X, 0)=r1(0(X),0)

{¢,0)—r1{c,0")
(cresultisa, 5)—, (¢’ resultisa, o)

(¢, o)~ 10’
(cresultisa, o0)— 1(a, o’)

(ao) ‘7)_'".1<a6’ UI)
(a0 op a1,0)—1{(ag op a,0")

(a1,0)—ra(a}, o)
(nop a;,o)—,1{nop a},d’)

(n op m,a)—,1(n op m,0)

op | op

+ | the sum function

— | the subtraction function

x | the multiplication function
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Rules for Bexp,

<aOr 0'>_"',1 <06’ 01)
(a0 op a1,0)— 1{a} op a;,0")

(a1, 0)—r,1{a},0’)
(n op a1,0)— 1{(n op a},0’)

(n op m, )= 1(n op m,0)

op | op
= | the equality predicate
< | the less than or equal to predicate

We next have the rules for Boolean negation:

)= (b, o)
(=b, o) —, 1 (b, 0")

(- true, g)—, 1 (false, o)
(- false, ) —, 1 (true, o)

Finally we have the rules for binary Boolean operators. We let ¢, %g,11, ...
range over the set T = {true, false}.

{bo, 7)—r,1{bp, 0’)
<b0 op b1,0'>—>,-'1<b6 op b],O”)

(b1,0)—r,1 (b}, o)
{to op b1,0)— 1{to op b}, ')

(to op t1,0)—r,1{to 0p t1,0)

op | op
A | the conjunction operation (Boolean AND)
Vv | the disjunction operation (Boolean OR)

Rules for Com,
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Atomic Commands:

<Skip’ a)_’r,l 4

(X :=n,0)—r10[n/X]

Sequencing:
<CO’ U)_"‘,l (C'Gv U’)
((co; c1), o) —=r,1{(ch; c1), 0")
(Co, U)—>r,10"
((Co; 01), U)—>r,1(61, U’)
Conditionals:

(b, o)1 (¥, o)
(if b thencg elsecy, 0)— 1 (if ' then o elsecy, o)

(if true thenc elsecy, 0)— 1{co, o)

(if falsethen cg else ¢y, 0)—, 1{c1, o)

While-loops:

(whilebdoc, g)—, (if b then(c; whileb do c) else skip, 7)

Problem 4. As noted in the solution to problem 2, the hint that appeared
there is more applicable to this problem. The difficulty with doing this proof for
IMP, is that Aexp, and Bexp, are no longer independent of Com,. Since
the evaluation of a Com, configuration cannot be determined by structural
induction, neither can those for Aexp, and Bexp,. All must be handled si-
multaneously by induction on derivations.

(A simpler problem, which several people noted, is that several statements in
the proof must be changed to account for possible changes in state due to the
evaluation of Aexp,’s or Bexp,’s.)

The simplest way to adapt the proof in handout 12 to the case of IMP,, then,
is to reproduce the proof for the Com case, replacing each proof of a property
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for Com’s with a proof of a corresponding property for all terms in IMP,.
Thus, where we formerly would prove, say,

{c,0) =1 o' iff {c,0) — o'
by induction on the derivation of {c, 5} — o', we now prove the (single) property

(a,0) _’:,1 (n, o’} iff (a,0)—r(n,o’); and
(b,0) _’;,1 (t.0') iff (b,0)—r(t,0’); and
(c,0) =71 o' iff (c,0)—,0".

using induction on the derivation of any term, where the cases now correspond
to all the rules in IMP,, including those for Aexp,’s, Bexp,’s and Com,’s.

Otherwise, the structure of the proof for Com can remain the same. There are
no longer any separate lemmas about Aexp,’s and Bexp,’s needed, since these
cases are all taken care of by a general induction on derivations.
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Problem Set 3 Solutions

Problem 1. Winskel’s text §2.5 proves that a simple “unwinding” of
a while-loop preserves natural semantics, namely,

whilebdoc¢ ~ if b then(c; whilebdoc) elseskip.

Prove that this equivalence also holds in IMP,., the extension of IMP
with a cresultisa expression construct (cf., Problem Set 2). Indicate,
without repeating them, those portions of the proof for IMP which
apply unchanged to IMP,.

Winskel’s proof goes through pretty much intact for IMP,, except that all con-
structions must account for the possible changes in state resulting from evalu-
ating b. Thus, instead of using a derivation ending in

(b,0) — true (e.o) — " (w, 0"y — o'

(w,0) — o

to construct one ending in

{e,0) = o (w,0") — o'

(b,0) — true {c;w,0) = o

(if bthenc; welseskip, o) — o’

we now take one ending in

[ (w’o,lll)_»ro,

(b,0)—r(true,o”) (c,d"y— 0" !

(w,0)—0'

and similarly construct

1" (w‘ U’I,)_’TU

(C, O,II) 0 /

(b, 0)—,(true,o’) (c;w,0")y =0’

(if bthen c¢; welseskip, 0)— 0’

The changes can be done uniformly, and the constructions and proof are other-
wise identical.
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Problem 2. The operational behavior of IMP expressions and com-
mands depends only on the locations occurring in them. In this
problem we give a precise definition of this dependence and verify it.
(It may be helpful to look at Winskel §3.5 and Prop. 4.7 for related
ideas.)

For L C Loc define a relation =; between states by
oy =L o2 iff 01(X) = 3(X) for all X € L.
Define a relation, ~;, between commands by

ey~ e iff (01 =p o2 =
({e1,01) — o} for some o} iff (ca.02) — 0% for some g5) &

(({c1,01) — 0] & (c2,02) — 03) = 0} =L 03)).

2(a) Give a structural inductive definition of loc(a), the set of loca-
tions occurring in a € Aexp. Do likewise for loc(b) and loc(c).

By structural induction, we can define the function as follows:
For Aexp:
loc(n) =) forne N
loc(X) & {X} for X € Loc

loc(ap op ay) def loc(ag) U loc{ay)

For Bexp:

loc(t) = forteT
loc(ag op ay) def loc(ag) Uloc(ay)
loc{—b) %ef loc(b) »
loc(bo op b1) % loc(bo) U loc(by)
For Com:

def

Ha

loc(skip) = 0
loc(X := a) € {X} Uloc(a)
loc(eg; ez) aef loc(eg) Uloc(cy)

)

loc(if b thencp elsecy e loc(b) U loc(cg) U loc(ey)

loc(whilebdoc) = loc(b) U loc(c)

Ila
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2(b) Prove that ¢ ~(.) ¢ for all ¢ € Com.

As is frequently the case, we will divide the proof into three stages:

(A) For all a € Aexp, 0] =joc(q) o2 > IR EN. {a,01) = n & {(a,03) = n
(B) For all b € Bexp, 01 =iocp) 02 => R ET. (b,01) =t & (b,02) — ¢

(C) For all c € Com, ¢ ~joc(c) C-

Now, case (A) can be proved by a simple structural induction. Assume that
01 =loc(a) 02 for some a € Aexp. Then, the cases are

a=nfor neN:

Trivially, (a,01) — n and {a, 62) — n for any ¢; and o5.

a = X for X € Loc:
Here, loc(a) = {X}, so 01(X) = o2(X). Then we have {a,01) = 01(X)
and (a,o2) — 02(X), so this case holds.

a = ag Op a;:

Note, first of all, that if oy =xyy o2 for any sets of locations X and Y,
then it must be true that o; =x 02, since if o1 and o3 agree on all locations
in X and Y, then they clearly agree on all locations in X alone.

Therefore, if 6) =joc(a) 02, then oy =|oc(a,) 02 and 01 =o¢(a,) 02. Thus,
we can assume by induction that {(a¢, o) — ng and {ag, #2) — no for the
same ng, and similarly for a; and some n,.

Thus, we have:

{(@0,01) = no, (a1,01) = m and {ap,02) = ng, (a1,02) = ny
{a,01) — ng op ny {a,00) — ng op my

Case (B) follows similarly, again by structural induction.

Case {C), as usual, will be proven by induction on derivations.

= skip:
Trivially, (c,o1) — o1 and {¢, 02) — o2 for any ¢y and oa.
c=X:=a
As above, we know that if 0 =)o¢(c) 2 then ) =|5c(a) 72 by the definition

of loc(c). Thus, by case (A), there is some n € N such that (a,0,) = n
and (a, 02) — n, which gives us

{a,01) — n and {a,02) — n
{c,q1} — a1[n/X] {c,02) — 0a[n/X]
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Now, if 0) =io¢(¢) 02, then, for any ¥ &€ loc(c), if Y # X, then
o1 [n/X](Y) = o1(Y) = 02(Y) = aa[n/X]|(Y),

and
o1[n/X](X) = n = o2[n/X](X),

o1[n/X] Sioc(e) 02[n/X].

Note that in neither of these cases did we address the possibility that (c, o;)
didn’t evaluate to anything, since we know that ¢ will always evaluate
to something in the base cases. The other cases follow by induction,
assuming we consider the possibility of non-evaluation (non-termination).
An interesting case is:

¢ = whilebdo ¢’
Once again, if 01 =|oc(c) 02 then o1 =ioe(s) 02 and 01 =joc(er) T2.

We first need to verify that {c, ;) — ¢} for some o} iff (¢, o2) — o for
some 0% =joc(c) 01. Assume that (¢, 1) — 1. Then we have some deriva-
tion
(b,01) — false
(c,o) = 0] =01

or
(b.o1) = true (¢,0n) = oY (e,0f) = o}
(C1 01) i U’l

In the first case, case (B) gives us

(b, 02) — false
(Cv 0'.’) — 09

and in the second, case (B) together with induction on derivations gives us
(b,02) — true and (¢, 02) — 0¥ for some oy =|o¢(c') o). We now invoke
the following lemma:

Lemma 1. If Y € Loc, then for all commands ¢ and states ¢ and o/,
Y ¢ loc(c) & (¢,0) — o' = a(Y) = &'(Y).

(Note that this is just the loc version of Winskel’s Proposition 4.7.)

Proof: Note that, by induction on the definitions of loc and locg, locg(¢) C
loc(c) for all ¢. Then, if ¥ ¢ loc(c) then Y & locg(c), so, by Proposi-
tion 4.7, o(Y)=0'(Y). ®
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From this lemma, we can conclude that if 0% =joc(cr) 07 then; in fact,
04 =loc(c) 07 Then, by induction, we have (c, o%) — o7 for some a5 such
that 0% =)o¢(c) 01, which gives us

{(b,00) — true (', 02) — oy {c,0%) — o)
(e, 02) — 0%

Symmetrically, if (¢, 02) — % then (c,o1) — 01, again with 0 =jo¢(c) T5.

2(c) We referred to the natural semantics and the one-step seman-
tics of IMP as “operational.” but since Loc is an infinite set, and
therefore so is each state, these “operational” semantics involve copy-
ing and updating infinite objects in derivations. Briefly explain how
the result of part 2(b) leads to a more truly “operational” version of
natural and one-step semantics using finite portions of states. Then
say precisely how the original versions of operational semantics can
be retrieved from the versions using finite portions of states.

If we actually want to interpret programs according to the natural or one-step
semantics, we need some way of representing the states. Using the observations
about loc(c), we can see that only those states in loc(c) need be accounted for

-when evaluating a program, so we can represent the states in the execution as

(finite) tables Tp, T} ... mapping elements of loc(c) to N.

Now, if we want to verify an evaluation assertion (¢,o) — ¢’ involving infinite
o sd-elgyewr, we can do so by finding a derivation of (¢, T} — 7’ such that
G =loc(e) T and o' =loc(e) T.

Problem 3. The natural evaluation control states of a command c are de-
fined to be the commands ¢’ such that (¢’,63) — o4 occurs in a deriva-
tion of (¢, o;) — o2 for some states ¢y, 02, 03, 04. Likewise for the one-step
control states.

3(a) List the natural evaluation and the one-step control states of
the command Intsqrt from Problem Set 1.

Recall that Intsqrt is while—(N < M x M)doM := M + 1. Thus, the control
states, as they appear in any natural evaluation derivation, are simply

1. while~(N < M x M)doM =M +1,
2. M =M+1.

No other commands can appear anywhere in any derivation tree.
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3(b) Prove that IMP,, so « fortiori also IMP, has finite-state control,
i.e., for any ¢ € Com,, there are only finitely many natural evaluation
control states of c.

First, extend the notion of a natural evaluation control state to cover a € Aexp,
and b € Bexp,: let the natural evaluation control states of an Aexp,, a,
be the set of commends ¢ such that (¢, 03)—,04 appears in the derivation of
{(a,01)—,(n,o2) for some n, g, and o3; and similarly for 6 € Bexp,. (Note
that we’re only keeping track of commands that appear in the derivation, not
any other kinds of subexpressions.)

We can now show that all control states of an expression in Aexp,, Bexp, or
Com, are (not necessarily proper) subexpressions of that expression, and thus
form a finite set.

Proof: By structural induction on ¢ € Aexp,, b € Bexp, and ¢ € Com,
(simultaneously):

Base Cases:

If a is a numeral or location, or b is a truth value, then there are no control
states in any derivation of {(a,d)—,{(n, o) or (b,o)—,(t,0).

For any state o, if ¢ is skip, then the only control state in any derivation
of (e,c)—r0 is c.

Inductive Cases:

Assume that the proposition holds for any command a’, b’ or ¢/ that is a

subexpression of a, b, or c. Then, in any of the following cases

e ais agop a;

e a is cgresultisag

o bis —by

e bisagopay

e bis by op by

e cis X :=ag

e ¢ s ¢p; ey

e cis if by thencgelsec
in any derivation d leading to an evaluation of a, b or ¢ in some state, all
control states appearing in d must either appear in the derivations of the
given subexpressions, or, in the case of ¢, must be ¢ itself. By induction,
all possible control states of each subexpression must be subexpressions

of that subexpression, and thus subexpressions of a, b or ¢ as appropriate,
so the proposition holds.
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If ¢ is whiled’ doc’ then we can prove the proposition by the minimum
principle: pick a o and o’ such that the derivation d IF {¢, 0)—,0o' contains
a control state that is not a subexpression of ¢, and d 1s a minimal such
derivation (i.e., d contains no subderivations of (¢, 69)—,01 which violate
the proposition). Derivation d must end with either

(b, 0)—, (false, ')

(¢, 0)—r0’

or
(b/’ 0')_'r<tl'ue, 0'”) (C’, 0'”)—*r0'm (C, UIII)—*TO'I
!

@o)—=

Since b’ and ¢’ are subexpressions of ¢, the proposition applies to them by
induction. Thus, if d contains any control states that are not subexpres-
sions of ¢, d must end with the second (while-true) rule, and these control
states must appear in the derivation of (¢, o’"")—,0’. But that means that
there is a subderivation of d that violates the proposition, so d is not min-
imal, which is a contradiction. Thus ¢ satisfies the proposition, and all
control states of ¢ are subexpressions of c.

3(c) Show the same result for the one-step control states.

This problem was a blunder on our part, since the obvious “same result” about
the control states of —, | is, in fact, false; consider the one-step control states
of X := X. For any state o, we can derive (X := X,0)—,1(X = 0(X), 0).
But 0(X) can be any integer, so X := X' has a one-step control state X :=n
for every n € N.

There is, tn fact, a notion of finite-state control to be found here, but the defi-
nitions we've given won't get to it

3(d) Briefly discuss how this observation could be used to improve
the efficiency of an interpreter for IMP, based on the natural or one-
step operational semantics.

If we know that a given program will only involve finitely many control states
in its execution then we can, in some sense, compile it into a list of those states,
together with rules for evaluating any given control state. For example, if we
know we’re evaluating a given control state, we know in advance which other
control states we might need to evaluate, and under which conditions we will
need to evaluate them. All this information can be compiled into a compact
form before we attempt the evaluation.
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This is an instance of a common, simple model of computation, in which pro-
grams are considered to be finite objects, including only a text (i.e., a list of
control states) and a “program counter” pointing to the next portion of text to
be evaluated. Memory, however large, can then be considered a separate, and
in a sense much simpler and more uniform, object.
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Problem Set 4 Solutions

Problem 2. Let S be a set, and P be Pow(S) with the set containment
relation (C).

2(a) Prove that P is a partial order in which the lub of a family S
of subsets of S exists and in fact equals |JS. Likewise for glb’s and
intersections ([1). Conclude that Pow(S) is a cpo.

For P to be a partial order, the ordering relation must be reflexive, transitive
and anti-symmetric. In excruciating detail, then:

o Trivially, for any set A € P, every @ € A is an element of A,s0 A C A, so
C is reflexive.

e For any sets A,B,C € PwithACBCC(C,ifac Athena€ B,soa€ C,
so A C C, so C is transitive.

o For any two distinct sets A, B € P, assume A C B and B C A. If A and
B are distinct, then there is some element in one that is not in the other,
but this will violate either A C B or B C A. Thus C is anti-symmetric.

Now, consider a family of sets S C P and their union, [ JS. Then, for any set
A€ S,ifa€ Athen a € |JS (by the definition of the union), so A C|JS, so
[JS is an upper bound on §. Now, consider any other upper bound U on S.
Forany a € | S, we know a € A for some A € §, so, since A CU,a € U. Thus
US CU,so S is a least upper bound on §.

Consider now [|S. Then, for any set A € S, if a € (S then a € A (by the
definition of the intersection), so (1S C A for all A € S, s0 S is a lower bound
on S&. Now, consider any other lower bound L on §. For any a € L, we know
a € Aforall A€ S, but then a € (S. Thus L C (NS, so (S is a greatest
lower bound on S.

2(b) Why isn’t Pow/;(S), the family of finite subsets of S, a cpo under
containment?

For Pow;(S) to be a cpo, it would have to include greatest lower bounds for
all nondecreasing w-chains in it. For a quick counterexample to this, let S be
w, the set of natural numbers. Then, for each i > 0, let 4; = {j |0 < j < i}.
Each A; is in Powy(w), and, in fact, the 4;’s form an increasing w-chain under
C. However, there is no finite subset B of w such that A; C B for all A;, so this
chain has no upper bound (let alone a least one) in Pow;(w).
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2(c) Prove that in P, the binary operation lub is continuous in each
argument, t.e., for any fixed p € P, the function f, ;5 : P— P is con-
tinuous where f; 1yn(z) = lub(x,p) = 2 Up. Likewise for glb.

Take f = fpub for some arbitrary p € P. For f to be continuous, it must be
true that, for any nondecreasing w-chain Ag, Ay, ..., |J; f(Ai) = f(U; 4i). In
the case of P and f, this means we have to show that |J;(pU A;) = pU|; 4.
In detail, then, consider any a € |J;(p U A4;). By the definition of the union, a
must be in p U A; for some i, so a must be in either p or A;; but if a € A; then
a € |J; Ai, so in either case a € pUJ; Ai.

Similarly, if a € pU Ui A; then either a € p or a € A; for some A;. Thus
a € pU A; for some 4;, so ¢ € |J;(pU 4i). Thus J;(pU 4i) = pUlJ; 4.

Problem 3. Let U = [0,1] be the closed unit interval with the usual
order. Since U is a totally ordered cpo, a function f : U — U may be
order-continuous as well as real-continuous in the usual (¢-§) sense.
For each of the f;’s below, indicate whether it is monotone, real-
continuous, and/or order-continuous.

3(a) fo(x)=0.0 for 2 < 1/2, folz) =0.1 for 2 > 1/2.

e If y > 2 then fo(y) > fo(x), so fo is monotone.
¢ fo is not real-continuous (look at z = 1/2).

¢ Take an increasing w-chain ag,ay, ... with least upper bound 1/2 (say,
the sequence 0,1/4,3/8,7/16,...). fo(a;) = 0.0 for any 7 in this chain, so
Ll; fo(ai) = 0.0, but fo(ll; @i) = fo(1/2) = 0.1 # |; fo(ai), so fo is not

order-continuous.

3(b) fi(z)=0.0for z<1/2, fi(z)=0.1for z>1/2.

e As before, f1 is monotone.
e Again, f) is discontinuous at 1/2.

o This time, if any chain has a least upper bound which is greater than 1/2
(thus causing |, fi(a;) = 0.1), then it must have some element greater
than 1/2 (since otherwise 1/2 would be a smaller upper bound). Thus,
for any chain {a;}, if |J; i > 1/2 then | ; fi(a:) = 0.1 = f1(|J; ), and
otherwise |_J; fi(ai) = 0.0 = fi(|J; @), so fi is order continuous.
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3(c) folz)=1/(z+1).

e f, is not monotone, since, e.g., f(0) =1> 1/2 = f(1).

e fo is real-continuous on the interval {0,1] (though not necessarily outside
it).

¢ Since fo is not monotone, it can’t be order-continuous.

Problem 4. Let (P, <) be a poset. Define f: P —~Pow(P) by f(z) =
{vePly<e).

4(a) Prove z <y iff f(z) C f(y).

Assume z < y. Now, z € f(z) iff - < z, but then z < y,s0 z € f(y). Conversely,
assume f(z) C f(y). Then, for all z < 2, = < y; in particular, since z < z, we
have z < y.

4(b) Suppose P is a cpo. Prove that f is continuous iff there is no
strictly increasing infinite chain of elements in P.

Assume that there is a strictly increasing infinite chain ag,a;,...in P. Then,
since P is a cpo, {a;} has a least upper bound. Let a = | J; a;. Since {a;} is
strictly increasing and infinite, we know that a £ a; for any a; (since, otherwise,
we would have a;y; strictly greater than a, which would be a contradiction).
Now, since a £ a; for any ¢, a ¢ f(a;) for any i, so a ¢ |J; f(a;); but by
definition, a € f(a) = f(J; @), so f(; @) # L) f(a:), so f is not continuous.

On the other hand, assume there is no such chain. Then, for any nondecreasing
chain {a;} in P, | |; a; = a; for some j (in other words, every nondecreasing
chain eventually reaches its maximum value). By 4(a), then, f(a;) C f(a;) for
all i, so |J; f(ai) = f(a;), which gives us

f(LJ @) = f(a;) = U fai)

so f is continuous.

Problem 5. Define the denotational semantics of IMP, by struc-
tural induction, omitting the case of while-loops. (Notation: let
Ar = T—(Num xX) be the domain of values of Aexp,, likewise B,
for Bexp,, and C = £ — X for Com,.)
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Assuming while-loops are taken care of, we can extend A, B and C to A,, B,
and C, as follows:

A [n]e = (n,0)

A [X]e = (0(X),0)
(ng op ny,0’) if A Jao]e = (ng,0") &

A, [ao op ay]o = A, la1]e” = (n1,0’) for some o
undefined otherwise

A, [cresultisa] = A,[a] o C.[c]

B, [true]o = (true, o)

B, [false]c = (false, o)

B, [-b]o = {(ﬂt,a") if B.[b]o = (¢, 0")

undefined otherwise

(no op ny,a') if A fag)e = (ng,0"") &

B, [ag op ai]e = A, Ja1]e"” = (ny, ¢') for some o”
undefined otherwise
(ta op t1,0") if B,.[bo]o = (to,0") &

B, [bg op b1]o = B.[b;]¢" = (1;,¢') for some o
undefined otherwise

C.[skip]e = ¢
C X :=dlo = {

Crleoi er] = Crer] o Cr [eo]

d[n/X] if A [a]e = (n,o’)

undefined otherwise

Cileo)e’  if B Jb)o = (true, o)
C.lif bthencoelseci]o = < C.[ei]o’  if B, [b]e = (false, ¢’)
undefined otherwise

Problem 6. Let w € Com, be whilebdoc.

6(a) Carefully define the functionT,, : C'— C such that C[w] = fiz(T,).
Following the text, we can define I'y, as
g if B-[b]e = (true, o’) & (¢ o Cr[c])(6") = o

Fu(p)e) =o' if B, [b]o = (false, o’)
undefined otherwise
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6(b)

Prove that 'y, 1s continuous.

Take some chain of meanings v9 < ¥, < -+, where each «; is an element of C
(i.e., a partial function in ¥ —X). v < v if y(¢) = ¢’ 2 7'(¢) = ¢’. We must

show

that Ty (LJ; ) = ;i Tw(%).

Let ¥ = | ;7. For any ¢ € I, we have to show that T'y(y)o is defined iff
L Tw(7:) is defined, and if both are defined then they are equal.

Thus

If B.[b}o is undefined, then so is T'y(¢)(o) for any ¢; therefore, so are
Ty (7)(e) and Ty (7:)(o) for all 4;, and thus so is (| ; T'w(7:i))(o)

If B.[b]Jo = (false,o’) for some o', then Ty(p)(c) = ¢’ for all ¢, so
Luw(7)(0) = Tw(7i)(o) for all for any i, so Ly (¥)(¢) = (IJ; Tw(m:))(0).

If B.[b}e = (true, ') for some o’/ then L'y, (¢)(0) = poCr[c](¢"), for any
. Now, if C-[c](¢”) is undefined, then I'y(¢)(0) is undefined for all ¢.
On the other hand, if C, [¢](¢”) = o' for some &', then T'y(7)(¢) = 7(¢").
By the ordering on partial functions, it must be true that if v(¢'"’) is unde-
fined then so are all v;(¢’”'), and if 4(¢’”’) = ¢’ for some ¢’ then, for some 7,
Yi(¢") = o', so Ty (7i)(¢"') = ¢', which means that | |,(Tw(7:))(e) = o'.
Similarly, if | |;,(Tw(7%))(¢) = o', B, [b]e = (true,¢”) and C.[c]o” = o',
then v;(¢”’) = o', so ¥(¢"') = ¢, so Ty (7)(0) = o’.

Thus, I'y(7)(o) is defined and has value ¢’ iff | [,(T'w (7)) is also defined
with value o’.

rw(u v) = [_l Te(i)
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Last Year’s Quiz #2, and Solutions

The original exam had two appendices for reference: Appendix A provided
the complete definition of the denotational semantics for the language IMP,
Appendix B provided the syntax and the definition the “evaluates to” relation
—+, for the language IMP,..

Problems 1-3 concern the language IMP,..

We now describe the denotational semantics of IMP,.. The semantic functions
Ar : Aexp = (¥ —(Num x X))
B, : Berxp—v(E —(T x X))
Cr: Ccr:m —~(E—=Y)

are defined by structural induction on the expressions and the commands of
IMP, simultaneously.

As usual, we use n, sometimes with subscripts as in ngp, n;, to denote arbitrary
elements of Num. Similarly, we assume X,Y € Loc, a € Aexp,,t € T =
{true, false}, b € Bexp,, c € Com,, and ¢ € £ = the set of states.

A [n]o = (n, )
'A"II‘X]]U = (O'(X),O')

{no +n1,0") if A-fac]e = (no, ") &
Arlag + arfo = Arfar]o” = (n1, '),
undefined otherwise.

Acfa]e” i Crlc]o = o”,
undefined otherwise.

Ar[cresultisa]o = {

The definitions of A,Jap — a1} and A,[ag x a,] are similar to the definition of
Arfao + a1]- Some other selected cases follow.

bl — (—t,o’) if B,.[b]e = (¢, 0'),
B [~b}o = { undefined otherwise.
C.[skip]o =0
Crleo; e1]o = Cre1](Crfeo]o)
C/leolo” if B.[b)o = (true,s”),
C.JifbthencoelseciJo =< C.fei]o” if B [b]o = (false, o),
undefined otherwise.
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Problem 1 [25 points]. Supply definitions for the following cases:

1(a) [12 points]. B, [ao = a1]
Solution:

(true,o’) if 30", 1o, n1. 4, fao)e = (ng, ") &
.A,-l[alﬂtfll = (nl,cr’) & ng # n,
B.[ag = a1]e = ¢ (false, ¢’) if 0", ng,n1.A,Jag)e = (no,0") &
Arlai]o” = (n1,0') & ng = ny,
undefined otherwise.

1(b) (13 points]. C.[X := q].
Solution:

d[n/X] o AJa)o = (n,d'),

undefined otherwise.

X = afo = {

Problem 2 [25 points]. We define
C.[whilebdoc] = fiz(T;)
where Iy : (£ — ) —(X — X) is chosen to have the property that
T (C.[']) = C.[if b thenc; ¢ elseskip].

In particular, T, is defined by:
o if B, [b]o = (false, o'),
Lo(p)o =< ¢(Crlc)e”) if Br[b]o = (true,s”),
undefined  otherwise.

Since a partial function ¢ : £ — ¥ can be regarded as a subset of £ x X, the
function I'; can also be thought of as a function taking a set of state-pairs to
another set of state-pairs. We can then conclude, just as was done in class for
IMP, that T, is continuous and fiz([';) is well-defined because I' = R for a
certain set of rules R.

Give a set of rules R with the property that T, = R.

Hint: (For the exam, the set of rules used in the corresponding case for IMP
were repeated in Appendix A.)

R = {(8/(0,0")) | B[b]o = (false,o’)} U
{({(‘7”,» ol)}/ (o, a’)) | 30", Blb]o = (true, o) & Clc]o" = 0'"}
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Problem 3 [25 points]. A proof that evaluation behavior determines denota-
tional meaning for IMP, can be done by rule induction on the full set of rules
simultaneously defining —, for expressions and commands. The induction hy-
pothesis P(3), where 3 is an “evaluation tuple,” is defined to be the conjunction
(“and”) of the following three assertions:

if 8 = (a,0,n,0’), then A [a]e = (n,d');
if 8= (b,0,t,0"), then B,[b]o = (t,0");
if 8= (c,0,0'), then C.[c]o =o'

Give the subcase of the inductive proof for the rule (if-true —,):

We must show that P(3) holds because 3 = (¢,0,0’), and (c,0)—, 0’ due to the
rule (if-true —,). So, we may assume that ¢ = if bthencoelsecy, and there
exists a ¢ such that:

(b, o)—r(true, o), {cg,0")—.0'
(if bthencg elsecy, o) — -0’

Since we are doing a rule induction, we may now assume P((co,0”,0')) and
P((b, o, true,d")).

Our goal is to show that C.[if bthencoelseci]o = o'. We look back 1o the
introduction and see the definition:

Crleole” i B [b]o = (true,d”),
C-lifbthencoelseci]o = ¢ C.[ei]e” i B.[b]o = (false, o),
undefined otherwise.
Since P((b, o, true,¢”)), B.[B]o = (true,c”), so
C-[if bthencg else C1]o = Crfco)o”.
Since P((co,0"”,0’)), we have
Crleode” =o',

thus giving C.[if bthencgelseci]o = o', ezactly as required.
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Problem 4 [25 points].

4(a) [8 points]. Describe a cpo C and a continuous function
g : C—C such that g has no fixed point. You need not prove any of the
properties of your example.

Hint: C cannot have a least element.

Let C be {true,false} with the discrete partial order, so all functions from C
to C are conlinuous, and let g be “negate.”

Another ezample is to let C be the negative integers ordered as usual (by value),
and g be the predecessor function.

4(b) [17 points]. Let D be a cpo, d € D, and f : D— D be a continuous
function such that d Cp f(d). Prove that f has a fixed point d’ such that
dCp d'.

Hint: Let d' = |,5, f((d).

This problem was essentially Theorem 16 from page 64 of Winskel in disguise.
We must prove that d' exzists. Bui since d C f(d), we have by monotonicily
that f(d) T f(£(d)) and f(f(d)) T F(F(F(d)),... so, d, f(d), fD(),... is an

ascending chain, and therefore has an lub d' in the cpo D.

We then need to prove that d' has the following two properties:

e dCp d

o d' is a fired point of f. viz. f(d') =d'.

To argue d Cp d'. We recall that a fundamental property of | | is:

Vo > 0.f"(d) Cp | | £7)(d)
n>0

So specifically, d = fO)(d) C d'.

We argue that d' is a fized point as follows:
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@y = fL @ (by definition of d')
= dzf(J( ™ (d)) (by continuity of f)
= n[jo Fr(a) (by definition of f("))
= n[jo F(d) (by change of n + 1 to n)
= n[j oA u{d)  (since dC f(d) = fN)(d))
= nlj fOUDU{fOd)}  (since d = fO(d))
= n[jﬂ")(d)
n30

= d (by definition of d’)
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Last Year’s Quiz #3, and Solutions

The original exam had one appendix, giving the syntax and the definition the
“evaluates to” relation —,. for the language IMP,.

Problem 1 [20 points].

1(a) [5 points]. Define a formula DIVIDES € Assn with free integer variables
1, j, which means “j divides ¢,” that is, we require that:

o ! DIVIDES iff  I(j) divides I(i).

Solution: 3k.j x k=1

1(b\) [7 points]. Define a formula PRIME € Assn with free integer variable i,
which means “i is a prime.” You may assume the result of problem 1(a).

Hint: A prime is a number larger than 1, whose only divisor greater than 1 is
itself.

Solution: 2 < iAV;.((2 < jADIVIDES) = j =1)

1(c) [8 points]. There is a while-invariant of the form
n Xi+nxY4+n3x X=0
appropriate for a Hoare logic proof of the partial correctness assertion:

{X=0A2xY =i}e{X =1}

where ¢ is the command: while (Y = 0) do
Y =Y-1,
X =X+1

What are the values of n;, n2, and n3 (Partial credit may be awarded, please
show your work)?

Solution: The expected invariant is i = 2 x Y + X, son; = -1, ny = 2 and
nz = 1 (or any multiples thereof).
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Problem 2 [15 points}.

2(a) [5 points]. State the definition of o =7 {A}c{B}.
Solution: if o =7 A4, and if C[c]o is defined, then C[c]o =’ B.

A weakest precondition of an assertion B under a command ¢ is any logical
formula, W, such that o ! W iff

if C[c]o is defined, then Cc]e ! B.

Note that, by definition, all weakest preconditions of B under ¢ are equivalent
logical formulas.

2(b) [10 points]. Exhibit an A € Assn such that A is a weakest precondition
of B under ¢ where:
e=if X <Y xYthenY ;=Y + Y elseskip
B=YxY<Z+1

Solution: The best way to solve this problem was to chug through the definition
of the formula W (e, B) given in class. So:
Wie,B)=(W({Y =Y +Y,B)AX <Y xY)
= V(W(skip, B)A=~(X <Y xY))
W =Y +Y,B)=B[Y+Y/Y] = (Y+Y)x(Y+Y)<Z+1
W (skip, B) = B

and so anything logically equivalent to:
(Y+Y)x(Y+Y) < Z+1IAXKY xY)V(YxY < Z+1)A-(X <Y xY))

1s acceptable.

Problem 3 [20 points]. Although primality is easy to express with an arith-
metic first-order formula, other familiar number-theoretic functions, e.g., expo-
nentiation, are not so straightforwardly expressible as Assn’s. But our study
of expressiveness implies that exponentiation and indeed every function which
can be computed by, or even “checked” by, an IMP command, is expressible
by Assn’s.

More precisely, we shall say that a binary relation, R, on numbers is called IMP-
checkable iff there is an IMP command which halts when run on precisely those
states o for which R(a(X1),o(X2)).
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3(a) [8 points]. Explain why the relation R(n,m) defined by (n = 2™) is
IMP-checkable.

Because the following IMP command ¢ halts when run on precisely those states
o for which R(c(X}),o(X3)). The key to an acceptable solution is a convincing
argument that such a command does exist. Clearly exhibiting one will do the
job.

X3 = 1',

while 1< X, do
X3 = Xa X 2;
X=X -1,

if X1 = X3 thenskip else(while true do skip)

3(b) [12 points]. Show that for any IMP-checkable relation R, there is an
AR € Assn, such that

o =l Ar iff R(0(X1), 0(X2))

Hinl: Expressiveness.

Solution:
Ap := ~W/(cg, false)

will have the required properties, where cg is a command which checks R.

A weakest precondition of false under cg, will be true in precisely those states
o in which R(0(X}),0(X2)) does not hold, the negation of W,.(cg,false) is
satisfied by the desired set of states.

The next problems concern a Hoare logic for the language IMP,., obtained by
extending IMP with a resultis construct, as in Quiz 2. Recall that IMP,
evaluation contrasts with IMP evaluation because IMP, expressions have side
effects and so return botk states as well as values.

This is sufficient to determine the denotational semantics, since:

(a,0)—r(n,o'y iff Ala]o=(n,o)

and (¢, o)—,0’ iff Cla]o =o'

and similarly for Bexp,’s.

As for ordinary Hoare logic, we will need to prove the expressiveness of Assn
for IMP,. (We will NOT change the definition of Assn! It is precisely as it
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was for IMP; so there are no commands embedded within Assn’s.) To do this
we will need a notion of weakest precondition for ezpressions, referring to both
the value and the state after evaluation. We define a weakest precondition for
a number n and assertion B, with respect to an expression a € Aexp,, to be a
logical formula W which means “if a successfully evaluates, then its value is n
and the final state satisfies B.” More formally we have ¢ =T W iff

Afae = (n,¢') = (I(i) =n& ' ' B), foralln € Num,o’ € T.

We can define Assn’s W, (a, i, B) expressing weakest preconditions for Aexp,’s
and likewise Assn’s W, (¢, B) for commands (and similarly for Bexp,’s, which
we omit) by structural induction simultaneously on expressions and commands.

For example, some cases in the definition of W,{(a,i, B) and W, (¢, B) € Assn
are:

Wr(n,i,B) :==(n=1i{)AB
We(ar + as,4, B) = 34,.340.(2 = iy + i2) A We(ay, 1, (Wr(ag, ia, B)))
where i{; and i, are “fresh.”
W, (skip, B) := B

Problem 4 [25 points]. Supply definitions for the following cases, assuming
by structural induction the existence of Assn’s W,(...) for subexpressions and
subcommands:

4(a) [5 points]. W,(X,i, B)

Solution: it = X A B

4(b) [10 points]. W, (cresultisa,i, B)
Solution: W, (¢, Wr(a, i, B))

4(c) [10 points]. W,.(X :=a, B)

Hint: A straightforward version is of the form Qi.W,(a,1, B[-/]), where Q is
one of V or 3, and of course the dots need to be filled in.

Solution: 3. W,(a, i, B[i/X]), where ¢ is “fresh.”
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Problem 5 [20 points]. In IMP,, all of Hoare logic is essentially embodied
in the assignment axiom because ¢ and X := cresultis X are equivalent com-
mands. So we content ourselves with defining a Hoare logic just for IMP,
assignment statements.

We observed in the previous problem that for any IMP, command c and B €
Assn, there is a formula W, (¢, B) € Assn which is a weakest precondition.
(The present problem does not depend on the correctness of your answer to the
Problem 4(c).) The provability relation, t,, of the logic is determined by the
following two rules:

Rule for assignments:
{W.(X :=a,B)}X :=a{B}
Rule of consequence:

E(A=4) {(A)e(B) E(B'=B)
(A1e(B)

Show that F, is complete for partial correctness assertions about assignments.
In other words, show that

E{4}X :=a{B} = t.{A}X :=a{B}.

Hint: You may use the fact that the assertion A = W, (¢, B) is equivalent to
the partial correctness assertion {A}c{B}.

Solution: By the assignment rule:

Fe{Wo(X :=a, B)}X = a{B}

By assumption, | {A}X := a{B}. Since {A}X := a{B}, and A = W, (X :=
a, B) are equivalent, it is also the case that | 4 = W,.(X := a, B). Obviously,
= B = B, so by the rule of consequence (with ¢ ::= X :=a, A’ 1= W, (X :=
a,B), and B’ ::= B):

F{A}X = a{B}
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Problem Set 5 Solutions

Problem 1. Let C = £ —X be the “command meanings,” namely,
partial functions from ¥ to X, For f € C, let

graph(f) = {(0,0') | f(0) = ¢'}.
Partially order C by the rule that f; <¢ f2 iff graph(f,) C graph(f2).
Prove that C is a cpo.

We will prove that, for any w-chain fo, f1,..., the union G = |J; graph(f;) is
the graph of a function f, and f is the least upper bound of the chain {f;}.

Assume G is not the graph of a function. Then, there are (¢,0') € G and
(0,06") € G with ¢’ # ¢”. Since G is the union of the graphs of the func-
tions {f;}, there must be f; and fi; such that (¢, ') € graph(f;) and (s,0") €
graph(fi). Since f; and fi; are members of the same chain, they must be ordered.
Without loss of generality, assume f; <c fi. But then, graph(f;) C graph(fi),
so both (o,0’) and (o, 0") are in graph(f), contradicting the fact that f is a
function.

Thus, G is the graph of some function g. Now, by definition, f; <¢ g for all ¢, so
g is an upper bound on {f;}. Suppose there is another h such that f; <¢ h for all
i; that is, graph(f;) C graph(h) for all i. Then, G = {J; graph(f;) C graph(h),
so ¢ <c h and g is a least upper bound of {f;}.

Thus, all w-chains have least upper bounds, so C is a cpo.

Problem 2. Let ¥, be the set of states, £, along with a “fresh”
object, 1, called the “bottom state.” Partially order £; by the rule
that

o1 <g, o2 iff (61 = 1) or (o1 = 72)].
Let S be the set of total functions g : £; —X; such that g(1) = L
(such functions are called “strict”). Partially order S by the rule
that g, <5 g2 iff 91(¢) <z, g2(0) for all c € ;.

2(a) Describe a bijection taking any f € C to an f* € S such that

h<chiff fi<sfs.
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Let H : C — S be defined by H(f) = f*, where

s f(e) if ¢ # L and f(o) is defined
f(0)= {L .
otherwise

To see that H is injective, assume there are f,g € C with H(f) = H(g). Then,
foralle € ., H(f)(¢) = H(g)(c). In particular, this is true for all o # L; but
by the definition of H, this means that f and g agreeon alle € £,s0 f = g.
To see that H is surjective, pick any s € S. Now, take the function f € C such
that f(o) = s(o) if s(c) # L, with f undefined otherwise. Now, H(f) = s, so,
since every s € S has such an f, H is surjective. Thus, H is a bijection.

Further, if f <¢ g, then, whenever f(os) = o', we have g(¢) = o’. By the
definition of H, then, H(f) <5 H(g). Conversely, if H(f) <s H{(g), then, if
f(e) =d'(# 1), H(f)(0) = o', so H(g)(o) = ¢’, so, by the definition of H, it
must be that g(¢) =o', s0 f <c g.

2(b) Conclude that S is a cpo.

Let H be as above. Since H is a bijection, it has an inverse, H~!, which, by 2(a)
is also order-preserving (monotonic). Now, any nondecreasing w-chain in S has
a least upper bound: consider such an w-chain f§ <s fJ <s ---in S. Since
H~! is monotonic, the H~!(f?)’s form a nondecreasing w-chain in C. Since C
is a cpo, the chain has a least upper bound, say g. Since H~(f?) <¢ g for
all 4, and h is monotonic, ff = H o H~1(f}) <s H(g) for all 7, so {f#} has
an upper bound. Similarly, suppose there is some other upper bound, g{ € S.
Then, H™1(g}) is an upper bound on the H~!(f})’s, so g <¢ H™1(g}), since g¢
is a least upper bound in C, so H(g) <5 H o H™1(g}) = g}, so H(g) is a least
upper bound on {f{} in S.

Since all nondecreasing w-chains have least upper bounds, S is a cpo.

Problem 3. Inthe answers to the this and the next problem, we will introduce
the following convention for referring to predicates. Say that, as in class, we
define a predicate

PRIME(p) = (~(p < 1) AVioNjo.((io x jo = p A =(io < 1)) = jo = 1))

If we then, in the course of defining another predicate, refer to PRIME(k), this
will be taken to mean the above predicate, with k substituted for p. (To avoid
scoping problems, we make sure to choose k to be an integer variable different
from ¢ and j.) We will also allow k to be an integer, e.g. PRIME(5).



6.044J/18.423J Handout 26: Problem Set 5 Solutions 3

3(a) Write a formula POWP € Assn with free variables p,i which
means “p is prime and : is a power of p”.

Given PRIME(p) as above, we can define POWP(p,i) to be true when p is
prime, i > 1, and every j # 1 which divides 7 is in turn a multiple of p.

POWP(p,i)= (PRIME(p) A (L < )A
le.("l(jl = 1) A Ekl.jl X kl = 1) :>(3k1.p x ky = ]1))

3(b) Write a formula LEN € Assn with free variables i, j, p, such that
LEN means “p is prime and j = p' where [ is the length of the base p
representation of i.”

If i > 1, then j = p' should be the least power of p greater than i. If i = 0, then
Il=1,s0j3=p.

LEN(p,i,7) = ((=0=j=pA
(1<i=x(POWP(p,j)A(GE+1<jA
Vk2.(POWP(p, ka) A (i+ 1 < ko) =>(j < k2)))))

3(c) Write a formula CONCAT € Assn with free variables p,i,j,k
which means: “p is prime and (i), - (j)p = (k)p.”

We want k = p' x i +j where [ = length((j),).
CONCAT(p,1,4,k) = (34.(LEN(p, j, o) ANk =i x o + 7))

Problem 4.

4(a) For k,n > 1, let s(k,n) be the string of numbers
01k02k%...0nk".

Describe a formula KNS € Assn with free variables j, k, n which means
“(j)p = s(k,n) for some p.”

This problem was made more complicated than necessary by the presence of the
leading 0 in s(k, n). Since the eventual goal is simply to represent the sequence
k' ... k", we will here slightly change the definition of the problem, placing the
first 0 at the end. From now on, let s(k,n) be the string of numbers

1k02k%0...nk™0

Now, an essential idea is that there must be some prime p large enough that
every number in the string s(k,n) is less than p, and thus can be represented
as a single base-p digit.
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We will first define some other useful predicates. We will start by defining
WINDOW (p, j, z1, %2, 23, 24, T5, Tg) to be true if z; through ze are consecutive
digits in the base-p representation of j. This can be done by using CONCAT
to say that j can be split into an initial segment wq (which we will then ignore)
and a remainder w;, and then assert that each w; can be split into z; and wi41.
Visually, if d; are the base-p digits of j from left to right, and all the z; are less
than p, then we’re splitting j as follows:

]

.

do---di-y  di  diyy diyy digs dipa digs di+6"?

N ~
-
wo wh
S N v
T wa
\# . o
3 w3
A 7
N~ o~
T3 Wy
v ~ w "
Ty ws
N v, p—
Ts We
N N —
Te wy

WINDOW (p, j, z1, T2, £3, T4, T5, Tg) = (Jwo.3w,.Iws. 3wz . Jws. Jws. Jwe.Jwy.

CONCAT(p, Wwo, wl,j)/\

CONCAT(p, z1, wa, w1)A
CONCAT(p, 22, w3, wy)A
CONCAT(p, 3, ws, w3)A
CONCAT(p, x4, w5, ws)A
CONCAT(p, z5, we, ws)A
CONCAT(p, x¢, w7, we))

Now, using WINDOW , we can write an intermediate predicate CONSISTENT,
which checks that, if the string of base-p digits ia0 appears in the base-p repre-
sentation of j, then it is followed by (¢ + 1)(a x )0

CONSISTENT (p, j, i, k) =

(Yyo.Vy1 Vy2 Vys .(WINDOW (p, 3, %, Y0, 0, 1, ¥2, ¥3)A
O<pAw<p-DAOSnAn<p-1A
O<yAp<p-1DAO<LysAy3<p-1))
S =i+1Ayp =y xkAys =0))

Predicates (with free variables p, j, k and p, j, k, n, w) to check that k will fit in a
single base-p digit and the beginning and end of j are in the form (0), - (1), - (k)
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and (0)p - (n)p - (w)p is

START(P, 7 k) = (k <p- 1) A (320.321‘322.CONCAT(17) 1, 2o, J)A
CONCAT(p, k, 21, 20)A
CONCAT(p,0, z3,21))

FINISH(p, j,n,w) = (320.321.322. CONCAT(p, 20, 21, j)A
CONCAT(p,n, z3, z1)A
CONCAT(p,w,0, z3))

A final intermediate predicate, which we’ll need for the next subproblem, is one
that, given p, checks the beginning, end, and each intermediate step of (j),.

KNS'(p,j, k,n)= Buw(l<wAw<p=-1A
START(p,j, k) A FINISH(p, j,n, w))A
Vzl(l <HAHp<n- 1) = CONSISTENT(]),], ’L],k))

Then,
KNS(j,k,n)=3p.KNS'(p,j, k,n).

4(b) Describe a formula POW € Assn with free variables i, k, n which
means “; = k".”

We need only say that there are a p and a j such that (j), is equal to s(k,n)
and the second-to-last digit of (), is 1.

POW (i, k,n) = (3p.3j.KNS'(p, j, k, n) A FINISH (p, j, n,1))
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Quiz 2

Instructions. This is a closed book exam; no notes either. There are eight (8)
problems worth 10-20 points each as indicated on pages 2-3 of this booklet.
Following the quiz, there are several appendices containing selected definitions
cited in the problems.

Write your solutions for all problems in the examination books provided, in-
cluding your neme on each eramination book. Be sure to indicate clearly in
your examination books which answer is associated with which problem. Ask
for further books if you need them.

GOOD LUCK!



6.044J/18.423J Handout 27: Quiz 2 2

Problem 1 [20 points]. Explain why it follows directly from the definition of
denotational semantics of IMP (repeated in Appendix A), and the equivalence
of natural evaluation and denotational semantics, that

1(a) [10 points].

if ¢y ~ ¢} and ¢3 ~ ¢}, then (c1;¢) ~ (c};¢5),

1(b) (10 points]. and that

if ¢ ~ ¢, then whilebdoc ~ whilebdoc'.

Problem 2 [15 points]. Let A, B,C be cpo’s,and f : B—C, g : A— B be
continuous total functions. Prove that fog: A—C is continuous.

Problem 3 [10 points]. We define an extension IMPy, of the language IMP
by adding a new Aexp construct “cvalisa” which is a side-effect free version
of the construct cresultisa considered previously. The natural evaluation se-
mantics for valis is given by

{c,0) — o', {a,0') = n
{cvalisa,o) — n

The clauses defining the denotational semantics of the commands and expres-
sions other than valis are the same for IMP,, as for IMP (except that, because
expressions no longer always terminate, the set A of Aexp meanings becomes
the partial functions ¥ — Num instead of the total functions ¥ — Num; like-
wise for B=X—T).

Write the remaining denotational semantics clause for A[c valisaj.

Problem 4 [10 points]. Write an Assn with free integer variables ¢ and j
which means “j is greater than twice the absolute value of 7.”

Hini: Remember that “>” is not a primitive connective in Assn. (The grammar
of Assn is in Appendix B.)

Problem 5 [15 points]. In Problem Set 5, problems 3 and 4, it was shown how
to construct an Assn, POW (i, k,n) which meant “k,n > 1 and i = k™.” The
solutions to those problems are included in Appendix E. A small modification
of one formula, CONSISTENT, used in the construction will change meanings
so that POW (i,1,n) means “n > 1 and i = n!,” wheren!=nx(n—-1)x.--x1.
‘Describe that modification.
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Problem 6 [10 points]. Exhibit Assn’s A and B such that the partial cor-
rectness assertion {A}c{B} means “c diverges when X is even.” (The semantics
of partial correctness assertions are included in Appendix D.)

Problem 7 [10 points]. Exhibit a simple A € Assn such that A=>Vj.4 is not
valid. (No proof or explanation required.) The semantics of Assn are included
in Appendix C.

Problem 8 [10 points]. Prove that for any A € Assn, if A is valid, then so
is Vj.A.
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A Denotational Semantics of IMP

Afnje=n

AlX]o = o(X)

Alao op a1]o = (Afao]o) op (Afa1]o)
Bftrue]s = true

Bffalsejo = false

Bl-b]o = ~(B[b]o)

Blao op a1]o = (Afaoc]o) op (Alai]o)
Bfbo op bi]o = (Bfbo]o) op (B[b:]e)
Clskipje = o

Cl[X := a]o = o[n/X] where n = Afa]o
Cleo; 1] = Cle1] o Cleo]

. Cleole if B[bje = true
Clif b thencyelsec;Jo = {C[Cjtf £ BEb}U = false
Clwhilebdoc] = fiz(Ts.) where

(pollche if Blb]jo = true
Poel)() = { b if B[b%a = false

B Grammar of Assn

Let Aexpv be defined by
au=n|X|ilag+a1lao—a|ao xa
Then Assn is the set of expressions given by

A :=true |false |ag = a1 |ap < a1
| Ao A Ay lAgVA; |ﬁA|A0=>A1
|Vi.A|3iA

where ag and a; range over expressions in Aexpv.
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C Semantics of Aexpv and Assn

Semantics of Aexpv:

Av[n}loc = n

Av[X]}Ie = o(X)

Av[i}lo = I(3)

Avfap op a,]o = (Avfac]ic) op (Avfa,}I0)

The satisfaction relation, |, is defined as follows for Assn. For any o € &,
and interpretation I:

o ! true

o E=! (a0 = ay) if Avfag)lo = Av[a]lo,
o E! (ag < ay) if Avfag)le < Avfa,}Io,
cE'ayna, ifoc = Aand o ! B,
cElaVva ifo !l Aoro ! B,

okl -Aifa T A,

cElay=>a ifc ! Aoro ! B,
cE'ViAif o £/ Aforallne N,

o T Vi.A if ¢ E'I?/i 4 for some n € N,
LEA

D Partial Correctness Assertions

The satisfaction relation for partial correctness assertions is defined by

c =T {A}e{B} ff oE'A = C[]os E'B.

An partial correctness assertion {A}c{B} is valid (| {A}c{B}) if
VIVo € X,. o T {A}e{B})
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E Solution to PS 5, questions 3 and 4

For n > 0,p > 2 we write (n), to denote the string of digits (between 0 and
p~—1) representing n in base p notation, and we use - to denote the concatenation
of strings. For example:

(5)3 = “12”
(21); = “210”
(5)3 - (21)3 = “12210”
=(Ix3*+2x3%+2x3%4+1x3" +0x3%;
= (156)3

Problem 3. 1In the answers to the this and the next problem, we will introduce
the following convention for referring to predicates. Say that, as in class, we
define a predicate

If we then, in the course of defining another predicate, refer to PRIME(k), this
will be taken to mean the above predicate, with k substituted for p. (To avoid
scoping problems, we make sure to choose k to be an integer variable different
from ¢ and j.) We will also allow £ to be an integer, e.g. PRIME(5).

3(a) Write a formula POWP € Assn with free variables p,i which
means “p is prime and ¢ is a power of p”.

Given PRIME(p) as above, we can define POWP(p,i) to be true when p is
prime, 7 > 1, and every j # 1 which divides ¢ is in turn a multiple of p.

POWP(p,i) = (PRIME(p) A(1 < )A
le-(_'(jl = 1) A Hkl.jl x ky = l) =>(3k1.p x ky = J]))

3(b) Write a formula LEN € Assn with free variables i, j, p, such that
LEN means “p is prime and j = p' where [ is the length of the base p
representation of :.”

If i > 1, then j = p' should be the least power of p greater than i. If i = 0, then
=180 j=p.

LEN(p,i,j)= (1=0=j=p)A
(1< i=(POWP(p, ) A(E+ 1< H)A
Vko.(POWP(p, ko) A (i 4+ 1 < ko) =(j < k2)))))
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3(c) Write a formula CONCAT € Assn with free variables p, 1,7 k
which means: “p is prime and (i), - (j), = (k),.”

We want k = p! x i + j where [ = length((j),).
CONCAT(p, i, k) = (3. (LEN(p, j, L) Ak = i x £ + )

Problem 4.

4(a) For k,n > 1, let s{(k,n) be the string of numbers
01k02k...0nk".

Describe a formula KNS € Assn with free variables 7, &, n which means
“(j)p = s(k,n) for some p.”

This problem was made more complicated than necessary by the presence of the
leading 0 in s(k,n). Since the eventual goal is simply to represent the sequence
k!...k", we will here slightly change the definition of the problem, placing the
first 0 at the end. From now on, let s(k,n) be the string of numbers

1k02k%0...nk"0

Now, an essential idea is that there must be some prime p large enough that
every number in the string s(k,n) is less than p, and thus can be represented
as a single base-p digit.

We will first define some other useful predicates. We will start by defining
WINDOW (p, j, 1, 22, &3, 24, T5, Ts) to be true if z; through z¢ are consecutive
digits in the base-p representation of j. This can be done by using CONCAT
to say that j can be split into an initial segment wo (which we will then ignore)
and a remainder w1, and then assert that each w; can be split into z; and w;41.
Visually, if d; are the base-p digits of j from left to right, and all the z; are less
than p, then we’re splitting j as follows:

J

—
-~ ™~

do---diy di  diys diyy diyz digs digs dige- -

N m? -
we wy
SN\ )
——
z) wa
v ~ —— -’
Za wa
e’ N ~ .,
z3 wy
S~ — -’
T4 Wy
[ S —
Ts we
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WINDOW (p, j, z1, 2,23, 24,25, 26) = (Jwo.Fw;.Jwy.TJws. Jws. Jws. Jwes. Jw-.

CONCAT(p, wg, w1, A

CONCAT(p, z1, w2, w1)A
CONCAT(p, z2, w3, wa)A
CONCAT(p, z3, ws, w3)A
CONCAT(p, x4, ws, wa)A
CONCAT(p, x5, We, w5)/\
CONCAT(p, zs, w7, ws))

Now, using WINDOW , we can write an intermediate predicate CONSISTENT,
which checks that, if the string of base-p digits ia0 appears in the base-p repre-
sentation of j, then it is followed by (i + 1)(a x k)0

CONSISTENT(p, j, i, k) =

(Yyo.-Yy1 .Vy2.Yys.(WINDOW (p, j, %, Y0, 0, 41, y2, ¥3)A
O<LwApR<pP-DAOSnAn<p-1)A
0<pAp<pP~-1)AO0<LyAyr<p-1))
:}(yl ::i+1/\y2=y0xk/\y3=0))

Predicates (with free variables p, j, £ and p, j, k, n, w) to check that & will fit in a
single base-p digit and the beginning and end of j are in the form (0),-(1), - (),
and (0), - (n)p - (w)p 1s

START(p,j, k) = (k <p—1) A (320.321.325. CONCAT(p, 1, 20, j)A
CONCAT(p, k, z1, z0)\
CONCAT(p,0, 29, 21))

FINISH(p, j,n,w) = (320.32,.32. CONCAT(p, 20, 21, J)A
CONCAT(p,n, 23, 21)A
CONCAT(p,w,0, z2))

A final intermediate predicate, which we’ll need for the next subproblem, is one
that, given p, checks the beginning, end, and each intermediate step of (7),.

KNS'(p,j, k,n)= (Guw(l<wAw<p—IA

START (p, j, k) A FINISH (p, j, n, w))A
Vi1.(1 <i  Aip <n—1)=>CONSISTENT (p,j,%1,k))

Then,
KNS(j, k,n) = 3p.KNS'(p, j, k, n).
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4(b) Describe a formula POW € Assn with free variables i, k,n which
means “; = k".”

We need only say that there are a p and a j such that (j), is equal to s(k, n)
and the second-to-last digit of (j) is i.

POW (i, k,n) = (3p.3j. KNS'(p, j, k,n) A FINISH(p, j, n, 1))
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Problem Set 6
Due: 4 November 1992
Reading assignment. Winskel §7.1-7.3
Problem 1. Prove that for A, B € Assn, if A is equivalent to B, then
1(a) A AC is equivalent to B A C for any C € Assn.
1(b) 3j.A is equivalent to 35.B for any j € Intvar.
1(c) Ala/j] is equivalent to Bla/j] for any a € Aexp, j € Intvar.
Problem 2.
2(a) Prove 3j.(AV B) is equivalent to (35.4) vV (3j.B).
2(b) Prove 3;j.(A = B) is equivalent to (Vj.A) =(3j.B).
2(c) Prove 3;j.(A A B) is equivalent to A V (3j.B) whenever j & FV(A).
Problem 3. Winskel Exer. 6.13.
Problem 4. Winskel Exer. 6.14.

Problem 5. Winskel Exer. 6.17.
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Grade Statistics for Quiz 2

Number of quizzes taken: 29
Grade range: 51-100

Mean: 81

Median: 79

Histogram:

00-04:
05-09:
10-14:
15-19:
20-24:
25-29:
30-34:
35-39:
40-44:
45-49:
50-54:
55-59:
60-64:
65-69:
70-74:
75-79:
80-84:
85-89:
90-94:
95-100:
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Quiz 2 Solutions

Instructions. This was a closed book exam; no notes either. Following the
quiz, there were several appendices containing selected definitions cited in the
problems.

Problem 1 {20 points]. Explain why it follows directly from the defini-
tion of denotational semantics of IMP, and the equivalence of natural
evaluation and denotational semantics, that

1(a) [10 points].

if ¢c; ~ ¢} and ¢y ~ ¢4, then (c;;c2) ~ (c];ch),

According to the definitions,
Cle1; ca] = Cle2] o Cfei]

and
Clcl; ] = Cleh] o Cey]-

Because the natural evaluation and denotational semantics are equivalent

c1 ~ ¢} = Clc1] = C[c!]

and
¢y ~ ch = Clea] = €[],
S0
Clea} o Cler] = Cleo] o Cei]
Thus,
Cle1; ca] = Cfc; sl
and

't
C1;€2 ~ C1;Cq
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1(b) [10 points]. and that

if ¢ ~ ¢/, then whilebdoc ~ whilebdoc¢'.

As above, ¢ ~ ¢/ = C[c] = C[¢’]. Thus, since

(poCle])o if B[b]o = true

Lye(p)(o) = {0’ if B[b]o = false

we know that 'y, = Ty, s0
Ax(Tp.) = fix(Tyer).

SO

C[whilebdoc] = C[whilebdoc']

by definition, so
whilebdoc ~ whilebdoc'.

Problem 2 [15 points}]. Let A,B,C be cpo’s, and f : B—C, g: A—B
be continuous total functions. Prove that fog: A C is continuous.

First, since ¢ and f are monotonic, if a < a’ {(for a,a’ € A) then g(a) < g(a’),
so f(g(a)) < f(g(a")), so f o g is monotonic.

Now, take any nondecreasing w-chain ag,ay, ... in A. Since ¢ is continuous,
[ Jo(a:) = g(|_]as)-
i i

But, since g is monotonic, {g(a;)} is also a nondecreasing w-chain in B, so, since
f is continuous,

L] fla(ai)y = £(|] 9(a:))
so, putting these together,

LI flg(ai)) = £o(|_|ai))

i

so f o g is continuous.
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Problem 3 [10 points]. We define an extension IMP,,; of the language
IMP by adding a new Aexp construct “cvalise™ which is a side-effect
free version of the construct cresultisa considered previously. The
natural evaluation semantics for valis is given by

(c,0) =o' (a,0) > n
{cvalisa,o) — n

The clauses defining the denotational semantics of the commands
and expressions other than valis are the same for IMP,, as for IMP
(except that, because expressions no longer always terminate, the
set A of Aexp meanings becomes the partial functions ¥ -~ Num instead
of the total functions ¥ — Num; likewise for B = ¥ —T).

Write the remaining denotational semantics clause for A[c valisa].
Alevalisa] = Afa] o C[c].

Problem 4 [10 points]. Write an Assn with free integer variables i
and j which means “j is greater than twice the absolute value of i.”

The simplest answer took advantage of the fact that i? = |i|2:
0<jA-(jxj<4xixi)
Another common solution was to present something along the lines of
(0<iA=(F<2xi)V(ELOA=G < —2x i)

or
(0<i==(j<2xi)AGE<0=>=( < =2x1i)).

Problem 5 [15 points]. In Problem Set 5, problems 3 and 4, it was
shown how to construct an Assn, POW(i, k,n) which meant “k,n > 1
and ¢ = k*.” The solutions to those problems are included in Ap-
pendix E. A small modification of one formula, CONSISTENT, used
in the construction will change meanings so that POW(i,1,n) means
“n > 1 and i = nl,” where n! = n x (n— 1) x --- x 1. Describe that
modification.

The modification corresponds to changing the sequence s(k.n) {where k = 1)

from
102k, .nk™0

to
1502(kx2)...n(kx2x---n)0.
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A “consistent window” now looks like
iy 0(i4+ 1) (yo x (1 +1))0,
so CONSISTENT becomes

CONSISTENT(p, j.i, k) =

(Yyo.Vyr .Yy Vys.(WINDOW (p, J, 7, 30, 0, Y1, y2, y3)A
O<ywAw <p-DAOLy Ay <p- 1A
O<yp Ay <p-1)A0<LyAy3<p-1))
2 =i+1Ayp =y xy1 Ays =0))

Problem 6 [10 points]. Exhibit Assn’s A and B such that the partial
correctness assertion {A}c{B} means “c diverges when X is even.”

This statement is equivalent to, “If ¢ is executed in a state & such that ¢(X) is
even, then there is no state o' such that C{cjo = ¢’” Thus, a correct solution is

A=FnX=2x:
B = false

Problem 7 [10 points]. Exhibit a simple A € Assn such that A=Vj.A
is not valid. (No proof or explanation required.)

A= (J=0)

Ezplanation: for A=>Vj.A not to be valid, there must be some state o and
interpretation I such that o [/ A=Vj.A, which means that ¢ ! 4 and
o ! Vj.A. A simple example of an appropriate A is given above, since, while
there are o and I such that ¢ =/ A, none of them give us o 7 Vi.j = 0.

Problem 8 [10 points]. Prove that for any A € Assn, if A is valid, then
so is Vj. A,

Assume that A is valid. Then, for all states ¢ and interpretations I, o }:] A . In
particular, for all interpretations of the form I[n/j], with n € Num, o /[*/7] A,
Put another way, for all states ¢ and interpretations I, we have

o l*/il A for all n € Num
so, by the definition of =, for all o and I,

o= VjA
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The combination of this question and the preceding one seems, at first glance,
to be a contradiction. Note, however, that the solution to problem 7 presented
an assertion A that was nof valid. The A above was true in some interpretations
and false in others. Thus, the existence of such an A does not contradict the
lemma here, which only deals with valid assertions.
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E Solution to PS 5, questions 3 and 4

For n > 0,p > 2 we write (n), to denote the string of digits (between 0 and
p—1) representing n in base p notation, and we use - to denote the concatenation
of strings. For example:

(8)3 = “127
(21)3 = “210”
(5)3 - (21)3 = “12210”
=(Ix3*4+2x33 +2x32+1x3'4+0x3%;
= (156)3

Problem 3. In the answers to the this and the next problem, we will introduce
the following convention for referring to predicates. Say that, as in class, we
define a predicate

PRIME(p) = (=(p £ 1) AVio.Vjo.((70 X jo = pA—(ig < 1)) = jo = 1))

If we then, in the course of defining another predicate, refer to PRIME(k), this
will be taken to mean the above predicate, with k substituted for p. (To avoid
scoping problems, we make sure to choose & to be an integer variable different
from i and j.) We will also allow k to be an integer, e.g. PRIME(5).

3(a) Write a formula POWP € Assn with free variables p,7 which
means “p is prime and i is a power of p”.

Given PRIME(p) as above, we can define POWP(p, i) to be true when p is
prime, ¢ > 1, and every j # 1 which divides ¢ is in turn a multiple of p.

POWP(p,i) = (PRIME(p) A (1 < i)A
Vi~ = 1) A3k g1 x ky =4)=(Fk1.p x k1 = J1))

3(b) Write a formula LEN &€ Assn with free variables i, j, p, such that
LEN means “p is prime and j = p’ where [ is the length of the base p
representation of i.”

Ifi > 1, then j = pf should be the least power of p greater than i. If ¢ = 0, then
I=1,s0j=p.

LEN(pi,j)= ((i=0=j=p)A
(1<i=(POWP(p,j)A(i+1<j)A
Vka (POWP(p, k2) A(i + 1 < ka) =(j < k2)))))
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3(c) Write a formula CONCAT € Assn with free variables p,i,j k
which means: “p is prime and (i), - (j), = (k)p.”

We want k = p' x i + j where | = length((j),).
CONCAT(p,i,j, k) = (3 (LEN(p, . o) Nk =i x &y + j))

Problem 4.

4(a) For k,n > 1, let s(k,n) be the string of numbers
014k02k%...0nk"™.

Describe a formula KNS € Assn with free variables j, k£, n which means
“(j)p = s(k,n) for some p.”

This problem was made more complicated than necessary by the presence of the
leading 0 in s(k,n). Since the eventual goal is simply to represent the sequence
k... k", we will here slightly change the definition of the problem, placing the
first 0 at the end. From now on, let s(k, n) be the string of numbers

1£02k%0... k"0

Now, an essential idea is that there must be some prime p large enough that
every number in the string s(k,n) is less than p, and thus can be represented
as a single base-p digit.

We will first define some other useful predicates. We will start by defining
WINDOW (p, j, 21,22, 23, 4, T5, &) Lo be true if ; through zs are consecutive
digits in the base-p representation of j. This can be done by using CONCAT
to say that j can be split into an initial segment wg (which we will then ignore)
and a remainder w;, and then assert that each w; can be split into z; and w;4,.
Visually, if d; are the base-p digits of j from left to right, and all the z; are less
than p, then we’re splitting j as follows:

J

A

do---dicy  di  diyr digo digs diza digs digs-

[ —
Wo uny
—— -
E 2 w2
- ~
Tz wa
-~ -
I3 wy
S~ ~~
Ty Wy
Ly We
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WINDOW (p, j, z1, T2, 23,24, %5,26) = (Jwo.Jw;.Iwe.FJws. Jw,. Jws.Jws. Jwr.

CONCAT(p, wg, wy, jIA

CONCAT(p, x1, wa, w1 )A
CONCAT(p, z2, w3, wa)A
CONCAT(p, 3, wa, wa)A
CONCAT(p, x4, ws, wq)A
CONCAT(p, x5, we, ws)A
CONCAT(p, x6, w7, wg))

Now, using WINDOW , we can write an intermediate predicate CONSISTENT,
which checks that, if the string of base-p digits ia0 appears in the base-p repre-
sentation of j, then it is followed by (i + 1)(a x £)0

CONSISTENT(p,j,i, k) =

(Yyo-Vy1 Vy2 Yys.( WINDOW (p, j, i, y0, 0, y1, y2, y3)A
O<wAp<p-DAO0LynAyn <p- 1A
Oy ANyp<p-A0<yAy3<p-1))
> =i+ 1Ay =y xkAy; =0))

Predicates (with free variables p, j, k and p, j, k, n, w) to check that k will fit in a
single base-p digit and the beginning and end of j are in the form (0), -{1), - (k)
and (0), - (n), - (w)p is

START(p.j, k) = (k < p= 1) A (320.32,.322. CONCAT(p, |, 20, )7
CONCAT(p, k, 21, z0)A

CONCAT(p,0, 22, 21))

FINISH(p,j.n,w)= (320.321.32..CONCAT(p, z0, 2. j)A
CONCAT(p,n, z3, 21)A

CONCAT(p,w.0, z0))

A final intermediate predicate. which we’ll need for the next subproblem, is one
that, given p, checks the beginning, end, and each intermediate step of (j),.

KNS'(p,j,k,n)= (Bu(l<wAw<p—IA
START (p,j. k) A FINISH (p, j. n,w))A
Vii.(l1 <iyAiy <n—1)= CONSISTENT(p, j, 11, k))

Then,
KNS(j, k,n) = 3p. KNS (p, j. k.n).

S
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4(b) Describe a formula POW € Assn with free variables i, k£, n which
means “i = k".”

We need only say that there are a p and a j such that (j), is equal to s(k,n)
and the second-to-last digit of (j), is i.

POW (i, k,n) = (3p.3j. KNS'(p, j, k, n) A FINISH (p, j,n, 1))
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Problem Set 7
Due: 11 November 1992

Reading assignment. Winskel, Appendix on Computability.

A sublogic of Assn is a set of Assn’s that is closed under Boolean combina-
tion, quantification, and substituting numbers or integer variables for integer
variables or locations. For certain sublogics (an example will appear soon),
there is a computational “quantifier elimination” procedure that will transform
any Assn, A, in the sublogic into an equivalent quantifier-free Assn, A, in the
sublogic.

Problem 1.

1(a) If a sublogic has a quantifier-elimination procedure. it can be used to
develop procedures to decide

(1) given a formula A of the sublogic, and the values of o{X') for X € loc(A4)
and I(j) for j € FV(A), whether o = 4,

(i) whether or not a formula of the sublogic is valid, and

(iii) whether or not two formulas of the sublogic are equivalent.

Describe procedures for (i), (i) and (iil) assuming quantifier-elimination.

Hint: Use the fact that the quantifier-free Assn’s without free integer variables,
are exactly the Bexp’s, so natural and/or one-step operational semantics pro-
vide procedures for calculating their truth value in any state.

1(b) Suppose for some sublogic that there is an “innermost existential-elim-
ination” procedure that, for any integer variable j and quantifier-free Assn,
A, in the sublogic, constructs another quantifier-free formula, £(j, A), in the
sublogic, such that £(j, A) is equivalent to 3j.A. Using innermost existential-
elimination as a subprocedure, there is a straightforward recursive definition of
a quantifier-elimination procedure for the sublogic. Describe it.

Hint: Vj.A is equivalent to ~3j.-A.
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Define incremental arithmetic expressions, IncAexpv, to be Aexpv’s without
the multiplication or subtraction operations and with addition restricted to
incrementing by an integer. Namely, the grammar for a € IncAexpv is

Au=nlji|X|a+n|n+a

Let IncAssn be the set of Assn’s all of whose arithmetic subexpressions are
IncAexpv’s. Note that IncAssn is a sublogic of Assn.

Define a simple incremental assertion to be a finite conjunction of assertions of
one of the three forms

n<v, v<n, vy +n<e

where n € Num, v, v, v2 € LocUIntvar, and v; and v» are not the same.

Problem 2.

2(a) Describe a special case of an innermost existential-elimination procedure
which works just for simple assertions. That is, if A is a simple assertion, then
so will be £(j, A).

Hint:
Bk +1<j A i+ (=3)<j A j+2<i Aj<—4)

is equivalent to
Jjk+1<jANi=-3<jAj<i=-2Aj<-4)
which is in turn equivalent to
k+1<i—2 Ak+1<—4Ai-3<i—2Ai-3<-4.
which is equivglent to the simple assertion

k+3<i A k<-5Ani<~1

2(b) Describe a procedure that will transform any quantifier-free assertion
A € IncAssn into an equivalent formula §(.4) that is a finite disjunction of
simple assertions.

Hint: ay = ap is equivalent to (a; < az A a2 < ap). =(a; < az) is equivalent
to (a2 + (—1) < a;). Any propositional expression is equivalent to a sum of
products of propositional variables and their negations.
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2(c) Explain how to combine the procedures of problems 2(a) and 2(b) to
obtain an innermost existential-elimination procedure for every quantifier-free
IncAssn, not just simple ones.

Hint: 35.(AV B) is equivalent to (35.4) v (34.B).

Problem 3. The preceding problems provide a computational procedure for
determining validity and equivalence of IncAssn’s. The procedure is total—it
is guaranteed to return the correct answer on every IncAssn—though there
are several stages where huge computations may be needed. Describe briefly
how this procedure could be programmed as a procedure definition F'. in, say,
Scheme, so e.g., (F A) evaluates to t or nil according to whether or not
A € IncAssn is valid, where 4 is some straightforward representation of A
as an S-expression. Indicate which stages or subprocedures of the computa-
tion may be the source of time-consuming (quadratic, exponential, . .., growth)
subcomputations.

Optional Problem. Describe a complete axiom system for IncAssn’s. There
should be a finite set of simple axiom schemes and rules whose soundness is
obvious, and in which the only kind of assertions used are IncAssn'’s.

Problem 4. Show that there is no IncAssn which means ~j is even.” Con-
clude that IncAssn’s are not expressive for the set of IMP commands whose
arithmetic subexpressions are restricted to be IncAexp’s.

Hint: By the preceding problems, it is enough to show that no disjunction of
simple assertions can mean “j is even.”

Problem 5. Define ResetCom to be the set of IMP commands whose
Aexp’s are restricted to be of the form n € Num or X € Loc; define Re-
set Assn’s likewise.

5(a) Show that every IncAssn is equivalent to a Reset Assn.

Let diverge be while true do skip. An IMP command which has no occur-
rences of whileloops other than diverge is said to be while-free. We state the
following

Lemma. If ¢ € ResetCom, then ¢ ~ ¢/, for some while-free ¢/ € ResetCom.
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5(b) Assuming the Lemma, show that Reset Assn is expressive for Reset-
Com. '

5(c) Conclude that the restriction of Hoare logic to Reset Assn’s and Reset-
Com’s is a complete proof system whose proofs are computationally checkable.

5(d) Optional. Prove the Lemma.

Hint: : Say o < o’ iff 0 and o’ satisfy exactly the same ResetBexp’s whose
locations and numbers are in the set L. If ¢ <y ¢’ and X,Y,n € L, then
C[X :=Y]o <t C[X :=Y]o' and C[X := noe <. C[.X := n]o’. Thus, if c €
ResetCom, L is the set of locations and numbers occuring in ¢, and o <1 o',
then ¢ will “execute in the same way” on ¢ and ¢’. Namely, for any ¢ €
ResetCom and ¢ € I, there is a ¢ € ResetCom consisting solely of a
finite sequence of assignment statements such that ClcJo’ = C[c"]e’ for all
0’ Xioc(c)unum(z) @- Now use the observation that if L is finite, then there are
only finitely many x; equivalence classes of staies.
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Notes on Expressiveness

The set, DynAssn, of “dynamic assertions” generalize both Assn’s and partial
correctness assertions. The grammar for D € DynAssn is

D:i= ay=az|a;<as | "D D1 ADs| D1 VDy| Dy=Dy|

135.D | Vj.D | {D1}e{Da}

Definition of ¢ f= D is as for Assn and partial correctiess assertions. We then
have
{D:i}e{D2} isequivalent to D) =>{true}c{D},

SO

E { {true}c{D.} }c{D.}.

Let W be {true}c{D}. Informally, W means “after doing c, the property D will
hold.” Thus, {W}c{D} is valid, and if {D; }e{D} is valid, then Dy implies W.
For this reason, any formula equivalent to W is called a weakest precondition

of D under c.

Some other useful equivalences:
{truel}if bthenc, elseco{ D} equiv (b= {true}c;{D})A(~b= {true}e-{D}),

{true}(c;;c2){D} equiv {true}ec,{ {true}e.{D} },
{true}X := a{B} equiv Ble/X] for B € Assn.

Note that B above must not be a DynAssn containing commands, since we
have not defined substitution into such formulas (which is hard to do properly,
because a location on'the lefthand side of an assignment statement behaves
more like a bound, than a free, identifier).

We will prove

Theorem 1 (Expressiveness). For all ¢ € Com, 4 € Assn. there is a for-
mula W(e, A) € Assn such that W(c, 4) is a weakest precondition of A under c.

Corollary 1. There is a translation mappingany D € DynAssn into an equiv-
alent D € Assn.
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Proof of corollary.

ay =dp IS a) = as
DiVvD, is D, AD,
35D is 3D
(D1}e{Ds} is Dy = W(c. Da)

The other cases are similar. @

Proof of Expressiveness Theorem. By induction on ¢:

W(skip, 4) == A
W(X :=a, A) == Ala/X],
W(ifbthenc, elsecy, A) ::= (b= W(cy, A)) A (mb=> Wy, 4)).
W ((er1ic2), A) = W), W(ca, ).

That W(c, A) is equivalent to {true}c{A4} in each case above follows from the
equivalences between DynAssn’s which we have already noted.

The remaining case W(w, A) where w is whilebdoc is fairly elaborate. It will
actually be a bit more convenient, and without loss of generality, to express
the input-output relation on states corresponding to w instead of its weakest
precondition, as we now explain.

Let ¢’ be an arbitrai, commard, and for notational convenience, say that e
loc(c’) = {X1,X2}. We know that ¢’ depends only on the values of .X|, X,

in a state, so in this setting we can identify a state, o, with the pair of num-

bers {(g(X1),0(X2)). Let 10.(i1,72,51,j2) be a formula with free variables

11,12, )1, j2 which means C[c']{¢),42) = (J1. Jo).

If 10.(21,%2, J1, J2) € Assn, then we can define W (¢/, A) € Assn to be
Viy, 42, j1, j2. (X1 = i1 A X2 = ia ATOL (4142, 1. j2)) = Al /X1, j2/ Xo)

Conversely, from Assn’s which are weakest preconditions for ¢/ we can define
Ioc’(ilvi21j1:j2) € Assn to be

(W(c J1= X1 Ajo = Xo) A-W(C Afalse) )iy /N1, ia/ Xa)

Note that W(c',j1 = X1 A jo = Xo) just means that if ¢’ terminates, it does so
in state (j1, j2); we need the other conjunct =¥ (¢’ . false) to assert that ¢’ does
terminate.

It will also be convenient to have a one-to-one coding of pairs of numbers into
positive numbers. One way to do this is to define the one-to-one function
mkpair : (Num x Num) —w* by

mkpair(n, m) ;= 2I71 . 3580 _glml 7se0n)
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where |n| is the absolute value of n, sg(n) =1ifn >0, and sg(n)=0ifn <0.

We have seen in Problem Set 5 that i = &' is the nieaning of an Assn, so it is
easy to see that there is an Assn which means “k = mkpair(i,j).” So we may
assume for convenience that in addition to the basic arithmetic operators, the

binary function symbol mkpair can occur in Aexpv's.

Optional Exercise: Explain how to translate any extended Assn using the
function symbol mkpair into an equivalent Assn without mkpair.

Finally, we can define IO, using the same “window” idea from Problem Set 5
used to define exponentiation and factorial. Let (k), denote the base p repre-
sentation of k as in Problem Set 5. We say that there is a sequence. (k),. whose
digits are codes of states, viz., pairs of integers. The sequence begins with the
code of state (i),12), ends with (j1, ja). and every two consecutive states are in
the input-output relation of the body, ¢, of w. Also, every state but the final
one satisfies the guard, b, of w.

Thus we can describe 10,,{1,, 2, j1, jo) € Assn as {ollows:

Jk3p. “(k), starts with digit mkpair(4y,i5)" A
“(k)p ends with digit mkpair(j;.j2)" A
(Vkl,kg,ll,lz.
“mkpair(k;, k2) and mkpair({,.l2) are consecutive digits of (k),”
= (b[kl/){l][k'g/,\g] ANO(ky, kLl 1) )/\
—blj1/ X1 ](52/ X2]
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Review Material for Quiz 3

This handout contains selected problems and solutions from last year that we
think will be helpful to you in reviewing for Quiz 3 (which takes place next
Monday, November 16).

In addition to the enclosed material, we recommend that you take another look
at last year’s Quiz 3 (handed out this year as handout 25).

1 From Last Year’s Quiz 4

Problem 4 [35 points]. We consider axioms for symmetries (rigid, “in place”
transformations) of an equilateral triangle. For example, given the triangle with
vertices labeled as in Figure 1, we can apply

Transformation “r”: rotate the triangle 120° clockwise, obtaining the trian-
gle in Figure 2;

Transformation “f”: flip the triangle about the vertical axis, obtaining the
triangle in Figure 3;

Transformation “{”: leave the triangle unchanged, obtaining the triangle in
Figure 3 again.

2 3

Figure 1: The original triangle.

Let W be the set of finite sequences (of length at least 1) of the letters r, f, and
1. Elements of W are called words over the alphabet {r, f,1}.

By interpreting concatenation of letters as composition of permutations, we
can associate with any word, w, a permutation, [w], of {1, 2, 3} indicating the
movement of vertices of a triangle. So the basic permutations defined by r and

f are:
rl(1) 2, [rl(2) 3, [rl(3)
A 1, 1512 3, 1113)

1.
2.
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Note that [I] is simply the identity function. Inductively, let {aw] = [a] o [w]
for a € {f,r,1}. For example, [rfri]l(z) = r(f(r(I()))), so

[rrrl() =1, [rfri}(2)=3, [rfri](3)=2.
Define “truth”, |, of a “triangle” word equation as follows:
I= (w1 = 'U)2) lﬂ [w1] = [UJQ]

For example, E rfrl = f.

4a [3 points]. Exhibit w; and ws, such that

H wiws = waw;.

Solution: For example, wy = r and wy = f.

4b [7 points]. The “standard” rules for equality are reflexivity, symmetry,
transitivity, and congruence. State these rules for the case of word equations.

Solution:
Fu=w (reflexivity)
F w1 = W
———r—— 2 t
— (symmetry)

l—w1=w2 "w2=w;5
Fw =ws

(transitivity)

Fw) = wy

F aw; = aws, (left congruence)

where a € {r, f,1}

I-wlzwz

Fuwia = waa (right congruence)
18 = Wy

where a € {r, f,1}
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4c¢ [10 points]. Show that if a sound axiom system is strong enough to prove
any word equal to one of the six “canonical” forms below, then we can obtain
a sound and complete axiom system by adding the standard rules for equality.
The six canonical forms are:

I, r rr, f, rf, rrf.

Solution: Suppose | w; = ws, i.e., [wy] = [wa]. By the presumption, there
are canonical forms 1w and sy such that - w; = w;, and F ws = 1. Since the
system is sound, = w; = w;. [u1] = fwi] = [w2] = [w2].
In addition, each of the six “canonical” forms have different meanings. So, we
have

Fwy=w; and F wy= 1w

and by symmetry and transitivity, we conclude F w; = w,.

4d [15 points]. Consider the complete proof system for triangle word equations
whose rules are just the standard rules for equality plus the axioms:

rrr=ff=ll=1 (unit)
rl=lr=r, fl=lf=f (identity)
fr=rrf (swap)

Briefly explain why this proof system is sound and complete. Hint: Show how to
prove that an arbitrary word equals one of the six canonical forms of problem 1.

Solution Assuming the result of Problem 1, it should be clear that all we need
to do us show, using the above axioms and the rules for equality, that it is
possible to prove that any triangle world is equal to one of the six canonical
forms.

The following process will halt and reduce an arbitrary word to a canonical
form.

Step 1 Erase all I’s (unless w = [, in which case we are done) This follows from
the identity axioms, plus the rules for equality.

Step 2 Move all f’s to the right. This is possible from the rules for equality
and the swap axiom. So now we have a word containing only r’s and f’s
with all f’s on the right.

Step 3 Replace rrr (if it occurs) by I. This is possible from the rules for
equality and the unit axiom.

Step 4 Erase all ’s (unless w = [, in which case we are done)
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Step 5 If there is still rrr left in w go to Step 2.

Step 6.Replace ff (if it occurs) by I. This is possible from the rules for equality
and the unit axiom.

Step 7 Erase all I’s (unless w = I, in which case we are done)

Step 8 If there is still ff left in w go to Step 5.

Clearly this will halt, as we are always making the word shorter.

Clearly if it halts it will have f’s to the right of r’s, if there are any I’s left then
the result is [. If there are r’s left, they all must be adjacent on the left, thus
by Steps 3 to 5, there can be no more than two r’s. If there are f’s left they
all must be adjacent on the right, thus by steps 6-8, there can be no more than
one f. This paragraph now precisely characterizes the canonical forms.

2 From Last Year’s Problem Set T:

Problem 2. In this problem, you will give a syntactic proof of the result of
the preceding problem. Specifically, we want you to show that:

if loc(B) Nloc(c) = O then ky,,..{B}c{B}

Prove this by structural induction on ¢. Do so directly from the definition of
the Hoare rules and axioms. (Do not appeal to the Completeness Theorem or
the result of Problem 1).

Solulion. We have one important Lemma:

Lemma 1. If X ¢ loc(B), then B = B[n/X] (note: here we are using = to
denote syntactic equality).

(This is proven by first proving (by structural induction) the analogous result
for the extended Aexp language, and then by an induction on the structure of
B) :

We now prove Fy,...{B}c{B}, by induction on the structure of c, taking cases
on the structure of c.

[c = skip ] Trivial. By the rule for skip, Fy....{B} skip { B}.
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[c=X:=a] By the rule for assignments, Fhoue {Bla/X]} X := a{B}. Since
loc(B) Nloc(c) = @, X ¢ loc(B). By the Lemma, Bla/X] = B, thus

Fhoue { B} X := a{B}
is precisely the same statement as
l_Hnsu{B[a/X]}X = a{B}’
and so we are done.

[e = coje1 ] Since locL(eo) € locr(c), loc(B) Nlocr(co) = @. Thus, we may use
induction to say
I—Hn.la{B}co{B}'

A similar argument gives us
l‘-Hnue{B}cl{B}'
Finally, we may apply the rule for sequencing, to obtain

l_Ho.re{B}CO; c1{B}.

[c = if bthencoelsec; ) Similar uses of induction will give us: Fy,,,.{B}co{B},
and by, {B}c1 {B}. Since BAb => B (by the definition of A), we may use
the rule of consequence to obtain: by, {B A b}co{B}. Similarly we can
get Fyo..e {B A =b}e, {B}. Finally, we may apply the rule for conditionals
to obtain:

Foare{ B}if b then cp else c) { B}.

[c = whilebdoc ] Another use of induction will give us Fy,,,.{B}c'{B}. Since
B A b= B, we can use the rule of consequence to obtain

Fuoare {B Ab}c'{B}.

We can then apply the rule for while-loops to obtain Fy,,,.{B}c{B A —=b}.
Finally, since B A —b => B, we may use the rule of consequence to obtain:

Fuoare {B}c{B}.

Problem 3. In class we gave the following definition of the Dyn Assn abbre-
viation for the weakest precondition under ¢ for d € DynAssn:

w(e, D) := {true}ec{D}

Note we used a small “w” in this definition. This is not to be confused with
W (e, B) € Assn, which we defined in class for B € Assn (although w(c, B) is
equivalent to W(e, B)).
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Prove from the definition of validity for DynAssn:
= w((c1; c2), D) = w(er, w(ea, D))
(Of course the converse (<) also holds, but we thought that it was enough of

an exercise to prove the equivalence in one direction)

Solution. So, we must show that:
E {true}c; c2{D} = {true}c, {{true}c{D}}

In other words, suppose ¢ = {true}e:; c2{ D}, then we must show that

o ! {true}c, {{true}c,{D}}.

Since o }=! true, we must show that

Clei}o ! {true}c,{D}.

We now have, two cases, either C[c1]o is undefined (L), in which case we are
done as L |=! Anything, or there is a o’ € T such that C[c;]Jo = ¢, in
which case, since ¢” ! true, we must show that C[cz]Jo” =/ D. We now
again have two cases: C[cz]o” is undefined (in which case we are done), or
Clez]o" = o' € %, and we must show o’ =/ D.

We now use our other premise, o =/ {true}c);cz{D}, to show that o' ! D.
Well, since o =7 true, C{ci;c2]o =/ D. But, by the definition of Cfc;; c3],

Cler; e2lo = Clea)(Clerlo) = Clea](e”) = o,

and so ¢/ =! D, and we’re done!!

3 From last year’s PS 8:
Problem 1.

Instructions. In this problem set we used the function #(z) to be the function
which gives us the “Goédel-number” of z. Note, we are not assuming that there
is some universal scheme for Gédel-numbering all things which we might wish
to Gédel-number. Rather, we will use # in a variety of contexts, each of which
might be Godel-numbering different things. In any case, the intended meaning
for # will either be more clearly spelled out, or will not be relevant.

In this problem we consider a new kind of formula, which we call Bform (to
stand for boolean formula). The set of Bform’s is built up inductively out of
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a collection of boolean variables, and the boolean connectives: - A, V. We
will let P, P, P,,Q,... range over Bform’s and we let P, p1,D2,4,... range
over boolean variables. Since Bform’s don’t have Loc’s or IntVar’s con-
tained within them, states and our old notion of I’s will not be relevant to
the semantics of Bform’s. Instead, we will use Boolean Interpretations, J :
boolean variables —{true, false}.

We wish to have a collection of equations between Bform’s. But first, we
define: Bf[‘] : boolean interpretations —{true, false}, we do so by a structural
induction. Specifically:

BflplJ = J(p)
_ | true if Bf[p]J = false
Bff-rlJ = { false if Bf[p}J = true

_J true if Bf[p}J = true and Bf[p}J = true
Bfpr Ap)J = { false otherwise

otherwise

Our goal is to talk about equalities of the forrn Py = Ps, where P;, P, € Bform.
Our semantics for such equations is given by:

JEP =P, it BffA)J = Bf[P:}J
We say the equation P, = P, is valid, written = Py = P, iff J = P, = P, for
all J.

We now have a semantics for equations between Bform'’s, but we would also
like to develop a logic (F) for syntactically proving equalities between Bform’s.
 will have the axiom of reflexivity, and the usual rules for equality:

P=P (reflexivity)

P1=P2
P2=P1

Pi=P, P,=P;
P, =P

(symmetry)

(transitivity)

Pi=P
-1P1:-1P2
P1=P2
PiopP=P,opP
Po=P
PopP, = PopP;

(congruence)
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for op € {V,A}.

We define the substitution of the Bform @ in for all occurrences of the boolean
variablé p, in the Bform R (written R[Q/p]) by an induction on the structure
of R:

plQ/pl =@
PR/ =pifp £p
(=R)[Q/p] = ~(R[Q/p])
(R1 A R2)[Q/p) = (R1[Q/P)) A (R2[Q/p])
(R1V Ry)[Q/p) = (R1[Q/p]) V (R2[Q/P))

la Show thatF @; = Q2 impliesk R[Q:/p] = R[Q2/p] by structural induction
on R and the definition of substitution.

1b Every Bform is equal to a formula in full disjunctive normal form, i.e. a
sum (V) of products (A), with all products being products of the same set of
variables or their negation. By a suitable ordering of variables and terms, one
can define a canonical form for Bform’s, such that every P is equal to a unique
P’ in canonical form. State very clearly such a definition of canonical form for
Bform’s.

1c Write down a set of axioms which, when combined with the usual axioms
and rules for equality (written at the beginning of the problem), will have the
property that

FP=Q if EP=Q

In addition, briefly explain why your axioms have this property.
solution:

Following the comments is a sample solution from a member of last-year’s class.

Problem 1 comments. The definition of Bform did not include the propo-
sitional constants true or false. No points were deducted, however, if solutions
included the use of these constants. (Note that P A =P behaves exactly like
false and PV - P behaves exactly like true).

Many suggestions for canonical forms did not observe the difficulty that arises
because p, and (p; A p2) V (—p1 A p2) are logically equivalent, and so must have
the same canonical form. The hint suggested that if we are using variables p,
and p2 then the canonical form of p, should, in fact be (p; A p2) V (=p1 A p2).
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There is a way to make p; the canonical form, but it is much, much harder to
get right,

An alternative collection of axioms to make k- complete could be:
The distributive laws:
PAQVR)=(PAQ)V(PAR)
PV QAR)=(PVQ)A(PVR)
The associativity laws:
(PA(QAR)=((PAQ)AR)
(PVQVR)=((PVQ)VR)
The commutativity laws:
Pv@Q=@QVP
PAQ=QAP
De Morgan’s laws:
~(PAQ)=(~P)V(-Q)
=(PVQ)=(~P)A(-Q)
The Idempotence laws:

PAP=P
PvP=P

Behavior of “true” and “false”:
PV-P=QV(PV-P)
Q=QA(PV-P)

PA-P=QA(PA-P)
Q=QV(PA-P)
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3 1

Figure 2: The original triangle after performing transformation r, a 120° clock-
wise rotation.

3 2

Figure 3: The original triangle after performing transformation f, a flip about
the vertical axis.
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Quiz 3

Instructions. This is a closed book quiz; the Hoare Logic Rules appear in an
appendix. There are four (4) problems of equal weight. Write your solutions
for all problems on this quiz sheet in the spaces provided, including your name
on each sheel. Ask for further blank sheets if you need them.

GOOD LUCK!

NAME

[[ problem | points | score |
1 25
2 25
3 25
4 25
Total 100

GOOD LUCK!
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Problem 1.

1(a) Exhibit a while-loop invariant suitable for a Hoare logic proof of

{(X=iAY =j}whileX #YdoY =Y +1{i < j}.

1(b) Give a formal proof in Hoare logic of
{X =0}while truedo(Y ;=Y +1; X := X - 1){X = 3}.

Hint: false is a loop invariant.
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Problem 2. Show that Bexp is expressive for while-free commands. That
is, if ¢ € Com contains no while-loops and b € Bexp, then the weakest pre-
condition {true}c{b} is equivalent to some b’ € Bexp.

Hint: Induction on c.
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Problem 3. Sketch how to transform any Assn into an equivalent Assn of
the form

(@1%1) ... (@nin)[a=10]

where each @; is either V or 3 and a € Aexpv.
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Problem 4. The grammar for ezponential constant expressions, Ecexp, is
ex=1let+elexe]|e®

Meaning is defined as for arithmetic expressions, with superscript denoting ex-
ponentiation, e.g., the meaning of (14 (1+ 1))(1+D*x({(1+1)+(1+1)) j5 324 namely,
6,561. An expression Ecexp is said to be a canonical form if it is a sum of 1’s
(parenthesized to the left).

4(a) Write down a simple set of sound axioms for equations between Ecexp’s,
which, together with the usual inference rules for equations (reflexivity, symme-
try, transitivity, congruence), allow one to prove that any ¢ € Ecexp equals a
canonical form canon{e). Also, briefly explain how to use your axioms to prove
that e = canon(e).
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4(b) Prove that your axiom system is complete.
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A Hoare Logic

Aziom for skip:
{A} skip {4)

Aziom for assignments:
{Bla/X]}X := a{B}

Rule for sequencing:
{A}eo{C}, {C}ei{B}
{A}(co;c1){B}

Rule for conditionals:

{AAb}eo{B}, {AA-b}e1{B}
{A}ifbthencg elsec { B}

Rule for while loops:
{AAb}e{A}
{A}whilebdoc{A A b}

Rule of consequence:

{A'}e{B')

{4Ye{B} {providing E (A= A')A (B'=> B))
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Problem Set 6 Solutions
Problem 1. Prove that for A, B € Assn, if A is equivalent to B, then

1(a) AAC is equivalent to B AC for any C € Assn.

cETAANCiffolE Aando T C
if o ! Band o =/ C since A is equivalent to B
iff o ! BAC

1(b) 3j.A is equivalent to 3j.B for any j € Intvar.

o = 3. Aiff o =179 A for some n € N
iff ¢ =11"41 B for some n € N
iff o =7 3;.B

1(c) Ala/j] is equivalent to B[a/j] for any a € Aexp, j € Intvar.
o ! Ala/j] iff o '] A for n = Ala]o (1)
iff o =11"/91 B for n = Ala]e
iff o (=7 Afa/j)

Step (1) is true by a variant on Lemma 6.9.
Problem 2.

2(a) Prove 3j.(AV B) is equivalent to (35.4) V (35.B).

o E' 3j.(AV B) iff ¢ "3 (A v B) for some n € N
iff (¢ EMI) 4) or (o 11 B) for some n € N
iff (o =1"/91 4 for some n € N) or
(o =117/i] B for some n € N)
iff (o =7 35.4) or (¢ =1 35.B)
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2(b) Prove 3j.(A= B) is equivalent to (Vj.4)=(3j.B).

o ! 3j.(A= B) iff ¢ E/1"/1] (A= B) for some n € N
iff (o 11791 A) or (¢ E'1"/91 B) for some n € N
iff (o j£11*/) A for some n € N) or
(¢ "3 B for some n € N)
iff (o ! Vj.A) or (¢ /"] B for some n € N)
iff ¢ =T (V4.4) =(3;5.B)

2(c) Prove 3;j.(A A B) is equivalent to AA (35.B) whenever j ¢ FV(A).

o ' 35.(AA B) iff ¢ /"3 (A A B) for some n € N
iff ¢ 2! (A A B)[n/j] by the same variant on Lemma 6.9
iff o =T Aln/7] A B[n/j] by definition of substitution

However, a simple induction on the definition of substitution shows that if j ¢
FV(A) then A[n/j] = A, so

e = 3j.(AAB) iff o ! AA B[n/j]
iff (o =7 A) and (¢ ' Bln/j])
iff (¢ ! A) and (¢ E'*/9] B)
iff (o ! A) and (0 ! 35.B)
if e = AN3j.B

Problem 3. Prove, using the Hoare rules, the correctness of the
partial correctness assertion:

{1< N}
P:=0;C:=1;(whileC< NdoP:=P+4+M;C:=C+1)
{P:MXN}

By the rules for assignment and sequencing, we can get

{1SNAO=0A1=1}P:=0{1<NAP=0A1=1)}
{ISNAP=0A1=1}C:=1{1<KNAP=0AC=1}
{1I<KNAO=0AL1=1}P:=0;C:=1{1<NAP=0AC=1}

which the rule of consequence can simplify to

{1<N}P:=0,C:=1{ISNAP=0AC=1}.
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For any assertion I, the assignment and sequencing rules give

{I[c+1/Cl[P+ M/P}P := P+ M{I[C+1/C]} {I[C+1/C|}C :=1{I}
{IIC+1/CIlP+ M/PJP = P+ M;C = C + 1{I}

Now,let Ibe (P=M x (C—-1)) A(C < N +1). Then,

IIC+1/Cl[P+M/P)l=(P+M=Mx(C+1-1))A(C+1<N+1)
=(P=Mx(C~1)A(C<LN)
=S(P=Mx(C-1))A(CSN+1A(CLKN)
=IA(C<LN)

And thus, we have
{IN(CLSN)}P:=P+M;C:=C+1{I},
so, by the rule for while-loops

{I/\(CSN)}P:=P+M;C:=C+1{I}
{I}whileC < NdoP =P+ M;C:=C+1{IA-(C < N)}

Finally, since
(1I<SNAP=0AC=1)=>1

and
(IAN-(C<N))=(P=NxM)

we can use the rule of consequence to get

{1<SNAP=0AC =1}
whileC < NdoP:=P+ M;C:=C+1
{P:NXM}

and the rule for sequencing to get

{1< N}
P:=0;C:=1;(whileC< NdoP:=P+M;C:=C+1)
{P=M x N}.

Problem 4. Find an appropriate invariant to use in the while-rule
for proving the following partial correctness assertion:

{i =Y}while=(Y =0)doY := Y - ;X := 2 x X{X = 2}
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The invariant we want is

I=(Xx2¥Y=2).

Given an assertion POW(i, k, n) as described in Problem Set 20 which is true
iff ¢ = k™, we can represent this assertion as

ViVk.((POW(;,2,Y) Ak = j x X)=> POW(2,i,k))

(One student pointed out, correctly, that this routine only works if X starts out
with the value 1. Thus, the precondition really should be {i =Y A X = 1}.)

Problem 5. Provide a Hoare rule for the repeat construct and prove
it sound. (c¢f. Winskel’s Exercise 5.9.)
Assuming a repeat construct with rules like

{c,0) = ¢"” (b,0o”) — false (repeatcuntild, ¢’) — o’
(repeat cuntilb,g) — o’

and
{c,0) =o' (b, o') — true
(repeat cuntild, o) — o’

then a reasonable Hoare rule is

{A}e{A}
{A}repeat cuntilb{A A b}

To prove soundness, assume that {A}ec{A} is valid. We can now show, by
induction on derivations, that for any states o and ¢’ such that ¢ = A and
(repeat cuntilb, o) — o', that ¢/ = A A b, and thus

{A}repeat cuntilb{A A b}

is valid.

Let r be the loop repeat cuntild. For the base case, assume that {c,s) — o’
and (b, ¢') — true. By Proposition 6.4 we have ¢’ = b, and, since {A}c{A} is
valid, we have ¢/ | A. Thus, o/  AAb.

For the sake of induction, assume that ¢’ |= A implies ¢’ = A A b whenever
(r,d'") — o' follows from a subderivation of the derivation of (r,c) — ¢’. Then,
if we have a derivation for {r, o) — o', we have subderivations for {c,o)} — 0"
and (r,0”) — o’. Then, if ¢ = A, it follows from the validity of {A}c{A} that
¢” |= A, and then from the inductive assumption that ¢/ = A A b.

Thus, we have shown by induction that {A}r{A A b} is valid, if {A}c{A} is, so
the rule is sound.
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The Four Squares Theorem (optional material)

Note that this is optional material. You will not be held responsible for it
in this class. However, a few people expressed curiosity (or disbelief) in this
theorem, so some might find the following proof interesting.

Review

We’ll need to recall the following definition:

Definition 1. For any positive integer a and integers b; and by, we say that
by = by (mod a) (pronounced “b, is congruent to b, modulo a”) if by — b, is
divisible by a.

This definition has the following important properties, which are all easy to
verify. (Think about them a minute to make sure, since they’ll be important to
the proof.)

¢ Congruence modulo a is reflexive, transitive, and symmetric:
b=t (mod a);
if by = b2 (mod a) and by = b3 (mod a) then b, = b3 (mod a);
if b; = by (mod a) then by = b; (mod a).

In other words, congruence modulo a is an equivalence relation.

o If b; = b; (mod a) and b = b5 (mod a) then
by + b} = by + b, (mod a),
by x b] = b x by (mod a).

s For every integer b, there is some integer ¢ with 0 < ¢ < a such that
¢ = b (mod a). An important consequence of this is that there are only
a equivalence classes modulo a. In other words, in any collection of a 4+ 1
integers, at least two must be congruent modulo a.

Given these facts, we can proceed with the proof.
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The four squares theorem

Theorem 1. For any nonnegative integer a, there are four integers zg, 21, 22, z3
such that

::f+::§+r§+:c§=a.
Further, there are nonnegative integers a that cannot be represented as the sum
of fewer than four squares.

Proof: The proof that follows is based on that in [1).

The first useful fact to note is that if we have two integers, each represented as
the sum of four squares, then their product is also representable as the sum of
four squares:

(+ad+2i+2)i+ v +vi+4d)
= (21y1 + Zoy2 + Tays + zaya)® + (Z1y2 — Tayn + 234 — 24y3)°
+ (z1y3 + z3y1 + T2ys + -'543/2)2 + (z1ys — 2431 + T2ys — 233/2)2

(This equation, due to Euler, can be “easily” verified by working out all the
products. It’s enough of a mess, though, that it’s not worth showing the details
here.) The important aspect of this equality is that it simplifies our problem as
follows: since every integer greater than 1 can be represented as the product of
some collection of prime numbers, if we know how to represent 0, 1 and 2 as
sums of four squares, and we know how to represent any odd prime as the sum
of four squares, then we can represent any nonnegative integer as the sum of
four squares.

0, 1 and 2 are easy:

0=024+0%2+0%+0?
1=12+0%+0%+0?
2=124+1%240%+0?

so we now have to find out how to represent any odd prime. To do this, we will
proceed in two steps: ‘

Lemma 1. For any odd prime p, there is a positive integer < p, and integers
x1,Z9,23, 24 such that
22+l +22+2i=pb

Lemma 2. For any odd prime p, if there are integers b and z,,22,23,24 as
in Lemma 1 and & > 1, then there is a positive integer ¥’ < & and integers
Y1, Y2, U3, ¥4 such that

Y+ 93 + 3 + i = pb’



6.044J/18.423J Handout 36: The Four Squares Theorem (optional material) 3

With these two lemmas, it is clear (by a simple induction) that for any odd
prime p, there must be a set of integers 2, 21, 23, z4 such that

42422 +22=pxl=p

Together with the Euler equality given above, it follows that any nonnegative
integer can be represented as the sum of four squares. To see that four squares
are necessary in general, note that

7=22+12+12 417,

but an enumeration of the possibilities will show that there is no way to repre-
sent 7 with fewer than four squares. W

Proof of Lemma 1

Here’s where we start to use the notion of “congruence modulo p.” Consider

the sequence of integers
2
p—1
oﬁﬁp.”(—g—)

(Remember that pis odd, so (p—1)/2 is an integer.) If any two distinct numbers
¢? and c% in this sequence were congruent modulo p, then, by definition, we
would have ¢? — ¢ divisible by p, which means that (¢; + ¢2)(c; — ¢2) would be
divisible by p. Since p is prime, that would mean that either ¢; + c2 or ¢; — ¢2
would be divisible by p. Since both ¢; + ¢3 and ¢; — ¢2 must be less than p,
greater than —p, and non-zero, this is impossible, so no two elements of this
sequence are congruent modulo p. '

By a similar argument, no two elements of the sequence

2 2 p—1 2
—1-0%-1-12 -1 - (B

are congruent modulo p.

Now, consider the sequence

2 2
p—1 2 2 12 p—l)
~1- — N 100, — ) .
1 < 2 )’ ’ 0°.0 ( 2

There are p+1 elements in this sequence, so there must be two that are congruent
modulo p. Since we’ve already established that neither the first half nor the
second half contains any pairs of congruent elements, any pair of congruent
elements must contain one element from each half. Thus, there must be numbers
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~1 — z? from the first (negative) half and z% from the second (positive) half
such that
~1-z?=2z% (mod p),
and thus
22 +z34+1=0 (modp).
Since z? + z3 + 1 is positive and divisible by p, there must be some positive
integer b such that
z? +z2+1=pb.

Finally, by the definition of the sequences,

-1\? -1\?
zf+z§+15(p——) +(£——> +1

2 2
_(p=1)7+2
- 2
_PP—2p+4
- 2
< p? when p > 2,

sob<p B

Proof of Lemma 2

Assume that we have some p, b and z,, z3,z3,%4 as in Lemma 1, with b > 1.
Then, either b is even or b is odd.

Case 1: b is even

If b is even, then pb is even, so 22 + z2 + 2 + 73 is even. This means that either
none, two, or all four of the z;’s are even. If any of them are even, then assume
without loss of generality that z; and z are even.

Now, it follows from this that £, — x4, 1 + 2, £3 — 4 and z3 + z4 are all even.
Since
2z} +27) = (zi — ;)% + (zi + 25)%,
it follows that
2pb = (21 — 1:2)2 +(z; + 132)2 + (za - 1:4)2 + (za+ z4)2,

where each of these squares is divisible by 4. Thus, we have

b [zy—zy 2 )+ z2 2 T3 — T4 z T3+ 24 2
”XE'('—T) +( 2 >+ 2 T\ T2 ’

so, letting b’ = b/2, we are done.
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Case 2: b is odd
A consequence of the properties we gave for congruence modulo a is:

For any integer z, there is an integer y such that

o

z=y (modbd) and —-g-<y§

If b is odd, then an integer y can never equal b/2, so this statement can be
strengthened to require

b-1 <u< b-1
2 =¥=73
From this, it follows that there are integets y;, y2, ya, y4 such that
yi =z; (modbd) and —-b;—lgy‘-gb%l-

for each 0 < i < 4. Since z? + 23 + 23 + z3 is divisible by b, we have

22+ zi+23+22=0 (modbd),
which means that

Y+l +y2+3y2=0 (modb).
This, in turn, means that y? + y2 + y3 + ¥ (which must be nonnegative) is
divisible by b, so there is some nonnegative b’ such that

Vi +ys+ys+ul =0
Since —(b—1)/2 < y; < (b— 1)/2 for each y;, we know that
0<yi+y+y3+ui <(b-1)*<¥?,

so b’ < b.

Now, we know that 0 < b’ < b. To see that, in fact, 0 < ¥, note that if ¥ = 0
then it must be true that y; = y2 = ya = ys = 0. It follows that z; = 0 (mod b)
for all z;, which means that each z; is divisible by b, which in turn means that
each z? is divisible by 4?, and thus so is zZ + z2 + z2 + z2. But this means that
pb is divisible by b2, so p is divisible by b, which contradicts the fact that p is
prime. Thus, 0 < ¥’ < b.

To summarize so far, we have

2} + 23 + 23 + 2§ = pb
v +93 +v3+y5 = bV
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with 0 < & < b < p. This gives us
ph?Y = (2} + 23+ 2+ 22)(vi + 43 + 43 +4d)-
By the Euler identity we used in Theorem 1, this means that
pb%b = (z1y1 + 2292 + Tays + Taya)® + (£192 — Z2y1 + Zays — z4y3)?
+ (z1¥3 + Tay1 + T2ya + 2ay2)? + (T1ya — a1 + T2¥3 — T3y2)°.

Now, we can verify that each of these four squares is divisible by b2 as follows:

e For each 1 <i <4, z; =y (mod b) by definition. Thus

z;y; = 27 (mod b),

so, since
2 +23+23+22=0 (modb),
we have
z1y1 + Toy2 + Zays + £4y4a =0 (mod b),
SO T1Y1 +Z2Y2+Z3Y3+Zay4 is divisible by b, and (z1y1 +Z2y2+23y3+24ya)?
is divisible by 2.
e Again, since z; = y; (mod b), it follows that z;y; = z;¥ (mod b) for all

i, ¥, z;,y;- Thus, we have ‘

Z1Y2 — Z2Y1 + Zays — ZTayz =0 (mod b)

T1Y3 — Z3Y1L + Z2ys — Tay2 = 0 (mod b)

Z1Ys — Tayy + Z2ys — z3yz = 0 (mod b)

So each of these expressions is divisible by b, so their squares are all
divisible by b2,

Thus, we have

; Z1Y1 + Toy2 + T3Ys + TayYs 2 Z1Y2 — Z2Y1 + T3Y4 — T4Y3 2
pb' = A + 7

T1y3 + T3y1 + T2ys + Tay2 2 Z1Y4 — a1 + T2Yys — T3Y2 2
+ 3 + b )

which gives us pb' = 22 + 22 + 22 + 22 for some 0 < b < b and integers
21,22,73,24. B

References

(1] Ivan Niven and Herbert S. Zuckerman. An Introduction to the Theory of
Numbers. John Wiley & Sons, Inc., New York, fourth edition, 1980.
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Quiz 3 Solutions and Grading Statistics

Instructions. This was a closed book quiz; the Hoare Logic Rules appeared
in an appendix. There were four (4) problems, each worth 25 points. Gradings
statistics are given below, and sample solutions follow.

Number of quizzes taken: 29
Grade range: 15-92

Mean: 46

Median: 46

Histogram:

00-04:
05-09:
10-14:
15-19:
20-24:
25-29:
30-34:
35-39:
40-44:
45-49:
50-54:
55-59:
60-64:
65-69:
70-74:
75-79:
80-84:
85-89:
90-94:
95-100:
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Problem 1.

1(a) Exhibit a while-loop invariant suitable for a Hoare logic proof of

(X =iAY = j}whileX #YdoY =Y + 1 {i < j}.

The "::'nplife we foond  wac (34 ¥ A X=¢) , Cleacly , this
TS |Mpfe¢f b») e precandl‘ézon) anel the conjonction of i€ cm<(
~{x # Y) lmPth e Pos‘tcorldltlpn

1(b) Give a formal proof in Hoare logic of
{X = 0}while truedo(Y := Y + 1, X := X — I){X = 3}.
Hint: false is a loop invariant.

Since frue,fx—l/xj =z trve and fwgv[ﬂ‘f-fl/(,'j Ztyue

we If\A ve.

b.j ASSiqn ment

Ebroed 4= 141 Flued  Strved X:z X-1 ftroed o
%fh*uei V.=¢r 5 X =X+ §6rve}

C::z}, vén cm¢7

Con se wencl

§evoed while Mé e o =7, Ri=x-1 ftwerErucl ?2"’""“&”}2&"6})

A wiile

buj Consc Quece

,—%z‘,rugi while - - - - £ Lnlsc3

gu) L’ans&iueﬂcc
( £x203 =7 Ftue} A
Z$4(5c5=7f)(:5§ )

fx=o0d while - - - o fx=23
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Problem 2. Show that Bexp is expressive for while-free commands. That
is, if ¢ € Com contains no while-loops and b € Bexp, then the weakest pre-
condition {true}c{b} is equivalent to some b’ € Bexp.

Hint: Induction on c.

Ag Slll()n)ﬂ ;A ‘tN. expregswenefs frp&;
W(Bi‘n",b) = b

- = 5‘:‘&/,(] (o‘)‘nl& l(s e Eexf %_?w;cc
W (X. “}b) Bé’,c&s sre closed vnder

Sobstr botion)

TL\w, bw IL\JUC‘e(;q,
B Wle b)) 1s representable ac o Bexp ko all b,

(,'\,w( U.){C, ,li))> 34:1“’&1rt7 ) e b,) ,:‘4[uc,‘é(;m

wlez b)) = Wwle ,b°)

L\)(‘CD')C, )b) = W (Co R ! (
L’ , Shich 15 Chen

g‘or S0l Bc",’((
rérr'z:’tﬂ{aglc ar & ch’f,

el sl;n;/ar(]
b (it o) tha ¢, else ¢, b)
= (b Wi, b)) (b= wle,b))
= 6‘9)\’ w(ca)é’))/‘ (l’))VL\J(/C”b))

»'S fé(f@fméaé/e &‘srﬂ gt’.xg? bl) Mdocﬁén’
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Problem 3. Sketch how to transform any Assn into an equivalent Assn of
the form

(Qi171) .. .(Qnin)la = 0]
where each @Q; is either V or 3 and a € Aexpv.

0) C(Convert AB tt A VR everquhere .

l) Push d.u = mw/\,\‘{ as “Pztr A5 ’,)b,so:aL/e, us,;,ﬁ

T(AAB)IZ AV R T(AVB) T a4 A
T35 A = ¥y TA YAz 35.7A
“1TTA=A

2) EePkc(, “la, ¢ ) wlh"(jq (dﬂs 4 M (a,za )
3) Replace #a(a,=a,) with
Il )4, L Gema)t= gttt ey

4) Replace  a,¢a, witn
31:))',4,1, &, € L~z+)-z+{z+£z:q

5) Replace aza, i dp—a, =0

é) Move CL{[ q/um*(;nﬁoérs 0u1':, fenamlo:zo) V“"m:é/cs

S NEcess al‘c/\)

¢q.  A~3 R = 3t A~ B[4
WL\L’J’( 1. Ig ‘PFG_SL\.
7) Elz;;m}\éc’ A and v wzﬁ

Apz=O N~ A =0 = 4—§+¢iz:o
]

Ao=0 VA ,=20 = a,xa, = o

!
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Problem 3. Sketch how to transform any Assn into an equivalent Assn of
the form

(Q!il)-'-(Qnin)[a:O]
where each @ is either V or 3 and a € Aexpv.
0) Convert AB €o . “AvR
|) ’PuﬁL‘ a.” -1 mwnpcl ay Qﬁ,r 783 fa:stl/e
) a(AaB) = AAv R
= (pvB) = A~R
e I SRR AL
- \/J A = 3J' . _'A
/I"',A = A

1) replace fALa)) Wit (x,<a, A (& =)

3) reglace all mlag=a)) witn BRRIZG pncm Lo
3454, 2, (ae-a)cla,- o) w =)'~ L? -] = O

4y replace  all b,Léa, wity
Jiy 4,4, a-a, -ty - L =0

5’) f‘t(l(ac(_ all o= A, w 1B Ce,—4, =0

Ay

é\) Move  all %u%&-&k,s Od‘t) Gdn fenaming varmé/e( As necessa,,

7
9 MR = FLARBIY] ke ks deot,

1) Elomde A and v with

_ 2
A, =0 A a =0 = q, +ta,%=z=0
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Problem 4. The grammar for ezponential constan! ezpressions, Ecexp, is
e =1|let+e|exe]|e’

Meaning is defined as for arithmetic expressions, with superscript denoting ex-
ponentiation, e.g., the meaning of (14 (14 1))(1+1Dx((1+1)+(1+1)) {3 324 pamely,
6,561. An expression Ecexp is said to be a canonical form if it is a sum of 1’s
(parenthesized to the left).

4(a) Write down a simple set of sound axioms for equations between Ecexp’s,
which, together with the usual inference rules for equations (reflexivity, symme-
try, transitivity, congruence), allow one to prove that any e € Ecexp equals a
canonical form canon(e). Also, briefly explain how to use your axioms to prove
that e = canon(e).

% Sl:\d‘)(a.(— sct )'c v leS e 'cOuNé Las

e,+1
(\ 80' = eoxeﬂ

<,

& .
3 ex (e 1) = (e.xe)+e,

5) et (e, +1) = (eb“’ex)*'

As an a(*jor:‘b\m b{‘/u-‘(:mt’ at e Wmermosré vpperrest
a_‘)f(t) G»ﬂsﬁmé/e rules ¥rum '@P\é Ll/lmp(*sw(e

esc()rdﬂons N

'éo P:L)L\'tfw,g,-,{a’ ts W,?Y @'f"ﬂ{‘u@ﬂu) (0"“//’,"6 é’bﬂv)

Eceg() +5" mmfa/ Form.
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4(b) Prove that your axiom system is complete.

G\;M tnt e les e soot cnd sfficient to

Prove E e= Canon (&) Lor ému] <, we have;

o Fese, {j«w\,%y/;w Fey=Canonle,) a~d

(,e. = CMDV\ZE_,)
by sovnolness ) Cen, Fe. = Camon (e, 4—v(
\"’6 1 = CAnog (CIB J

So bv) (‘H* Sjmmef‘v\y) & ‘érfms;'éu/;%
E Camon (€)= Campn /e,)

SMCC CManlCn/ {:orms Ca~ 04{7 l’],w@ ‘éL,e

Sane V'\Juﬂ T tve identical <5"‘;'//e

‘p,‘w(,‘ (g.,) 1docn on The 1:»%7‘&;)/

CMD:’\(Co) WI{ Camon (6,) ase U(/SM

aﬁpresjt\o ",

bcamontey=e,  (%*F)

)
(k)

Thean ) ‘9’} S(/)M%‘é?\? From  (pk)

and by Lrnmsibii, From (%) and Gkt x)

}"eoze,
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A Hoare Logic

Aziom for skip:
{A} skip {A}

Aziom for assignments:
{Bla/X]}X := a{B}

Rule for sequencing:
{A}eo{C}, {C}er{B}
{A}(cos c1){B}

Rule for conditionals:

{AAb}co{B}, {AA-b}er{B}
{A}if bthencg elsec; { B}

Rule for while loops:
{AAb}c{A}
{A}whilebdoc{A A b}

Rule of consequence:

% (providing = (A= A')A(B' = B))
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Problem Set 8
Due: 25 November 1992
Reading assignment. Winskel, Appendix on Computability.

Problem 1. Winskel, Exercise A.6.

Let Funcvar be a set whose elements, F, are called function variables. Associ-
ated with each F € Funcvar is a nonnegative integer called arity(F).

Let Aexp; to be Aexp with one more clause in its grammar, namely,
Py g
a:= F(ay,..., uity(F))-

A function environment is a mapping R, from function variables to partial func-
tions on numbers which “respects arity”, that is,

R(F) . Narity(F) —N

for all F € Funcvar. Let R be the set of function environments.

Now the meaning of an Aexp; will depend not only on a state, o, but also on
a function environment, R. It will be helpful technically to use the bijection
mapping any partial function f : N® — N to the strict total function f; :
(NL)* — N, where f and f, agree when all arguments are nonbottom, and
fi(my,...,my) = L whenever m; = 1 for some m;. Now given a R and o, the
meaning of an Aexp, will be a strict total function from (N.)" to N.. To
define meaning of Aexp,’s we now have the obvious clause

- A[F(ay,...,an)JRo = R(F)(A[a:}Ro, ..., AfanJRo)
where n = arity(F). Note that (as, for example, in IMP,), the value of an
expression may be “undefined”, i.e., equal to L € N .

Let IMP; be the extension of IMP which uses Aexp,’s instead of just Aexp’s.
Note that the domain C of command meanings is now R —(X — X ). It will
also be convenient to identify the “bottom state”, Lg with the function mapping
every location to the “bottom number” Ly.

For any p € R, and ¢ € Comy;, and sequence Y7,..., Y4 of locations, where
the first n > 0 locations are distinct, we let

{c}ayv. v - NI—NL



2 6.044J/18.423J Handout 38: Problem Set 8

be the sirict function on numbers computed by ¢ when function variables are
interpreted according to R, number arguments are placed in locations Y1, ..., Y},
and the answer is left in location Y, 4. To be precise, we define

{clrys,... Yngs (M1, s mn) = Cle]R(oo[m1/Y1]. . .[mn/Ya])(Yat1)

where o is the state mapping all locations to zero. We say a partial function
f is R-computable iff fi is the function {c}q y, for some ¢ € IMP; and
locations Y3,...,Y,41.

Note that a partial function f is computable as defined in Winskel §A.1 iff
fir={clg Yoo Yoin for some R, Y’s, and a Com; which contains no occurrences
of function variabres, that is c is an ordinary Com.

~nYn+1

Problem 2. Show that if g: N3 — N, and f; : N2 — N are R-computable
functions for i = 1,2, 3, then so is h : N2 — N where

h(my, m3) = g(fi(m1, m2), fo(m1, m3), f3(my, m3))

Problem 3.

3(a) If the value of a function variable, F, is already computable from the
other function variables, then there is no need for it commands. Namely, suppose
that R(F) = {c'}gy,,... v,,, for some ¢’ € Com; which contains no occurrences
of F'. Show that then every rho-computable function is computable by a Com;
which contains no occurrences of F by explaining how to transform any ¢’ €
Comy; into a ¢’ without F such that {¢"}g y.

—_— '
tea¥iy = Ry, Yai
Hint: There is a bit of “expression compiling” required here which you may find
awkward to explain. We will give nearly full credit to solutions which assume
that F only occurs as an outermost symbol of an Aexp;—never as the operator

of a subexpression—and that F' does not occur at all in Boolean expressions.

3(b) An IMP-environment R is computable if Ro(F') is computable (i.e., by
an ordinary IMP command) for all #/ € Funcvar. Conclude that if R is
computable, then every R-computable function is computable.

Problem 4. Suppose f(n,m) = g(m) for n < 0, and f(n,m) = h(n —
1,m, f(n — 1,m)) for n > 0. Show that if g, and hy are R-computable, then
sols fy.

Problem 5.
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5(a) Show that if a set of numbers is R-checkable, then it is the range of a
R-computable function.

5(b) Show that if a set of numbers is the range of R-computable function, f,
of one argument, then it is R-checkable. Hint: Search for n such that f(left(n))
converges in at most right(n) steps to the input being checked.

5(c) Show that a set is the range of a R-computable function iff it is the range
of R-computable function of one argument. Hint: mkpair.
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Semantics by Translation

In addition to operational, denotational, and axiomatic semantics, one can as-
sign semantics to a source language by explaining how to translate it into an-
other target language with known semantics. If the target language is low-level
enough, this corresponds to compilation.

As an illustration, we describe a translation from IMP,, the language IMP
extended with resultis, to a quite restricted subset, IMP,., of IMP in which
expressions are “unnested,” viz., assignments are of the form X := Y op Z or
X := 0, and Bexp’s are of the form 0 < X.

Because IMP,. expressions have side-effects, we translate both expressions and
commands into IMP,,, commands, using designated “output” locations to save
the expression values. The idea is to translate a € Aexp, into an IMP,,
command equivalent to X := a, where X is some fresh “output” location. We
assume a function fresh : Pow, (L) — Loc such that fresh(L) ¢ L for every finite
subset, L, of locations. Since the translated code needs “temporary” locations,
we actually only ask that the translation of a be equivalent to X := a in its side-
effects on loc(a). To avoid interference among output locations, the translation
takes a finite set of locations as a second parameter. These are the locations
not to be interfered with.

Definition 1. For states o), 02 and L C Loc,
o=t o2 iff 01(X) = 02(X) forall X € L,
and for ¢, ¢’ € Com,.,
c~pcd iff o1 =L o implies Clc]o; =L Clc]o.

For a € Aexp,, b € Bexp,, ¢ € Com,, and L € Pow;(Loc), we will now
define Trans(-,L) € IMP,, so that

Trans(a,L) ~p X :=a,
where X = fresh(loc(a) U L) and L’ = loc(a) U LU {X}, and similarly

Trans(b,L) ~p ifbthenX :=lelseX :=0, '

Trans(c, L) ~ioc(cjuL €-
For a equal to ag + a; we have:

Trans(a, L) ::= Trans(ag, L Uloc(a)); Trans(a;, L'); X := X +Y
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where X = fresh(loc(a) U L), L' = loc(a) UL U {X}, and Y = fresh(L’). Note
that X serves as the output location for the subtranslation of ay as well as for
a.

For a equal to cresultisag:

Trans(a, L) ::= Trans(c, L Uloc(a)); Trans(ag, L U loc(a))

For b equal to ag < a;:

Trans(b, L) ::=
Trans(ag, L U loc(a)); Trans(ay, L');
Y =Y-X,;

if0<Ythen(X :=0; X := X +1)elseX :=0
where X = fresh(loc(b)U L), L’ =loc(b) U LU {X}, and Y = fresh(L’).

And so forth. Here are three optional exercises to help understand how and
why the translation works.

Exercise 1. Describe the translation for X := a.
Exercise 2. Describe translation for whilebdoc.

Exercise 3. Write out the result of translating of the following command into
IMP,,.:

if 5 < (Euclid resultis M) then N :=0else M := (M := (X + M)resultis2 x M)

Even IMP,,, is complicated by theoretical standards, and it is an important
theoretical exercise to see how simple a language one can further translate into.
Some of what we do in the following optional exercises resembles compiling IMP
down to RISC register-transfer, but mostly the translated code is too inefficient
to be of any practical interest. It makes a good story though:

Exercise 4. Explain further how to translate IMP,,, into a subset of IMP,,,
in which the only assignments are of the form X := X +1, X := X -1, or
X := 0. Hint: X := 0is used to initialize temporary locations. First eliminate x
using repeated addition. Then eliminate addition using repeated incrementing
or decrementing and copying assignments, i.e., X := Y. Then simulate copying -
assignments with repeated incrementing or decrementing.
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Exercise 5. Explain further how to translate IMP,,, into a subset of IMP,,, in
which the only assignments are of the form X := X +1, X :=X—-1,0or X :=0,
and the only Bexp’s are of the form X = 0. Such commands are called counter
machines. Hint: Simulate the test 0 < X by incrementing or decrementing X
until it equals zero. Since there is no way ofthand to tell whether to increment
or decrement, do them alternately a growing number of times.

Exercise 6. Explain how to translate any counter machine ¢ into a counter ma-
chine ¢’ with at most one while-loop and no nested conditionals. Hin?: Translate
¢ into a sequence of labelled, guarded assignment instructions and goto’s. Then
simulate the labels and goto’s by setting and testing “flags,” i.e., fresh zero-one
valued locations, within the body of a single while-loop.

Exercise 7. (a) Explain how to translate any counter machine ¢ into a counter
machine ¢/ which simulates it using only two locations. Note that ¢’ doesn’t
have enough locations to be =)o¢(cy to ¢, so we ask only that ¢’ halts in the
zero state og iff ¢ does too. Hint: Use a representation like that of the pairing
function mkpair of Handout 32, Notes on Expressiveness, so the contents 1, of
n locations are coded into a single location as

9migsg(m1)gmarsg(ma)]1ma3ss(ms) . .. (P2n-1)""(P2n )e8(mn)

where p,, is the n*® prime. Simulating an increment of the third location corre-
sponds to multiplying the code number by 11.

(b) Conclude that the zero-state halting problem for “two-counter” machines is
undecidable.

Exercise 8. Explain how to decide the zero-state halting problem for one-
counter machines.
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Problem Set 9
Due: 7 December 1992

Reading assignment. Notes on Expressibility, Checkability, Decidability—
Handout 40.

Problem 1. S joinS; is defined to be {n | left(n) € S; and right(n) € S,}.
1(a) Show that if S is expressible, then so is SjoinS.
1(b) Show that S;join S, is an lub of S$; and S; under <.

1(c) Show that if S is not decidable, then neither S join S nor it’s complement
is checkable.

1(d) Give an example of an expressible set S such that neither S nor § is
checkable.

Problem 2.

2(a) A set of numbers is nonirivial iff neither it nor its complement is empty.
Prove that all nontrivial decidable sets are <,, to each other.

2(b) Prove that a nonempty checkable set is undecidable iff the set and its
complement are <;,-incomparable (that is, neither is <, the other).

2(¢) Prove that the checkable sets are the closure of the decidable sets under
“right projection”, namely, the operation mapping a set S C N to right(S).

2(d) Prove that the expressible sets are the closure of the decidable sets under
right projection and complement. Hint: Every Assn is equivalent to an assertion
of the form (=)3i1.(—)342....(=)3in.a = 0, where the parenthesized negations
are optional.
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Problem 3. For any set S C N , let ps be the function environment (cf.
Problem Set 8) such that p(Fy) = charg and p(F,) is a function with empty
domain for n > 1 (charg : N — {0, 1} is the characteristic function of S, where
charg(n) = 1iff n € §). A set S is said to be Turing reducible to a set Sy, in

symbols Sy <r S, iff charg, is pg,-computable. It is also suggestive to say that
“Sy is So-decidable” iff S; <1 Ss.

3(a) Show that S <7 S for any set S.
3(b) Explain why <7 is transitive.
3(c) The self-halting problem relative to S is

H) .= {c € Cgm | {e},s.x..x, (F€) l} .

Prove that S <7 H(5). Hint: Repeat the proof that the halting problem is
undecidable, but for Comy,’s in function environment ps.
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Problem Set 9—Revised
Due: 7 December 1992

Reading assignment. Notes on Expressibility, Checkability, Decidability—
Handout 40.

Two corrections are incorporated below: The definition of join in the earlier
version of this problem set did not yield the lub claimed in problem 1(b). Also
in problem 2(b), “nonempty” needed to replaced with “nontrivial.”

Definition. A set of numbers is nontrivial iff neither it nor its complement is
empty.

Problem 1. S;joinS; is defined to be

{mkpair(1,n) | n € S1} U {mkpair(2,n) | n € S2}.
1(a) Show that if S is expressible, then so is SjoinS.

1(b) Show that S;join S is an upper bound of S; and S; under <,,. More-
over, if S; and S are nontrivial, then show it is a least upper bound of S; and
Sa under <,,.

1(c) Show that if S is not decidable, then neither S join S nor it’s complement
is checkable.

1(d) Give an example of an expressible set S such that neither S nor S is
checkable.

Problem 2.
2(a) Prove that all nontrivial decidable sets are <,, to each other.

2(b) Prove that a nontrivial checkable set is undecidable iff the set and its
complement are <,,-incomparable (that is, neither is <, the other).
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2(c) Prove that the checkable sets are the closure of the decidable sets under
“right projection”, namely, the operation mapping a set S C N to right(S).

2(d) Prove that the expressible sets are the closure of the decidable sets under
right projection and complement. Hint: Every Assn is equivalent to an assertion
of the form (—)3#;.(=)3i5....(—=)Jiy.a = 0, where the parenthesized negations
are optional.

Problem 3. For any set S C N , let ps be the function environment (cf.
Problem Set 8) such that p(Fy) = charg and p(F,) is a function with empty
domain for n > 1 (charg : N — {0,1} is the characteristic function of S, where
chars(n) = 1iff n € S). A set S) is said to be Turing reducible to a set S, in
symbols S; <r S iff charg, is pg,-computable. It is also suggestive to say that
“S; 18 Sp-decidable” iff Sy <r S,.

3(a) Show that S <7 S for any set S.
3(b) Explain why <r is transitive.

3(c) The self-halting problem relative to S is
HS) = {c € Comy, | {c},, x, x,(#¢) l}.

Prove that S <7 H(). Hint: Repeat the proof that the halting problem is
undecidable, but for Comy,’s in function environment ps.
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10.
11.

12.

13.

14.

15.

Outline: Lectures 1-36

. (Fri, 9/11) Administrivia. Sample IMP while-program, Euclid, p.34; brief sketch of partial correctness

and termination.

. (Mon, 9/14) Syntax of IMP and “natural” evaluation semantics of for Aexp. Derivation tree for

((M + N) x N,c[10/N][6/M]) — 160.

. (Wed, 9/16) Natural eval rules for Com. Derivation tree for (Euclid, ¢[10/N][6/M]) — o[2/M][2/N].

Uniqueness of derivation tree for each configuration; exists for Aexp, Bexp, and while-free Com, but
(whiletruedoc, o) /A for all ¢,o. No proofs.

(Fri, 9/18) One-step rules. Example (Euclid,c[10/N][6/M]) —} ¢[2/M][2/N]. Remark: — is total,
functional, computable relation. Inductive def of transitive closure. Statement of“equivalence” of
one-step and natural rules: v —7} é iff ¥ — & for all configurations 4 and values § e NUT U X.

. (Mon, 9/21) Proof of equiv of natural and one-step semantics.

(Wed, 9/23) Proof by induction on deriv. of functionality of command evaluation (Winsk, 3.11). Proof
by minimum principle that (whiletruedoc,s) /> (Winsk. 3.12).

. (Fri, 9/25) Formal def of derivations, and induction on them (§3.4). Set R of rule instances determines

a monotone, continuous, operator R on sets (§4.4) with derivable elements = fiz( R).

. (Mon, 9/28) (Winskel §5.4) Def and examples of cpo’s, monotone and continuous functions. Contrast

with usual (epsilon-delta) continuity.

. (Wed, 9/30) Examples of Ro(A) for Ry = {0/3,0/4, {n,n+1}/n+2}. Proof that R is continuous.

Proof of fixed points of continuous functions on cpo’s.
(Fri, 10/2) QUIZ 1, IN CLASS, on lectures 1-8

(Mon, 10/5) Comments on Quiz 1. Discussion of wellformed and non-wellformed recursive function
def’s, eg, e(z) = e(z+1), f(z) = f(z+1)+1, for g, h functionson wt: g(1) = 1; g(z+y) = 9(z)+9(y),
h(1) = 1; h(z + y) = h(z) + 2h(y). Function def by structural induction, eg, length and depth of a
derivation, def of locy (§3.5) and statement w/o proof: ¢ only effects locy(c) (Winskel 4.7). Brief
mention of capturing computational behavior of recursive def’s by choosing least partial functions
satisfying constraints.

(Wed, 10/7) Motivation for fixed points as explanation of recursion: While-loops as fixed points of
mappings on command meanings. Command meanings, C, will be partial functions € ¥ —X (mean-
ings of expressions will be total functions from states to Num or T). Statement of equivalence of
denotational and natural semantics: Eval(¢) = Cc]. Then define denotational semantics by structural
induction assuming 'white (Winskel p.62) has a least fixed point.

(Fri, 10/9) Motivate F'white by considering G : Com — C where G(while) = unwind-once- while.
Outline proof that Eval(while) is fixed point of I'; observe that there may be other fixed points: every
comand is fixed point of ['while truedoskip. State that Eval(while) is least fixed point and ['while has
least fixed point because it is continuous on cpo C.

(Mon, 10/12) COLUMBUS DAY
(Wed, 10/14) Properties like Eval((c;; ¢2)) = Eval(cz) o Eval(c,). Comments on proof of equivalence of

natural and denotational semantics (Winskel Thm. 5.7): by structural induction, with subinduction
for while case.

(Fri, 10/16) First-order arithmetic: Assn’s and their meaning. Assn’s for “is prime,” “divides,” “lem.”
Inductive def of free variables.
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(Mon, 10/19) Formal def of ¢ =7 A (Winskel§6.3). Validity, satisfiability, invalidity.

(Wed, 10/21) Semantic of partial correctness; ¢ = {true}c{false} iff ¢ diverges in state o; A equiv
{true} skip {A}. Sample axioms and rules of Hoare logic, mention soundness, hint about completeness
and incompleteness.

(Fri, 10/23) Def of equivalent Assn’s. Lemma: A equiv B iff (A= B) & (B = A). Lemma: —Vj.A
equiv 3j5.~A. Substitution Lemma: for expressions (WinskelLemma 6.8).

(Mon, 10/26) Substitution Lemma: for Assn’s (WinskelLemma 6.9). Prove validity of Hoare Assign-
ment axiom. Lemma: A only depends on FV(A) and loc(A). Lemma: If j ¢ FV(A), then Vj.(AV B)
equiv (Vj.A) V (Vj.B) equiv AV (Vj.B). Proofs omitted.

EVENING QUIZ 2, Mon, 10/26, on lectures 9, 11-18

(Wed, 10/28) Soundness of inference versus antecedents implying consequent. Mention optional exer-

cise: which Hoare rules are valid as implications. Informal soundness of Hoare rules and proof example:
Euclid.

(Fri, 10/30) Soundness of Hoare loop invariant rule. Weakest preconditions and Dynamic Assertions.
Translate dynamic assertions into assertions, assuming expressiveness.

(Mon, 11/2) Prove expressiveness of Assn for IMP. Corollary: Relative completeness of Hoare logic.

(Wed, 11/4) Thm: Every Assn equiv to prenex.[polynomial = 0]. Intro to rules for Aexp equations
and sum-of-products polynomial representation of Aexp’s.

(Fri, 11/6) Notion of canonical form. Deriving enough equational axioms to put Aexp’s into sum-of-
monomials form.

(Mon, 11/9) Canonical forms for Aexp’s as polynomials-with-multivariate-polynomial-coefficients.
Proof that distinct canonical forms have distinct meanings by induction on number of variables. Com-
pleteness and decidability for polynomial equations.

(Wed, 11/11) VETERAN’S DAY

(Fri, 11/13) Godel numbers of Assn’s. Apimn) = An[m/io] for expressible p. Nonexpressibility of
Truth for Assn’s.

(Mon, 11/16) QUIZ 3, IN CLASS, on lectures 19-25

(Wed, 11/18) Complete proof of nonexpressibility of Truth. Define IMP checkable and state Lemma:
Checkable implies expressible. Mention incompleteness.

(Fri, 11/20) DROP DATE & Underground Guide Survey. Prove Checkable implies Expressible using
expressiveness, Define IMP-decidable proof system as having IMP-decidable proof relation. State
Lemma: IMP-decidable proof system has IMP-checkable set of provable Assn’s, so Provable #
Truth.

(Mon, 11/23) Def of computable, decidable. Remark: IMP-computable same as IMP,-computable
by Handout—but not obvious. Decidable implies checkable. Thm: D decidable and f total computable
implies f(D) checkable. Cor: Provable assertions are checkable.

(Wed, 11/25) Vocabulary: Checkable = r.e., decidable = recursive, computable = (partial) recursive.
Decidable closed under intersection, complement. Mention dovetailing, f(r.e.) is r.e. Discussion of
thesis that Effectively decidable = IMP-decidable. The set of (Gddel numbers of) sentences is a
decidable set; likewise, the set of commands. Incompleteness Theorem: In a sound proof system, there
is a true sentence which is not provable.

(Fri, 11/27) THANKSGIVING HOLIDAY
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32.

33.
34.

35.

36.

(Mon, 11/30) Uncheckability of H where H is the self-halting problem, so undecidability of H. Venn
diagram of decidable, checkable, co-checkable, expressible. Decidable iff checkable and co-checkable.
Universal IMP command, u. Checkability of halting problem.

(Wed, 12/2) Uncheckability of zero-halting problem (by reduction). <,, and Rice’s Theorem.

(Fri, 12/4) Incompleteness of substitution instances of the single Assn W(false, cy)[n/X;]. Hilbert’s
10th. Mention other undecidable problem: semigroup word problem; tiling problem (no time to mention
zero matrix product problem; CFG equivalence and ambiguity problem, CSG emptiness).

(Mon, 12/7) IMPacala Brookes. Noncompositionality of state transition semantics. Def of observa-
tional congruence. X:=X not cong skip; some other identities do hold.

(Wed, 12/9) Compositional “interrupt sequence” semantics “interrupt sequences” fully abstract when
n-ary-test-and-set is added to IMP,.. Comments on what was not covered: higher-order-IMP.
Follow-up courses: 6.821 (programming linguistics and semantics), 6.830 (research in logic and seman-
tics of programs), 6.840 (computability and complexity), 6.826 (Systems modelling and specification),
Math and Philosophy courses in Logic.

(Thu, 12/17) (Exam Period) QUIZ 4, 1:30-3:30 in du Pont, on lectures 26, 28-36
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Problem Set 7 Solutions

A sublogic of Assn is a set of Assn’s that is closed under Boolean combi-
nation, quantification, and substituting numbers or integer variables
for integer variables or locations. For certain sublogics (an example
will appear soon), there is a computational “quantifier elimination™
procedure that will transform any Assn, 4, in the sublogic into an
equivalent guantifier-free Assn, A, in the sublogic.

Problem 1.

1(a) If a sublogic has a quantifier-elimination procedure. it can be
used to develop procedures to decide

(i) given a formula A of the sublogic. and the values of () for
X €loc(A) and I(j) for j € FV(A4), whether ¢ =/ A.

(ii) whether or not a formula of the sublogic is valid, and

(iii) whether or not two formulas of the sublogic are equivalent.

Describe procedures for (i), (ii) and (iil) assuming quantifier-elim-
ination.

(i) An Assn without quantifiers is (equivalent to) a Bexp. (The only dif-
ferences are expressions of the form A= B, which can be replaced with
the equivalent =4 v B.) Thus, given a quantifier-elimination procedure.
we can apply it to remove all the quantifiers in an expression, replace
all variables and locations with their values in o, and apply the one-step
evaluation rules to evaluate the resulting (variable-free) Bexp.

(A subtlety that had some people worried was the possibility that the
quantifier-elimination procedure would introduce new free variables ¢ for
which we wouldn’t have the appropriate values /(z). Note, however, that
a simple induction on the structure of an Assn shows that the truth of
the resulting Assn can’t depend on the values of any new variables. Thus.
after eliminating all quantifiers, we can replace all new variables with 0.
This gives us a quantifier-elimination procedure that doesn’t introduce
any new variables, so, without loss of generality. we can assume that our
given QE procedure doesu't either.)

(ii) Three (easily proven) facts will aid us here:
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1. As noted in Quiz 2 (handout 30). an Assn, 4. is valid iff the V).V i
valid.

2. An Assn 4 with a location .\ is valid iff the Assn A[i/.\] is valid,
where 1 ¢ FV(A).

3. An Assn A with no free variables i1s valid iff it is true in soine state
and interpretation (since its truth value must be the same in any
state and interpretation).

Thus, to determine the validity of an assertion A in a sublogic with quan-
tifier elimination, first replace all its locations with fresh variables, then
universally quantify over all free variables in the new term. then pick any
state and interpretation and apply the procedure given in step (1) Lo de-
termine the truth of the assertion in the chosen state and interpretation.

(iii) For two assertions A and B, use the procedure in step (ii) to determine

the validity of (4= B) A (B = 4).

1(b) Suppose for some sublogic that there is an “innermost exist-
ential-elimination” procedure that, for any integer variable j and
quantifier-free Assn, A, in the sublogic, constructs another quantifier-
free formula, £(j, A), in the sublogic, such that £(;, A) is equivalent
to 3j.A. Using innermost existential-elilmination as a subprocedure.
there is a straightforward recursive definition of a guantifier-elnn-
ination procedure for the sublogic. Describe it.

Replace each universally quantified subexpression ¥j..4 with the equivalent ne-
gated existentially quantified expression =3j.—4. Then. working from the muer-
most expressions outward, replace each existentially quantified expression 3.4

with £(j, A).

Define incremental arithmetic expressions, IncAexpv, to be Aexpv’s with-
out the multiplication or subtraction operations and with addition
restricted to incrementing by an integer. Namely. the grammar for
a € IncAexpv is

az=nl|t|N]ja+n|n+a

Let IncAssn be the set of Assn’s all of whose arithinetic subexpres-
sions are IncAexpv’s. Note that IncAssn is a sublogic of Assn.

Define a simple incremental assertion to be a finite conjunction of
assertions of one of the three forms
n<v, v<n, vi+n<u

where n € Num, v, v, v2» € LocU Intvar. and v, and v are not the same.
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Problem 2.

2(a) Describe a special case of an innermost existential-elimination
procedure which works just for simple assertions. That is, if 4 is a
simple assertion, then so will be £(j, A).

Let A be a simple assertion. Adjust every inequality in A4 so that j appears
{(positive and) alone on one or the other side of its <-sign. Let £(j,.4) be the
conjunction of all inequalities ag < a, such that:

e ap < aj appears in A and j ¢ FV(ag < a;), or
¢ a9 < jand j < a; appear in the adjusted A.

(Note that it is possible for £(j, 4} to be an empty conjunction. We will treat
this as true.)

2(b) Describe a procedure that will transform any quantifier-free
assertion A € IncAssn into an equivalent formula S(.1) that is a finite
disjunction of simple assertions.

Given such an assertion A, perform the following modifications:

1. Change all subassertions Ag = 4; to -4y Vv 4.

2. lterate DeMorgan’s law as often as necessary to change all ~( 49 A A4)) 1o
—AgV mA; and all =(Ag V 4;) to =4y A~y

3. Change all -—Ag to Ag..

4. Change all =(ag = a;) to ((ag < a;) A ~{a; < ag))V ({a; < ag) A-(ag >

G.))).
5. Change all ag = a; to (ag < @)} A (4 < ag).

6. Change all -(ag < a;) to a; + | < ay.

These steps will reduce an assertion to conjunctions, disjunctions and inequali-
ties. Note that, by the form of an IncAssn, the arithmetic expression on either
side of an inequality can consist at most of a sum of integers and, possibly. a
single variable or location, so we can easily reduce any inequality to the proper
form for simple assertions. (To reduce an inequality of the form no < ny, re-
place it with (X < 0)Vv (0 € X) for any location X if the inequality is true. and
(X <0)A(1 < X) if the inequality is false.)

Finally, distribute all A’s according to the law AA(BV Y= (AABYV(BAC),
and we are left with a finite disjunction of simple assertions.
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2(c) Explain how to combine the procedures of problems 2(a) and
2(b) to obtain an innermost existential-elimination procedure for ev-
ery quantifier-free IncAssn, not just simple ones.

To eliminate an inner quantifier 35.4, apply the procedure in 2(b) to convert 1
to a disjunction of simple assertions, then distribute the quantifier down to the
simple assertions using the rule 3j.(A Vv B) = (3j.4) V (3;.B), then apply the
existential-elimination procedure for simple assertions to each of the quantified
subexpressions in the resulting disjunction.

Problem 3. The preceding problems provide a computational pro-
cedure for determining validity and equivalence of IncAssn’s. The
procedure is total—it is guaranteed to return the correct answer on
every IncAssn—though there are several stages where huge compu-
tations may be needed. Describe briefly how this procedure could
be programmed as a procedure definition F. in, say, Scheme, so ¢.y..
(F A) evaluates to t or nil according to whether or not 4 € IncAssn
is valid, where A is some straightforward representation of 4 as an
S-expression. Indicate which stages or subprocedures of the compu-
tation may be the source of time-consuming (quadratic. exponential.
.., growth) subcomputations.

Let n be the length of the expressioun .1, according to some reasonable measuare.
To determine validity,

1. Add universal quantifiers to A (replacing locations with variables) as de-
scribed in 1(a), part ii. This will take time proportional to n.

2. Apply the procedure in 2(c) as described in 1(b) Lo eliminate the quanti-
fiers. For each quantifier, this can take time exponential in n. (If you have
trouble seeing this, consider that the task of distributing the A’s over the
V’s can approximately double the size of the expression at each step.)

3. Given the resulting quantifier- (and location- and variable- ) free assertion,
evaluate it. This will take time approximately linear in the size of the new.
possibly exponentially larger expression.

To determine equivalence of two expressions. 1 and B. apply the same procedure
to (A= B) A (B = A) as described in 1(a), part iii.

Problem 4. Show that there is no IncAssn which means “j is even.”
Conclude that IncAssn’s are no! expressive for the set of IMP com-
mands whose arithmetic subexpressions are restricted to be IncA-
exp’s.
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By the preceding problems, it is enough to show that no disjunction of simple
assertions with only free variable j can mean “j is even.”

Assume, for the sake of contradiction, that there is such an expression, 4. Say
that A is a disjunction of n conjunctions, 4, through A,. Now, for any even «
it must be the case that all of the A; are false for j = x — | and at least one A;
is true for j = z. Since there is an infinite set of even numbers, and only finite
A, there must be at least one A; that is false at j = £ — 1 and true al j = x
for an infinite collection of z’s. Consider that A;, and its subterms B; through
B, for some m.

By a similar argument, since A; is a finite conjunction of assertions By, there
must be some B, that is false for j = r — | and true for j = 2 for an infinite
number of integers . But each B; is either j < k or k£ < j for some integer k.
so this is impossible. Thus, there is no IncAssn expressing *j is even.”

However, even if we restrict our conunauds to use IncAexp’s. we can geuerate
the command

ci= Y :=X;while-(X = 1)A=(Y =1l)doX =X +2;}Y =Y -2

But, since ¢ terminates in o exactly when o(X) i1s odd, the weakest precondi-
tion W{ec,false) is exactly “X is even,” which is not expressible in IncAssn.
Thus IncAssnis not expressive for the set of IMP connnands whose arithinetic
expressions are restricted to be IncAexp’s.

Problem 5. Define ResetCom to be the set of IMP commands whose
Aexp’s are restricted to be of the form n € Num or X € Loc: define
ResetAssn’s likewise.

5(a) Show that every IncAssn is equivalent to a ResetAssn.

(Note that “defining ResetAssn’s likewise” must include allowing integer vari-
ables as well as locations in the assertions.)

By the previous problems, for any IncAssn, A, there is an equivalent assertion
A’ which a finite disjunction of simple assertions. Since n < X and X < n
are already ResetAssn’s, it remains only to show that there i1s a ResetAssn
equivalent to any expression of the forin X + n < Y.

X +0 <Y isequivalent to X <Y, which is a Reset Assn.

X +1<Y isequivalent to (ag < a;) A =(as = «;), which is a ResetAssn. In
general, then, if n is positive, then X + n < Y is equivalent to

(X+1<iDAG+ 1<) A Al + 1Y)
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which is thus equivalent to a ResetAssn.

Finally, X + (—1) <Y is equivalent to Vj.({j + 1 < X)=(j < Y)), whicl i~
equivalent to a ResetAssn. In general, then, if n is negative, then X + n <V
is equivalent to '

(X+ (D) <i)AE + (=) Si) A Alina +(=1) <))

which is thus equivalent to a ResetAssn.

Let diverge be while true do skip. An IMP command which has no
occurrences of while-loops other than diverge is said to be whule-free.
We state the following

Lemma. If ¢ € ResetCom. then ¢ ~ . for some while-free ~ ¢
ResetCom.

5(b) Assuming the Lemma. show that ResetAssn is expressive for
ResetCom.

As in Handout 32, we can define the weakest precondition W {c. A) inductively
as follows:
Wiskip, 4) .= 4,
W(X :=a, 4) o= Ale/X].
w ((CI;CQ)! 4) =W (cla M’,(CQ‘ 4)) )
4) =
)

W(ifbthenc; elseca, A) i= (b= W{c;, A)) A (=b= W (e, 4)).
Wi(diverge, 4) ::= true

Thanks to the lemma, these rules are sufficient 1o define We. 4) for (a comimand
equivalent to) any command ¢. That W(c, A) is the weakest precondition follows
from the proofs in Handout 32. That each is a ResetAssn (assuming -1 is)
follows immediately from the definition of Reset Assn’s. The only iteresting
case is that of W(X := a, A), which relies on the fact that a must be a location
or integer; thus, A[a/.X] must still be a ResetAssn.

5(c¢) Conclude that the restriction of Hoare logic to Reset Assn’s and
ResetCom’s is a complete proof system whosc proofs arc computationally
checkable.

(The following is an outline of the proof. More detail wouldn’t be anuiss.)

Consider the relative completeness proof in Handout 32. There we showed that.
given proofs of any given valid implication. the Hoare rules would give us a
proof of any valid partial correctness assertion.
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First, we can verify the relative completeness of the restricted system by inspec-
tion of the more general relative completeness result; we just verify that a proofl
of a Reset Assn-based partial correctness assertion about ResetCom's relies
only on the proofs of valid implications A = B in ResetAssn and the (shorter)
proofs of other Reset Assn-based p.c.a.’s.

Given relative completeness, we can get completeness by simply adding all valid
ResetAssn implications to the proof system as axioms. Since, by 5(b), the
validity of any Reset Assn can be computationally checked, and each step of
a Hoare-logic proof is easily checkable, we have our complete, checkable proof
system.
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Problem Set 8 Solutions

Problem 1. Describe how to transform a command c; into one which
meets the description “do ¢, for S steps or until ¢; halts (whichever
- happens first)” (Winskel, Exercise A.6). Hini: Any convenient notion
of step will serve for the purposes of this problem—not necessarily
the —yversion of step, which will probably be inconvenient here. The
only properties “steps” must have is that (1) for any command, ¢, it
is IMP-decidable, given n and the values in a state of loc(c), whether
¢ halts in < n steps in that state, and (2) ¢ halts in a state iff it halts
in a finite number of steps. A convenient notion of step satisfying
these criteria is the number of executions of while-loop bodies, which
can be counted by inserting assignments S := S — 1 at the beginning
of every while-loop body and suitably modifying while-loop guards.

Using the notion “step” from the hint (though with a slightly different imple-
mentation method), we can define a transformation on commands by structural
induction, as follows. Assuming that S is unused in ¢,, define the transformed
program ¢, by: '

skip & skip
X =a¥if1 < Sthen X := gelseskip

o~ def ~ ~

Co;C1 = Co;C1

if bthencgelsec, 4l £ b then coelsecy

whilebdoc % while(b A1 < S)dodS:=S—1

Problem 2. Show that if g : N> — N and f; : N> — N are IMP-comput-
able partial functions for i = 1,2, 3, then so is A : N> — N where

h{my, m2) = g(f1(m1,m2), f2(m1, m2), f3(my, m2)).

For convenience let functions be computed with tidy commands as in the ap-
pendix. Thus, let g be {c,} and let each f; be {¢;} for tidy commands ¢, ¢y,
¢2, ca. Further, let X/, X}, Y}, Y3 be locations untouched by ¢, or any ¢;. Then
his {cn}, where cp is the tidy command

X]:=X1; X5 = Xg;e1; 11 = Xy
Xl = X{;Xz = Xé;02;Y2 = Xl;
X := X|; X2 := X§; c3;

X3 1= X1; X2 1= Y2, X1 1= Yy5¢4;
X{=0;X5:=0;Y1:=0;Y2:=0;
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In words, the input values are saved, then each ¢; command in turn is executed
on those input values and the return values are saved; then the return values
from the ¢;’s are all passed to c;, and then the command tidies up after itself.

Problem 3. Show that if ¢ and h are IMP-computable total func-
tions, then so is f where

_ [ g(m) for n <0,
f(n:m) = {h(n— l,m,f(n - 1,m)) forn > 0.

Again, given tidy commands ¢, and ¢, and fresh variables C, N and M, we can
produce c; as follows:

C:=4LN:=X;M:=Xy

X1:=M; Xq:=0;¢y;

while(C < N)do
X3:=X1;X1:=C; Xy := M;cyp;
C:=C+1;

C:=0;N:=0;M:=0

In the next problem we formalize the idea that if a function is com-
putable by an IMP command, then it can be used freely in Aexp’s
to define further IMP-computable functions. Though it won’t come
up on this problem set, this same formal machinery will later be
useful for defining computability relative to arbitrary functions on
numbers—even if these functions are not computable—and it will
also be useful if and when we add function declarations to IMP.

Let Funcvar be a set whose elements, F, are called function variables.
Associated with each F € Funcvar is a nonnegative integer called
arity(F). Let Aexp,, to be Aexp with one more clause in its grammar,
namely,

a.= F(al, ey aarity(F))'

The meaning of an Aexp,;, depends on the values of its function
variables. It will be helpful technically to use the bijective coore-
spondence between partial functions f : N* — N and the strict total
functions f; : (N )* — N, where f and f; agree on all n-tuples of ar-
guments in N for which f is defined, and f, is i otherwise. A function
environment will be a mapping, p, from function variables to functions
on N; which “respects arity”, that is,

pIF): (N Ny
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for all F € Funcvar. Let R be the set of function environments. The
domain, 4, of Aexp 1o meanings willbe R - X; — N, with the bottom
value reflecting the fact that functions computed by commands are
partial because of command divergence.

To define meaning of Aexp,,’s we insert p’s into the defining clauses
for Aexp’s and add one more straightforward clause:

AlF(ay,...,an))po = p(F)(Alai)po, ..., Alan]po)
where n = arity(F).

Let IMP;, be the extension of IMP which uses Aexp,,’s instead
of Aexp’s. Note that the domain C of command meanings is now
R_’(E_j_ hnd EJ_).

For any p € R, ¢ € Comy,, and sequence }7,,.,.1 =Y,...,Ya41 € Loc,
where the first n Y’s are distinct, we let

{C}P.9n+1 ((NL)* =Ny

be the sirict function on numbers computed by ¢ when function vari-
ables are mterpreted according to p, arguments m, € N, are placed
successwely in locations Y,,, and the answer is left in location Y, ;.
That is, let 0y be the state mapping all locations to zero; then
Ly or(Y,,H), if M, € N and Cc]p(oo[mn/Ya]) = 0 # Lg,
{e}, 9. (71n) = .
1Tnt otherwise.

We say a function f : (NL)* =N, is p-computable iff f = {c} for

919 +1
some ¢ € IMP,, and locations Y,,+1. We also say a partial function
J :N™—=N is p-computable iff f, is.

It is not hard to see, and you may assume, that a partial function f is
IMP-computable as defined in Winskel, §A.1 iff f 1s p-computable by
some ¢ € Comy, which contains no occurrences of function variables,
that is, ¢ is an ordinary Com.

Problem 4.

4(a) If the value of a function variable, F, is already computable
from the other function variables, then there is no need for it com-
mands. Namely, suppose that p(F) = {cp}‘,,,;“_H for some cr € Comy,
which contains no occurrences of F. Show that then every p-comput-
able function is computable by a Com/, which contains no occurrences
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of F by explaining how to transform any ¢ € Com/, into a ¢’ without
F such that {c’}p,}r,“+l = {c}p,,;-“.

Given any ¢ € Comy,, the following inductive definition will provide a (very
inefficient) translation ¢ such that F' does not occur in @.

First, let ¢f= be c¢p with all locations renamed to be distinct from any locations
in ¢. In particular, let values be passed to and from the command via new
variables Yp) through Yp 4.

Next, to each subexpression ag, by or ¢ of ¢, associate a distinct variable X,
X, €tc. such that

L. all Xg4,, X3,, etc. are distinct from every variable from in ¢ or ¢f;

2. every occurence of an Aexp, Bexp or Com in ¢ has its own, distinct
variable.

In particular, note that two distinct occurences of, say, “X := 3” within ¢ will
be associated with distinct variables. (You can think of it as assigning a fresh
variable to each node on the parse tree of ¢.) The structure of the definitions
should protect us from any ambiguity.

Now, define the translation of an Aexp 7vs @, as follows:

o If a = n then Edéi(X =n)
eIfa=X thena ™ (Xs:=X)
e If a = ap op a; then a¥f (@o; 815 Xa := X4, oP Xg,)

e If a = F'(ay,ay,...,a,) for some function variable F’ distinct from F,
then

In English, this translation gives, for every sub-Aexp a in ¢, a corresponding
command that will leave the value of @ in Xj,.

A similar translation exists for Bexp’s, leaving a value 0 in X, if b would
evaluate to false and 1 otherwise:

o If b = true then b % (Xp:=1)
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o Ifb= falsé then 3 &' (X, := 0)
e If b = by op b; then
bdf (E);Iﬁ;if(Xbo =1o0p X;, =1)thenX; :=lelse X; :=0)
o If b= ap op a, then
b L (dy; a1;if(Xa, op Xa,) then X, := lelse X, := 0)

Finally, we can translate commands:

o If ¢ = skip then ey skip

o Ifc=X:=athen % (@ X := X,)

e Ifc=coic; then ¢ % (é0; é1)

o If c = if bthencoelsec, then % (3;if X, = 1then&elsed)

e If c = whilebdoc then ¢ % (E, while X} = 1do(; 3))

4(b) A function environment, p, is computable if p(F) is IMP-comput-
able for all F € Funcvar. Conclude that if p is computable, then every
p-computable function is IMP-computable.

By part (a), if every function that an IMP ;,-command refers to is computable,
then all function variables can be “compiled out,” leaving plain IMP code
which computes the same function. Thus, any computable function is IMP-
computable.
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Problem Set 9 Solutions

(Note that a couple of corrections were made in the problem set after it was
initially handed out. These solutions are based on the revised problem set.)

Problem 1. S;joinS; is defined to be

{mkpair(1,n) | n € Sl} U {mkpair(2, ) | n € S;}.

1(a) Show that if S is expressible, then so is Sjoin S.

From earlier problem sets and class discussion we know that we can construct
an Assn Ejen. which is true iff i; = left(io) and similarly for Erighe. Now, if S is
expressible, then there is some Assn Eg which is true iff ig € S. Then Sjoin S
is expressible as

((Ji1.Biere A in = 1) A (3i1.Exighe A Esli1 /io]))V
((Hil.Elen ANip = 2) A (Hil.Erigh, A ﬁEs[il/io]))

1(b) Show that S; join S; is an upper bound of S; and S; under <,,. More-
over, if S; and S, are nontrivial, then show it is a least upper bound of S; and
S5 under <,y,.

The functions in,(m) def mkpair(1, m) and in,(m) def mkpair(2, m) are clearly
computable and total, and have the property that m € S iff ins(m) € S join Sy,
and similarly for S; and in,.. Thus S; <, S1joinS; and S; <, Sy join So.

Now, assume S; and S, are nontrivial. To see that S join S2 is a least upper
bound, consider any S such that S <,, § and Sz <, §. § must be nontrivial
(why?) so there is some integer m ¢ S. Now, by definition, there are a total
computable f; and f2 such that n € S, iff fi(n) € S and similarly for fo. But
then, we have the function

fioright(n) if left(n) =1
f(n) = ¢ faoright(n) if left(n) =2

m otherwise

which is clearly total and computable, with the property that n € S; join Sz iff
f(n) € S. Thus S$; join S, is a least upper bound.
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1(c) Show that if S is not decidable, then neither SjoinS nor it’s
complement is checkable.

Assume S undecidable. Then if SjoinS is checkable then, since checkability
inherits downwards, so are both S and S. But if S and S are checkable, S is
decidable, which is a contradiction, so SjoinS is not checkable. Further, by
Lemma 4 on Handout 40, Sjoin S is also an upper bound on S and §, so the
same argument applies.

1(d) Give an example of an expressible set S such that neither S
nor S is checkable.

Let K be the “halting problem,” as defined in class. We know the set K is
undecidable but expressible, so, by the steps above, the set S = Kjoin K is
expressible but neither S nor S is checkable.

Problem 2. A set of numbers is nontrivial iff neither it nor its com-
plement is empty.

2(a) Prove that all nontrivial decidable sets are <., to each other.

If S is decidable then charg is computable. Take any nontrivial set S’, and let
n and m be such that n € S and m ¢ S’. Then, since charg is computable, so

fle) = {n if chars(z) = 1

m  if chars(z) =0

which is a many-to-one reduction from S to §’.

2(b) Prove that a nontrivial checkable set is undecidable iff the set
and its complement are <,,-incomparable (that is, neither is <,, the
other).

By Lemma 4 on Handout 40, S <, S if § <, S. If S is decidable, then Sis
also decidable, so, by the previous problem, S <m S. If S is undecidable, then,
since S is checkable, S is not. Since checkability inherits downward, S £ S,

80 S €m S.

2(c) Prove that the checkable sets are the closure of the decidable
sets under “right projection”, namely, the operation mapping a set
S C N to right(S).

This follows almost immediately as a corollary to Theorem 2 of Handout 40.
The proof of that theorem shows how to construct any checkable set as the left
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projection of a decidable set. Reversing left() and right() in that construction
shows that any checkable set is also the right projection of some decidable set.
Conversely, since right() is total and computable, the theorem states that any
such right projection of a decidable set is checkable.

2(d) Prove that the expressible sets are the closure of the decidable
sets under right projection and complement.)

Let C be the closure of the decidable sets under complement and right projection,
and let £ be the expressible sets.

First, C C £ because every decidable set is checkable and therefore expressible,
and because expressible sets are obviously closed under complement and right
projection. (In particular, if A with free variable § expresses some set S, then

31'1.“1'0 = right(i1 )” A A[ll /10]

expresses right(S).)

Conversely, we may suppose S is expressible by an Assn of the given form. For
k € N,0 < ¢, define (k); = left(k) and (k);+; = (right(k));. So we have for
1<i<m ,

( mkpair(k;, mkpair(ks, . . ., mkpair(km—1, mkpair(km, 7)) .. .)) )i = k.
Let
Dy = {k €N “: (a = 0)[(’6)"/1:1, (k)n_l/’iz, cey (k)l/'ln]}
D, is clearly IMP-decidable. Now

Dp-1 2= {k € N |E Fin.a = O)[(k)n-1/i1,(k)n-2/is, ... 1k(k)1/in—1]}
is precisely right(D,) and

Dn—l n= {k eN ”: ("131:,,.0 = 0)[(’:),,_1/1'1, (k)n_z/ig, ceny (k)l/i,,_l]}.

Continuing in this way, we obtain S = D; from D, by a series of applications
of right and complement. Hence £ C C.

Problem 3. For any set S C N, let ps be the function environment
(¢f. Problem Set 8) such that p(Fy) = chars and p(F,) is a function
with empty domain for n > 1 (chars : N— {0,1} is the characteristic
function of S, where chars(n) = 1 iff n € S). A set S is said to be Turing
reducible to a set Sy, in symbols S; <7 S, iff charg, is ps,-computable.
It is also suggestive to say that “S) is S;-decidable” iff S; <7 S,.
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3(a) Show that S <7 S for any set S.

Given ps as described, the characteristic function for S can be computed by
X1 =1- Fo(Xl)

thus charg is S-decidable.

3(b) Explain why <r is transitive.

It follows from the constructions on the last problem set that if charg, is pg,-
computable and charg, is ps, computable, then chars, is ps, computable, by
inserting a (properly renamed) instance of the program for charg, into the pro-
gram for chars, whenever the value of chars,(X) is needed for some X.

3(c) The self-halting problem relative to S is
HS) ..— {c € Comy, | {c},, x, x,(#¢) 1}.
Prove that S <7 H(®). Hint: Repeat the proof that the halting problem

is undecidable, but for Comy,’s in function environment ps.

We first prove that S <rp H(®) . That is, we have to show that charg is PHS) -
computable.

As in the proof for the undecidability of the zero-halting problem given in class,
for n € N define d, € Comy, to be

if Fo(n) = 1thenskip elsediverge.
If n € S, then in function environment pg(sy, command d, halts in all states,
so d, € H®), On the other hand, if n ¢ S, then under this environment d,
never halts, so d,, ¢ H(5). Letting f(n) = #d,, we have
n € Siff f(n) € H®).
As usual, f is a composition of mkpairs and constants, so is clearly computable.

Thus we have that S <,, H(®). Now the result follows immediately from the
following useful little

Lemma.
S1 <m S2 implies S; <7 Ss.
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To prove the lemma, suppose f : N — N is a many-one reduction from S; to S3.
In function environment ps,{f/F], the following Com;, trivially computes
charg, :

Xl = Fo(Fl(Xl))

Since f is computable and therefore certainly ps,-computable, we conclude from
Problem Set 8 that chars, is ps,-computable, that is, S; <r Ss.

For the second part of the solution, we must show that H (5) £ S. Suppose it
were. Then by 3(a) and 3(b), also H(5) <1 S. We now essentially repeat, in
the function environment pg, the proof that the complement of the self-halting
problem is not checkable.

If the interpretation of F} is charysy, then

if Fi1(X;) = 1 thenskipelsediverge

is a checker for H(5), Since charm is ps-computable, we have by Problem

Set 8, that there is also a checker for H(5) under environment ps. Let ¢y €
Comy, be such a checker for H() in environment ps. Namely, we have for all
¢ € Comy, in environment ps,

¢ does not halt on input #c iff

c€ H(S) iff ¢o halts on input #c

. Let ¢ be ¢g to obtain a contradiction.
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Quiz 4

Instructions. This is a closed book quiz. There are five (5) problems of
roughly equal weight. Write your solutions for all problems on this quiz sheet in
the spaces provided, including your name on each sheet. Ask for further blank
sheets if you need them. You have two hours.

GOOD LUCK!
NAME
|| problem | poinis | score ||
1 20
2 20
3 15
4 20
5 25
Total 100
GOOD LUCK!
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NAME

Problem 1 [20 points]. For each of the following problems indicate which
properties it has (1/) or does not have (x):

is
decidable

is
checkable

has
checkable
complement

is
expressible

the self-halting problem
H = {#c | c € Com and ¢ halts on input #c}

the valid equations between Aexp’s
(arithmetic expressions)

the valid Bexp’s (Boolean expressions)

the unsatisfiable Assn’s
(first-order arithmetic formulas)

{#c | c € Com and c halts on some input}

{#c | c € Com and c is while-free }

{#c| c € Com and c halts
on input 0 in at most 1000 steps }

{n € N |n > some element of
the self-halting problem H}
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NAME 3

Problem 2 [20 points]. Outline a proof that if a set D and its complement D
are checkable, then D is decidable.
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NAME

Problem 3 {15 points].

closure properties it has (/) or does not have (x):

intersection

complement

mapping a set
S to f(S)

For each of the following classes of sets indicate which

mapping a set
S to H(S

decidable sets

checkable sets

expressible sets

finite sets

where f is any total computable function and H(5) is the self-halting problem
relative to S (i.e., H(®) = {c € Comy, | {c},, x, x, (#¢c) ha.lts}).
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NAME 5

Problem 4 [20 points]. For S C N, let 25 = {2n | n € S} and likewise S+1 =
{n+1|n € S}. For S1,S2 C N, prove that (25;) U (2S; + 1) is a least upper
bound of S; and S; under many-one reducibility, <p,.
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NAME 6

Problem 5 [25 points].

5(a) [6 points]. Explain why if a set S is many-one reducible to H (in sym-
bols, S < H), then S is checkable. You may cite without proof any relevant
properties of H and <,, established in class or notes.

5(b) [20 points]. Prove conversely that every checkable set is <, H. Hint:
Similar to the proof that H <,, Hg or the proof of Rice’s Theorem. But Rice’s
theorem does not apply.
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Quiz 4 Solutions

This was a closed book quiz. There were five (5) problems of roughly equal

weight.

Problem 1 [20 points].

which properties it has (/) or does not have (x):

For each of the following problems indicate

has
is is checkable is
decidable | checkable | complement | expressible

the self-halting problem X V4 x Vv
H = {#¢c| ¢ € Com and c halts on input #ec}
the valid equations between Aexp’s V4 Vv N4 N4
(arithmetic expressions)
the valid Bexp’s (Boolean expressions) x x V4 Vv
the unsatisfiable Assn’s x x x X
(first-order arithmetic formulas)
{#c | ¢ € Com and ¢ halts on some input} X V4 X Vv
{#c | ¢ € Com and c is while-free } V4 V4 V4 Vv
{#c| ¢ € Com and c halts

on input 0 in at most 1000 steps} v 4 4 4
{n € N | n > some element of v J Ny y

the self-halting problem H}

Ezplanation:

Recall that a set is decidable iff it is both checkable and co-checkable, and if a
set is checkable or co-checkable then it is expressible.

¢ The self-halting problem was shown in class to be checkable but not de-

cidable.

o The appendix to Winskel gives a proof that the valid equations between

Aexp’s are a decidable set.

o If we could check the validity of Bexp’s, then we could check the validity
of inequations of the form —(a = 0) where a € Aexp, which was shown to
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be uncheckable in the appendix. However, if a Bexp, b, is not valid, then
there is a substitution of numbers for its locations such that & is false. So,
a checker for non-validity of Bexp’s only needs to run through all possible
substitutions of numbers for variables in loc(}) until it finds one for which
b evaluates to false.

o If the unsatisfiable Assn’s were expressible then so would the satisfiable
ones be. A closed Assn is true iff it is satisfiable, so this would allow
us to construct an expression for Truth, which has been shown to be
inexpressible.

o This can be checked by gradually checking each machine against each
input to see if that machine halts in n steps, gradually increasing n. If
this set were decidable, though, then we could construct a decider for the
“halts on 0” problem, Hp.

o It requires only a bounded, syntactic check to detect the presence of while-
statements in a command, so this is decidable.

o This can be decided by running ¢ on 0 for 1000 steps, and checking if ¢ is
done. This procedure will always terminate.

o Since all codes of machines are nonnegative, all elements of H are as well.
Thus, there is a least #c € H. This set can be decided by comparing any
given n against #c.

Problem 2 [20 points]. Outline a proof that if a set D and its comple-
ment D are checkable, then D is decidable.

If D and D are checkable, then they both have checkers, ¢p and cp. We can
construct a decider for D by generating a program which saves its input, picks
with some positive value S, and then alternately runs ¢p and on that input for S
steps and cgy on the same input for S steps, repeating and gradually increasing
S until one of ¢p or ¢y halts. Since any given n € N is either in D or D, exactly
one of the checkers must eventually halt. If ¢p halts then return the value 1,
and if iy halts then return the value 0.
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Problem 3 [15 points].

For each of the following classes of sets indicate

which closure properties it has (/) or does not have (x):

mapping a set | mapping a set
intersection | complement | S to f(S) S to H(S)
decidable sets v v X X
checkable sets Vv X Vv X
expressible sets v v v v
finite sets v X v X

where f is any total computable function and H(®) is the self-halting
problem relative to S (i.e., H®) = {c € Comy, | {c},, x, x,(#c) halts}).

Ezxplanation:

. The intersection of two decidable sets can be decided by running the
two deciders in sequence and returning 1 if either returned 1, and 0
otherwise. .

. The complement can be decided by running a decider and returning
1if it returns 0, and 0 if it returns 1.

. The right projection of a decidable set can be undecidable, so the
decidable sets are not closed under arbitrary computable functions.

. Even taking the trivially decidable set 8, H®) = H, which is unde-
cidable.

. The intersection of two checkable sets can be checked by interleaving
steps from the two checkers, and halting if either halts.

2. The complement of a checkable set may not be checkable; e.g., H.
3. Handout 40, Theorem 4 states that f(C) is checkable if f is com-

putable and C is checkable.

. In the solutions to Problem Set 9 we demonstrated that S <, &'
implies S <7 S’ and that H(5) £7 S for any S. Thus, in particu-
lar, HH) £, H; but all checkable sets are <,,, H, so H(#) is not
checkable, even though H is.

o We've already seen how to express most of these. The only tricky one
is constructing H(5) for an expressible S, but we’ll leave this one as an
exercise for the reader.
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e 1. The intersection of two finite sets is finite.
2. The complement of a finite set is always infinite.

3. If we map a finite set through any function, we’ll get only a finite set
of results.

4. See above under “decidability.”

Problem 4 [20 points]. For S C N, let 2S5 = {2n | n € S} and likewise
S+1={n+1|neS}. For S1,S; C N, prove that (25,)U(2S;+1) is a
least upper bound of S; and S; under many-one reducibility, <,,.

The proof is virtually identical to that for the definition of “join” given in
Problem Set 9. Here the reductions from S; and S; to (25,) U (252 + 1) are
f(n) = 2n and g(n) = 2n + 1 respectively. (2S51) U (2S2 + 1) is a least upper
bound, because if Si <, S and S; <,, S with reductions f’ and g’, then
(251) U (252 + 1) < S with reduction

_JF(n/2) if n is even
h(n) = {gf((n —-1)/2) ifnisodd

Problem 5 {25 points].

5(a) [6 points]. Explain why if a set S is many-one reducible to H (in
symbols, S <,, H), then S is checkable. You may cite without proof
any relevant properties of H and <, established in class or notes.

H is checkable, and checkability inherits downwards.

5(b) [20 points]. Prove conversely that every checkable set is <,, H.
Hint: Similar to the proof that H <,, Hy or the proof of Rice’s Theo-
rem. But Rice’s theorem does not apply.

Any checkable set S with checker ¢5 can be reduced to H under the function

f(n) = #(X1 :=n;es).

This program code returned for n represents a function that will halt on its own
number (or any input) iff ¢s halts on input n. Thus, f(n) € H iff n € S, so
S Sm H.



