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6.044J/18.423): Computability, Programming, and Logic Handout 1
Massachusetts Institute of Technology 11 September 1991

Course Information

Staff.

Lecturer: Prof. Albert R. Meyer NE43-315 x3-6024
mayer@theory.lcs.mit.edu

Teaching Assistant: Arthur F. Lent NE43-344 x3-6259
aflentQtheory.lcs.mit.edu

Secretary: David Jones NE43-316 x3-5936

6044-secretaryftheory.lcs.mit.edu

Lectures and Tutorials. Class meets MWF from 1:00-2:00 PM in 2-146.
There will be no recitation sections, but tutorial/review sessions may be orga-
nized in response to requests. The TA will have one regularly scheduled office
hour to be announced the first day of class. Further meetings with the TA or
instructor can be scheduled by appointment.

Prerequisites. The official requirement for the course is either 18.063 Intro-
duction to Algebraic Systems, or 18.310 Principles of Applied Mathematics. If
you know the basic vocabulary of mathematics and how to do elementary proofs,
then you may take this course with the permission of the instructor.

Contrarequisites. There will be less overlap with 6.045J/18.400J and this
course than in previous terms, so Course 6 students gung-ho for theory will no
longer be discouraged from taking both courses. There will be a smaller overlap
with 6.840J /18.404J; students, especially Math majors, may routinely take both
this course and 6.840J/18.404J.

Textbook. The required text for the course is Introduction to the Formal Se-
mantics of Programming Languages by Glynn Winskel. The book is in manu-
script form and will be xeroxed and handed out in class. Students will be
minimally charged for reproduction costs.

Grading. There will be regular problem sets, quizzes, and most likely a reg-
ular three hour final exam. This will be decided in class the at the beginning of
the term. The problem sets, quizzes, and final each count about equally toward
the final grade.
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Problem Sets. There will be likely be six to eight problem sets. Homework
will usually be assigned on a Friday and due 7-10 days later.

Handouts and Notebook. You may find it useful to get a loose-leaf note-
book for use with the course, since all handouts and homework will be on stan-
dard three-hole punched paper. If you fail to obtain a handout in lecture, you
can get a copy from the file cabinet to the right of the door to room NE43-311.
If you take the last copy of a handout, please inform David in room NE43-316
so that more copies can be made.

Handouts will also be available via anonymous ftp from theory.lcs.mit.edu.
To retreive these files, run ftp, and open theory.lcs.mit.edu, supplying
“anonymous” as the name (account) and “guest” as the password. All hand-
outs are written in IATpX and will be placed in the directory “pub/6044”.
Files may then be retrieved by first typing “cd pub/6044” to change direc-
tories and then typing “get filename.” You will need the files 6044.sty and
handouts-6044-£a11-91.tex (which serves as an index to the handouts) in
order to run IATEX on the handout files.

The handouts can also be retrieved via mail server. For more information,
send a message to archive-server@theory.lcs.mit.edu with the single word
“help” in the body.

Electronic mail. All students are encouraged to subscribe to the course mail
list by sending email to 6044-secretary@theory.lcs.mit.edu; other admin-
istrative requests should also be directed to this address.

To facilitate communication in the class, there are three electronic mail ad-
dresses:

6044-secretary€@theory.lcs.mit.edu
6044-forum@theory.lcs.mit.edu
6044-staff@theory.1lcs.mit.edu

The 6044-forum mailing list is for general communication by students, the
instructor, and the TA to the class; a message sent here will automatically be
distributed to those on the mailing list. Students are strongly encouraged to use
6044-forum to arrange study sessions, discuss ambiguities and problems with
homework, and send comments to the whole class. The TA and instructor may
also post bugs and corrections to homeworks and handouts to 6044-forumn.

Messages to the instructor, TA, or grader should be sent to 6044-staft.

Pictures. You can help us learn who you are by giving us your photograph
with your name on it. This is especially helpful if you later need a recommen-
dation.
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Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it. Take it sometime after class, and return it to the TA on Friday, September
13. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet.

Problem 1. Describe the function which is the composition of the integer
successor function, i.e., successor(z) = z + 1, with itself.

Problem 2. How many strings of length four are there over the alphabet
{a,b,¢}?

Problem 3. Give an example of an uncountable set.

Problem 4. Which is a synonym for “injective”?

(a) epi

(b) onto

(¢) mono

(d) isomorphism
(e) one-to-one

(f) one-to-one and onto

What sets have the property that there is no injection from the set into itself?

What sets have the property that there is no injection from the set into a proper
subset of itself?
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Problem 5. Define a binary relation, <, between sets A, B as follows:
A=< B iff (3f:A— B)(f is injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a countererxample.

(a) reflexive

(b) symmetric

(c) transitive

(d) equivalence relation

(e) partial order

Problem 6. Describe a propositional, 1.e., Boolean, connective which is not
commutative.

Problem 7. Two Boolean formulas, F;(z1,...,2,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables
Zly...yTp.

(a) Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables.
(b) Explain why “equivalence” is actually an equivalence relation on formulas.

(¢) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z,, ..., z,. How many?
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Solutions to Diagnostic Quiz

Problem 1. Describe the function which is the composition of the integer
successor function, i.e., successor(z) = = + 1, with itself. Answer: z + 2.

Problem 2. How many strings of length four are there over the alphabet
{a,b,c}? Answer: 3*3 %3 %3 = 81; for each position there are three possible
letters, and there are 4 possible positions.

Problem 3. Give an example of an uncountable set. Examples: the real
numbers, and the real numbers between 0 and 1.

Problem 4. Which is a synonym for “injective”? Answer: (e) one-to-one.

What sets have the property that there is no injection from the set into itself?
Answer: NONE. The identify function from a set onto itself is always well-
defined, and always an injection.

What sets have the property that there is no injection from the set into a proper
subset of itself? Answer: Precisely the finite sets.

Problem 5. Define a binary relation, <, between sets A, B as follows:
A< B iff (3f:A — B)(f is injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a counteréexample.

(a) reflexive. Answer: YES. The identity from A to A always exists and is
always injective.

(b) symmetric. Answer: NO. Consider A = {1} and B = {1,2}. A < B but
B £ A.

(c) transitive. Answer: YES. If f; is an injection from A to B and f; is an
injection from B to C then f3 o fi is an injection from A to C.

(d) equivalence relation. Answer: NO. A relation is an equivalence relation iff
it is reflexive, symmetric and transitive. < is not symmetric.

{e) partial order. Answer: No. A relation is a partial order iff it is reflexive,
transitive, and anti-symmetric, t.e., if A is related to B and B is related
to A then A = B. If we consider the case of A = {1,2} and B = {3,4},
then A< B and B < A, but A £ B.
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Problem 6. Describe a propositional, i.e., Boolean, connective which is not
commutative. Answer: Implies (D) is a propositional connective which is not
commutative. (8 of the 16 propositional connectives are not commutative).

Problem 7. Two Boolean formulas, Fi(zy,...,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables

T1,...

(a)

(b)

(¢)

, Tn.

Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables. Example: z, D z3, T1 V z2 and Ty V 22 V x5 are true for all
assignments ercept r; = true and z; = false, in which case all are false.

Explain why “equivalence” is actually an equivalence relation on formulas.
Answer: Because it is reflexive (obviously), symmetric (if F, agrees with Fy
on all input values, then the opposite must also be the case), and transitive
(if F, agrees with F» on-all inputs values, and F, agrees with F3 on all
input values, then F agrees with F3 on all input values), by definition the
relation “equivalence” is an equivalence relation on formulas.

Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables zi,...,z,. How many? Answer: For n
variables there are exactly 2" different 0-1 assignments to the variables.
For each assignment to the variables there are two possible truth values
to yield. Consequently there can be at most only 22" different equivalence
classes. Why? By the pigeonhole principle if there were more than this 22"
equivalence tlasses then at least two of them would have to have the same
input/output behavior, in which case they would be the same equivalence
classes, so there can be at most 22" distinct equivalence classes.
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Instructions for Problem Sets

1 Form of Solutions

Each problem is to be done on a separate sheet of three-hole punched paper. If
a problem requires more than one sheet, staple these sheets together, but keep
each problem separate. Do not use red ink. Mark the top of the paper with:

e Your name,

o “6.044]/18.423",

¢ the assignment number,
e the problem number, and

e the date.

Try to be as clear and precise as possible in your presentations. Problem grades
are based not only on getting the right answer or otherwise demonstrating that
you understand how a solution goes, but also on your ability to explain the
solution or proof in a way helpful to a reader.

If you have doubts about the way your homework has been graded, first see the
TA. Other questions and suggestions will be welcomed by both the instructor
and the TA.

Problem sets will be collected at the beginning of class; graded problem sets
will be returned at the end of class. Solutions will generally be available with
the graded problem sets, one week after their submission.

2 Collaboration and References

You must write your own problem solutions and other assigned course work in
your own words and entirely alone. On the other hand, you are encouraged to
discuss the problems with one or two classmates before you write your solutions.
If you do so, please be sure to

indicate the members of your discussion group

on your solution.

Similarly, you are welcome to use other texts and references in doing homework,
but if you find that a solution to an assigned problem has been given in such a
reference, you should nevertheless rewrite the solution in your own words and
ctle your source.



2 6.044J/18.423J Handout 4: Instructions for Problem Sets

3 Late Policy

Late homeworks should be submitted to the TA. If they can be graded without
inconvenience, they will be. Late homeworks that are not graded will be kept for
reference until after the final. No homework will be accepted after the solutions
have been given out.
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Problem Set 1

Due: 20 September 1991.

Remark. Before beginning the assignment, please be sure to read Handout 4,
“Instructions for Problem Sets.”

Problem 1. Write down a full set of rules for —) on command configurations,
so — stands for a single step in the execution of a command from a particular
state, as discussed on page 25 of the text. Use command configurations of the
form (c,o) and o when there is no more command left to execute. Point out
where you have made a choice in the rules between alternative understandings
of what constitutes a single step in the execution.

(Showing {c,0) —] o’ iff (c,0) — o’ is hard and requires the application of

induction principles introduced in chapters 3 and 4—you are not expected to
show this now).

Hint: The rule for while should be:

(while b do ¢,0) —; (if b then (c; while b doc) else skip, o)

Problem 2. Inourlanguage, the evaluation of expressions has no side effects—
their evaluation does not change the state. If we were to model side-effects, it
would be natural to consider instead an evaluation relation of the form

(a,0) = (n,0’)

where ¢’ is the state that results from the evaluation of a in original state o.
To introduce side effects into the evaluation of arithmetic expressions of IMP,
extend them by adding a construct

c resultis a

where ¢ is a command and a is an arithmetic expression. To evaluate such an
expression, the command ¢ is first executed and then a evaluated in the changed
state. Formalize this idea by first giving the full syntax of the language and then
giving it an operational semantics.
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Problem Set 2

Due: 27 September 1991.

Problem 2 is rather long, so start early.
Reading assignment. Winskel through Section 4.3.

Problem 1. [Deterministic Rewriting] Let v denote a command configura-
tion of the while programming language IMP, and § denote either a command
configuration or a state.

1(a). Prove by structural induction that for every %, there is exactly one §
such that v —; §. Briefly comment on where structural induction would break
down for a similar proof about the “evaluates to” relation.

1(b). Conclude that there is a partial function
eval : [command configurations] — &
such that for all states o € £

v —1 o iff eval(y) = 0.

Problem 2. This problem is based on the exercise in Winskel, p. 47, proving
equivalence of rewriting and evaluation semantics of IMP commands. We have
broken the problem up into several “independent subproblems.” If you are
unable to do a part, go on to the next part. For all later parts, you may assume
that you have done all of the other other parts correctly.

Handout 8 given out on September 20, and handout 9 which will be given out on
September 23, will form our official definition of the relation —; (the one step
execution relation). The goal of this problem is to prove the following Theorem:

Vo,d'[{¢c,q) —} o' iff (¢, o) — o).

For this problem, you may assume that for a € Aexp, n € Num, b € Bexp,t €
{true, talse}:

(a,0) =71 (n,o) iff (a,0) = n
and

(b,0) -7 (b,o) iff (b,o) — b
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2(a). Prove

Vo, o' .[{co; c1,0) =} o' = 6" .(co,0) =] 0" &{c1,0") -} ']
by induction on the definition of —] as the {ransitive closure of —;, in the
execution of {cp;¢1,0) —] o'.
2(b). Prove

Vo,0', 0" [(co,0) =] 0"&{c1,0") =} 0/ = (co;¢1,0) =] o]
again by induction on the definition of —7} as the transitive closure of —, this
time using the execution of {¢g, 5) —7 o”.
From parts (a) and (b) we can then conclude the Lemma:

(co; c1,0) =1 o' iff 30 (co, 0) =} "&{c1, ") =] o,

for all commands ¢y, ¢y, and states o, ¢/. This Lemma will be essential to finish

proving the Theorem.

2(c). Prove
Vo,d' . [{c,0) =] o' = (c,0) — o]

by structural induction on ¢. Do all cases except for that of ¢ being a while
loop.

2(d). Do the case of ¢ a while loop for the proof of part (c). This can be
proven by induction on the length of the computation.

2(e). Prove
Vo,d' [{c,0) — ¢’ = (¢,0) =] o]

by rule induction (or by induction on derivations).

Parts (c), (d), and (e) give us our main goal.
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Preliminary Quiz Schedule

Date Time Room
Quiz 1 | Monday, October 7, 1991 | 1:00-2:00 | 34-302
Quiz 2 | Monday, October 28, 1991 | 1:00-2:00 | 34-302
Quiz 3 SEE BELOW

Quiz 4 During Exam Week

Quiz 3 will take place either in class on Monday, November 18, or, subject to
unanimous class agreement, in the evening on either Tuesday or Wednesday,
November 19 or 20.

e
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—1 Rules for Aexp and Bexp

1 Rules for Aexp’s

(X,0) =1 (0(X),0)

In the following rules op ranges over syntactic symbols, and op ranges over the
actual functions, as indicated by the chart following the rules.

(ag,0) = (ag, 0)
(a0 op a1,0) — (ap op a1,0)

{a1,0) = {d},0)
(n op aj,0) —1 (n op ay,o0)

(n op m,o) —1 (n op m,o)

op op

+ the sum function

the subtraction function
x | the multiplication function

Notice that
(5 + 7, 0’) —1 <12, 0’)

is an instance of the rule (n op m,o) —1 (n op m, o), but that
6+7,0)—1(6+7,0)

is NOT derivable at all.

2 Rules for Bexp’s

The following are the general rules for the relational operators. Again, op
ranges over syntactic objects, and op over the actual mathematical functions as
indicated in the chart following the rules.
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(a0, 0) —1 (a5, )
(ao op al?a) —1 (a,O op a'lvo')

(a1,0) =1 (a},0)
{n op aj,o) —1 {n op a},o)

(n op m,0) —; (n op m,o)

op
the equality test function
the less than or equal to function

AN

Once again, notice that
(71 < 5,0) —; (talse, o)

is an instance of the rule (n op m, o) —; {n op m, o} whereas
(1<5,0) =1 (1<5,0)

is not derivable at all.

We next have the rules for boolean negation.

(b,a) =1 (V,0)
(—b,0) —y1 (=¥, 0)

(—~true, o} — (false,o)
(—~false, o) —; (true,o)

Finally we have the rules for binary boolean operators. We use op and op to
range over the symbols and functions in the chart following the rules.

(bo,O’) —1 (bfn"')
(bo op by,0) —1 (by op b1,0)

{b1,0) —1 (b],0)
(n op by,0) —1 {(n op ¥,0)

(n op m,0) =1 (n op m,0)

op op
A | the conjunction function (boolean AND)
\ the disjunction function (boolean OR)




6.044J /18.423J: Computability, Programming, and Logic Handout 9
Massachusetts Institute of Technology 23 September 1991

—1 Rules for Com

Atomic Commands:

(skip,o) —; o

(a,0) =1 (d,0)
(X i=a,0) % (X :=d,0)

(X :==n,0) =1 oc[n/X]

Sequencing:
(ca,0) =1 {c5,0)
{eo;€1,0) —1 {cp;€1,07)

{c,0) —1 0’
(casc1,0) —1 {c1,0")

Conditionals:

(b7 6) —1 (bl’ 6)
(if bthencgelsec;, o) —; (if b thencgelsec,, o)

(if true thencg elsecy, o) —1 {co,0)
(if falsethen ¢ else ¢y, o) —1 (¢4, 0)

While-loops:

(whilebdoc, o) —; (if b then(c; whileb doc) else skip, o)
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Lecture Outline: 1-12

1. (9/11) buzzwords: logic and semantics of programs, basic ideas of logic~incompleteness and
completeness—and undecidability. Initial study: while-programming language Imp. Syntax of
Imp.

2. (9/13) evaluation “natural semantics” of Imp. States & = Loc — Num. Evaluation triples,
(a,state,integer) for Aexp written (a,state) — integer, ..., (c,statestate) for Com. Deriva-
tion tree for (M + N) x N,¢[10/N][6/M]) — 160. ‘

3. (9/16) Configurations (a, o) for Aexp, (c,0) for Com. Derivation tree for
(Euclid, o(10/N][6/M}) — o[2/M][2/N]

(Euclid on p.32). Mention uniqueness of derivation tree for each configuration; always exists
for Aexp, Bexp, and while-free Com. Maybe none for general Com. Direct algorithm for.
(c, o) of complexity “linear” in size of derivation. Local checkability of derivation trees, even
for enriched systems w/o unique derivations.

Thm: (a, o) evaluates to ezactly one n; likewise (b, s) evals to exactly one v € {true, false}.
And (¢, o) evals to at most one o’. No proof.

(from Exercise, p.21): Prove by minimum principle on derivations that (while truedoc, o) 4
for all c,o. A
4. (9/18) (by aflent). Def of rewriting semantics for Aexp (p-29).
Lemma: (a,c) —3 (n,0) iff (a,0) — n. Also (¢,0) —1 ¢’ iff {c,0) — o’'. Pfs postponed.
Def. of command equivalence:

c1 ~cy iff No,0'. (c1,0) — o' iff {c2,0) — o).

Lemma (p.22 Prop.1): whilebdoc ~ if bthen ¢; w else skip.

Proof by cases on the form of evaluation derivations.

5. 9/20. Complete proof of above lemma p.22. Induction principle: integer inductions; structural
induction. Prove: functionality of evals-to on Aexp(Prop.2, p.29). Comment: functionality
also holds for commands, but not by structural induction because of while. Start on proof of:
(a,0) =1 (n,0) iff (a,0) — n. '

6. 9/23 (by wald) continue proof of above lemma, discussing structural induction and induction
on length of rewriting chain. Prove functionality of command evaluation by induction on
derivations:

Lemma: {c¢,o) — ¢’ and (c,0) — o implies ¢’ = ¢”’.
Rule induction: if a property is preserved by all the rules (including the premise-free rules, eg,
the axioms) which define a set inductively, then it is true of all the elements in the set.

Comment: induction on derivations is indistinguishable from Winskel’s “rule induction” when
derivations are unique, and we won’t be picky about the distinction.
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. 9/25 (by wald) well-founded induction, minimum principle p.31. Product of well-founded sets

is well-founded under pairwise partial order. (Mention lexicographic p.o. on pairs?) Proof that
Euclid terminates on positive inputs (p.33, Thm.4.)

. 9/27 (by wald) Function def’s by induction. Def of locg(c), p.37 and proof using it: Prop.8 on

p-45.
Def by structural induction ok on “free” syntactic structures, not for:

1 fn+m<1,
fln+m)= {f(n) +2f(m) otherwise.

9/30 Denotational semantics of IMP, defined by structural induction. Start on least fixed
points.

10/2 More on least fixed points (Winskel §4.4). Equiv of operational and denotational seman-
tics of IMP (Thm.15, p.59).

10/4 Complete proof of Thm.15. Brief hint about cpo’s (§5.4).

10/7 Quiz 1: Winskel through §5.2 and statement, but not proof, of equiv of operational and
denotational semantics of IMP (§5.3, p.59, Thm.15).
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Equivalence between —} and — for Aexps

Theorem 1. For all a € Aexp, n € Num, ¢ € I:

(a,0) =1 (n,0) iff (a,0) = n

1 Proving the “only if” direction

We first prove the “only if” direction (=>). So, we must show that for an
arbitrary a € Aexp, an arbitrary n € Num, and an arbitrary ¢ € L, if it is the
case that (a,c) —1 (n, o), then it is also the case that (a,o) — n.

We now prove the following Lemma which captures most of the complexity of
this direction:

Lemma 1. If (a,0) — (a’,0) and (a’,¢) — n, then (a,0) > n
Proof: The proof of this Lemma is by induction on the structure of a.

Base Cases: The base cases for an induction on the structure of Aexp’s are
Numerals and Locations.

a = m: This case is vacuous since {a, 5) does not rewrite to anything (viz.
(a’ 0’) 7L'1)

a = X: For this case, the definition of — gives (a,0) —1 (¢(X), o). Since
the supposition of the Lemma is that (¢(X),¢) — n, then by the
definition of —, it must be the case that o(X) = n. As (a,0) — o(z)
(by definition of —), and ¢(X) = n, we have (a,0) — n.

Inductive Cases: The inductive cases are all those Aexp’s which are of the
form a; + a3, a; X a3, or a; — a;. Notice that that a; and a; range over
the full set of Aexp’s—they themselves can be numbers, locations, or
compound arithmetic expressions. We work out the case of a = a; +a3 in
detail here. The cases of a = a; X a; and a = a, — a follow similarly, with
trivial modifications to account for the change in arithmetic operator.

We have several cases. One for each —;-rule according to how (a, o) evals
in one step to {a’,o). Alternatively, we could look at it as several cases
depending on which of a; and as are numerals. For the particular way
in which we have defined —1, the form of a; and as uniquely determine
which rule was applicable to {(a,¢). Thus, the two views are essentially
equivalent. The cases are:
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a; ¢ Num: In this case {a,0) —; {a’,0) because the following rule ap-
plied (by plugging in a; for ag and a; for a,):

(ap,0) =1 (ap,0)
(a0 +a1,0) — (ag + a1, 0)

So, a’ must be of the form a} + a3, for some a} such that (a,,0) —
(a},0). A supposition of the Lemma was that: {(a’,¢) — n. So, by
the definition of —, it must be the case that there exist ny,n;, €
Num, such that {a/,s) — n1, {(az,0) — n2, and n; + nz = n. So
by induction, (since a; is a subterm of a, (a;,0) —; (a},o) and
(a{,0) — n1), we have that (a;,os) — n;. Finally, by definition of
—, and since (@1,0) — ny, {az,0) — ng, and n; + nz = n, we have
that (a, o) — n, exactly as required.

This case was done in much more explicit detail than is normally
required in the presentation of a proof. For any presentation to be
adequate, however, enough information must be given to make it very
simple to generate this level of careful detail. The last two cases
should give you a better idea of the level of detail we ezpect from your
proof presentation.

a; = n; € Num, a; € Num: Noting that (n;,o) #;, so, a’ must be of
the form n; + a3 (we can abbreviate “a’ must be of the form ny +a5”
by “a’ = n; + a3”), where (a2,0) —, (a5, o). We finish up similarly
to the preceding case. Since (a’,0) — n, we have that (n1,0) — ny
and (a5,0) — ng, where n; + ny = n. By induction, (a2,0) — ns.
So, finally, {a,0) — n.

a; = n; € Num, a; = n; € Num: This case is trivial, as (a,0) —; (n,0).
We must also have that n; + n, = n (by defn of —), and finally we
also must have (a, ) — n (again, by definition of —).

We now have proven the key lemma. But let us remember our goal. We wish
to show that:

(a,0) =] (n,0) implies (a,0) — n.
We prove this by induction on the definition of —} as the reflexive transitive
closure of —;.

Base Case: Suppose (a,0) —} (n,0) because (a,0) = (n,0). Then (a,0) = n
by definition of —.

Induction Step: Suppose that {a,s) —} (n, o) because (a,0) —, (a’,0) and
(a’,0) =3 (n,0). By induction: (a’,6) — n. So, since (a,0) —; (d',0),
we can use the Lemma to obtain: (a,o) — n.
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2 Proving the “if” direction

We now prove the “if” direction («). So, we must show that for an arbitrary
a € Aexp, an arbitrary n € Num, and an arbitrary ¢ € I, if it is the case that
{(a,5) — n, then it is also the case that (a,0) —7] (n,0).

This direction is much simpler than the other, and is proven by another induc-
tion on the structure of a.

Base Cases: a = n: Trivial.

a = X: Since (a,0) — n, by the definition of — we have n = #(X). By
the definition of —; we then get (a,06) —; (n,o). Finally by the
definition of —} we get (a,0) —] (n,0).

Inductive Case: The inductive cases are for a = a; + a2, a = a; — a2, and
a = a; — az. We do the case of a = a; + a3, the others follow similarly.
Since (a, ) — n, we have (ay,5) — ny, and (az,0) — ny by the definition
of —. By induction, we have (a;,0) —] (n,,0), and (a3,0) —] (n2, ),
where n; 4+ nz = n. We now make the following Remark which gets us
most of the way through this case.

Remark 1. If (a),0) —; (a},0) then (a; + az,0) — (a}| + az,0) (by
the definition of — ).

Using the Remark, is is a simple induction on the definition of —>'f to show
that {(a;,0) —1 (a1, o) implies (a1 + a2,0) -3 (a} + a2,0).

So, we have (a; + az,0) —1 (n; + a2,0). A similar argument lets us con-
clude (n; +az,0) =% (n1 + no, o) from (az, o) —} (n2,0). Finally, by
the definition of —; (and the fact that n = n; + n3), we have that
(n1 + na,0) —1 (n,o). Putting all this together, we have:

(a,a) = (al + a2)‘7) _’I (nl +02,U) —’; (nl + n?;”) ! (n,a),

and so {a, o) —71 (n, o), exactly as required.
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Problem Set 3

Due: 4 October 1991.
Reading for the Problem Set. Winskel through §4.3.
Reading for Lectures. Winskel through §5.3.

Problem 1. Let FooBar be the following IMP command:

while (X > 1)A(Y > 1) do
ifY=1
then X .= X - 1;
Y =2 x X;
Z=Z+1
elseY =Y - 1;
Z2:=7Z+1
Prove that FooBar terminates if X, Y, and Z are initially positive. In other
words, show that for all states o:

o(X)>1&o(Y)>1& 0(Z) > 1= 3o’ (FooBar, o) — o'.

Problem 2. Consider the following inductive definition of a subset M of the
natural numbers N = {0,1,2,3,.. }:
(i) 2e M,
(ii) ifne€ M, then n2 € M,
(ii) ifn,m € M, then (n-m) € M.

2(a). Prove by induction on the definition of M that
M={2"k>1}.

Let f : M — N be any (possibly partial) function. Then f is said to be a
counter function if

) f2=1,
(i) f(n?)=2-f(n),
(iii) f(n-m) = f(n) + f(m).
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2(b). Define f; : M — N to be
f1(2k) =k.

Prove that f; is a counter function. (Hint: Induction on the definition of M.)

2(c). Prove that f; is the unique counter function, t.e., if f2 is any counter
function, then fi(z) = fo(z) for allz € M.

2(d). Consider the function g : M — N defined inductively by:

@ ¢(2)=1,
(i) g(n?) =35,
(iii) g(n - m) = 10.

Carefully prove that 1 = 0. Explain why this contradiction occurs here, but not
for counter functions.

Problem 3. (The exercise on page 38 of Winskel) Give definitions of loc(a),
loc(b), and locg(c), the sets of locations which appear in arithmetic expressions
a, boolean expressions b, and the right-hand sides of assignments in commands
c.
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Problem Set 1 Solutions

1 General Information

This handout includes some of the best solutions submitted by students for
Problem Set 1. These solutions are a good representation of the level of detail
expected.

Problem 0. The solution to this problem appears on the next page.

Problem 1. The desired solution for this problem appeared in Handout 9.
For convenience, we repeat the rules here as well. There are several things to
notice about the definition. First, —; for commands should be defined in terms
of —, for Aexps and for Bexps. It should not be defined in terms of —.
Why not? If a command has an Aexp within it that takes 5 steps to evaluate
to a numeral, it should take that command at least 5 steps to execute. Even
more fundamentally, —; on commands should not be defined in terms of — on
commands.

Two further comments: The — rules for Aexps were all of the form (a,s) —1
(a’, o). Note the pair on the right hand side. There were no rules allowing us
to conclude statements of the form: {(a,) —; n. Thus any rule with a premise
of that form will never be able to apply. The same is the case for Bexps. Thus
the discussion at the bottom of page 25 in Winskel is a little misleading when
it discusses the choice as what is regarded as a single step. The idea here was
that in 3 limited situations, it could be possible to short-circuit one step. They
are the following situations:

(a,0) =1 (n,0)
(X :=a,0) =1 0[n/X]

(b,0) —1 (true, o)
(if bthencgelsec, o) —1 {co, o)

(b, o) — (false, o)
(if bthencqelsecy, o) — {c1,0)

Notice that even with these extra rules, you still need all of the others. Why?
When giving our official definition of the rules for —; we choose not to include
the above 3 rules because adding them breaks one nice property of our definition
of —,. Specifically Problem 1 on Problem Set 2 would not be true.
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The following is the full set of —; rules for commands which we were looking
for.

Atomic Commands:

(skip,0) =1 0

{a,0) —1 (@', 0)
(X :=a,0) = (X :=4d,0)

(X :=n,0) —1 o[n/X]

Sequencing:
{c0,0) —1 {c0, o)
{co; €1,0) —1 (cp; 1, 0")

{co,0) =1 0’
(00;01,0') —1 (01,0")

'Conditionals:

(b,0) =1 (¥, 0)

(if bthencopelsecy, o) — (if b’ thencyelsec, o)

(if true thencp elsec;, o) — (co, o)

(if false thencyp else ¢y, 0) — {c1,0)

While-loops:
(whilebdoc, o) — (if b then(c; whileb doc) else skip, o)

Problem 2. The intended goal of this problem was to make side-effects uni-
formly available within all Aexps. Essentially we wanted you to introduce a
construct like SEQUENCE in SCHEME, cresultisa should behave essentially
like (SEQUENCE c¢ @) would in scheme. cresultisa can be used anywhere that
you can use an Aexp, including within another resultis construct.

A solution to this problem appears on the next page.
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Problem Set 2 Solutions

Problem 1. [Deterministic Rewriting] Let 7 denote a command configura-
tion of the while programming language IMP, and é denote either a command
configuration or a state.

1(a). Prove by structural induction that for every 7, there is exactly one é
such that ¥ — é. Briefly comment on where structural induction would break
down for a similar proof about the “evaluates to” relation.

Solution: It was announced that we may assume that for alla € (Aexp — Num)
there is exactly one a' such that {(a,6) —1 (a’,0). And similarly, for all
b € (Bexp —{true, false}) there is exactly one b’ such that (b,0) —; (¥',0).

Let ¥ be {c, o). We now have several cases depending on the structure of ¢:

[c=skip. ] i (c,0) —1 6, then it must have been due to the axiom (i.e., rule
with no antecedents):
(skip,0) =10

This axiom is always applicable, and in exactly one way. So § exists, and
it must be o.

[c= X :=a. ] We again have subcases based on a.

[a ¢ Num. ] By the announcement, we know that there is exactly one a’
such that {a,0) —; (a’,0). Moreover there is exactly one form of
rule which can apply in this case, namely:

(a,0) =1 (o', 0)
(X :=a,0) =1 (X :=d,0)

Thus the only configuration to which (X := a, o) can rewrite in one
step is (X := a', ). Moreover, this rewriting can always occur,

[ =n € Num. | We have already established (in class, and in another
handout) that (n, &) cannot rewrite to anywhere. Thus the only rule
which can apply is the axiom:

(X :=n,0) —; o[n/X]

Moreover this axiom can always apply to ¢, giving § = o[n/X].
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[c = co; ¢1. ] Here it looks like we might have a problem. It looks like two rules
might apply. But by induction (applied to cq) there is exactly one 8y such
that {co,0) —1 8o. If & is of the form {cf, ¢'), then exactly one rule can
apply in this case:

(CO, ‘7) —1 (C&, al)
(cos€1,0) =1 {co; €1, 07)

Moreover, this rule can always apply, giving § = {cj; ¢1, 0').

On the other hand, if § is of the form o, then there is still exactly one
rule which can apply, this time it is:

{co,0) =1 0’
(cosc1,0) =1 (61,0')

Moreover this rule can always apply, giving § = (¢, ¢').
[c=ifbthencgelsec;. | We have three subcases depending on the form of b.
[b & {true, false}. ]| This case works similar to that of ¢ = X := a, with
a € Num.

[6 = true. ] In this case exactly 1 rule can apply (since (true,o) 4+1).
Thus 6 = (co, o).

[6 = false. ] Similar to case of b = true.

[c = whilebdoc'. ] This case is trivial, but I'll do it anyway. In this case, only
one rule can apply. It must be that

& = (if b then(c; whilebdo¢) else skip, o).

What breaks down in doing structural induction for a similar proof about the
“evaluates to” relation, is the case of while. Notice that for this proof there
was only one configuration to which a while loop could rewrite, so there was
no need to use induction there. For “evaluates to” however, the behavior of a
while-loop in some state can depend on the behavior of that same while-loop in
some other state. Structural induction only works when the cases for big terms
only need to use the induction hypothesis for their subterms. For “evaluates
to” we would need to know that the conclusion held for whilebdoc¢, in order
to prove that it held for whileb do ¢, which is clearly circular.

1(b). Conclude that there is a partial function
eval : [command configurations] — &
such that for all states o € &

v =1 o iff eval(y) = 0.
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Solution: This is essentially asking you to prove that for all command config-
urations v there is at most one state o, such that ¥ —} . Then eval(y) can be
defined to be this unique o if it exists, otherwise eval(y) is undefined.

So we must prove that if ¥ —] o and ¥ —1 ¢/, then o0 = o’. The proof is by
induction on the definition of 4 —% o (as the reflexive transitive closure of —1).

The base case is that ¥ —] o because ¥ = o. But this is impossible, since « is
a command configuration and o is a state, so there is nothing to prove.

The inductive step is the case that ¥ —} o because ¥ —; § and § —} & for
some §.

Suppose that also ¥ —] ¢’. Since ¥ is not a state, we must have ¥ —; §’ and
&' —1 o' for some §'. By part (a), § = &'.

If § is a state, then because there is no —; rule for rewriting states, it must be
that 0 = 6§ and o/ = &, s0o 0 = ¢'. If § is a command configuration, then we
have § —] o and also § —] &, so ¢/ = o by induction hypothesis. B

Problem 2. This problem is based on the exercise in Winskel, p. 47, proving
equivalence of rewriting and evaluation semantics of IMP commands. We have
broken the problem up into several “independent subproblems.” If you are
unable to do a part, go on to the next part. For all later parts, you may assume
that you have done all of the other other parts correctly.

Handout 8 given out on September 20, and handout 9 which will be given out on
September 23, will form our official definition of the relation —; (the one step
execution relation). The goal of this problem is to prove the following Theorem:

Vo,o’' [(c,0) =] o’ iff {¢,0) — o).

For this problem, you may assume that for a € Aexp, n € Num, b € Bexp,t €
{true, false}:

(a,0) =1 (n,0) iff (a,0) = n
and

(b,0) =1 (t,0) iff {b,0) — 1

2(a). Prove
Yo, d [{co; c1,0) =1 o' = 3" {co,0) =1 0" & {c1,0") =] o]

by induction on the definition of —} as the fransitive closure of —, in the
execution of {¢co;cy,0) —7 o’
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Proof: The base case is that of (co;c1,0) —} ¢’ because (¢g;c1,0) = o/. But
this is impossible, so there is nothing to prove.

For the inductive step we must consider all 4’s such that (¢o;¢1,0) —1 7, and
v —1 o'. Looking at the rules which could have applied to obtain (co; ¢1,0) —1
¥, we have 2 cases.

e v is of the form (cp; 1, 00), and (co, ) —1 (cp, o0). Then by the induction
hypothesis (applied to (c;e¢1,0)), we have that there is a o’ such that
(ch,00) —1 ¢” and (c,,0") -1 o'. Since (co, o) —1 (¢}, 00), we have that .
(eo, o) —1 0", as required.

¢ v is of the form {c1, 00}, and (¢, #) —1 0. In this case we're done. Simply
let o'’ be ag.

2(b). Prove
Vo,0',0" [{co,0) =] 0" & (c1,0") =} o' = (co;c1,0) -] 0]
again by induction on the definition of —] as the transitive closure of —, this
time using the execution of {co, o) —} o”.
Proof: Again the basis step holds trivially.
For the induction step. Suppose {cg,o) —1 7 and ¥ —] ¢”. Moreover, suppose

{e1,0") —1 o'. We must show that (co;c1,0) —] o’. We again have 2 cases.

e v is of the form (cj,00). Then by the induction hypothesis (applied to
(¢h,0)), (cp; c1,00) —1 o'. But since (co,0) —1 (cg, 00) we have by the
definition of —; that (co;e1,0) —1 (¢h;c1,00). Combining things gives us
(co;¢1,0) =] o',

e v is of the form ¢”. The result then holds trivially, since (cp,0) —
o" implies that (co;c1,0) —1 (c1,0"). Combining this with our original
presumption of (¢, 0") —3} o' gives us our desired result.

From parts (a) and (b) we can then conclude the Lemma:
(‘30;01,0') ] o iff 30'".(00,0') -1 U (cl,a'") - o,

for all commands ¢g, ¢, and states ¢, ¢/. This Lemma will be essential to finish
proving the Theorem.
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2(c). Prove
Yo,0'.[(c,0) =] ¢’ = (c,0) — 0]

by structural induction on ¢. Do all cases except for that of ¢ being a while
loop.

Proof: Suppose (¢,s) —] o/. We must then show that (c,s) — ¢’. We do this
by induction on the structure of c. We will break the proof down by cases on
the structure of c.

[c = skip. ] Obvious.

[c= X :=a.] It is a simple induction on the definition of —} to show that
if (X :=a,—)]0’ then there exists an n such that (a,s) —} (n,0) and
o’ = o[n/X]. One of our premisses in the problem statement, was that
if (a, 6) —1 (n,0) then (a, ¢} — n. Since we have (a,0) —} (n,s) we can
conclude that (a,0) — n. Finally, (X := a,0) — o[n/X] follows simply
by the definition of —.

[c = co;e1. ] Since {co;c1,06) —} o, by part (a) there exists a o such that
(co,0) —1 0” and (c1,0") —] o’. By the induction hypothesis {cg, o) — o”,
and (¢;,0") — o. Finally, by the definition of — we have (co;c1,0) — o’.

[c =if bthencgelsec;. ] The key step is to prove by induction on the definition
of —7, that:

If (if bthencgelsecy, o) —1 o, then either (b, ) —] true and
(co,0) =1 o', or (b,0) —1] false and (c1,0) —] o’.

We then have two cases depending on whether (b, ) —] (true,s) or

(b, 0) —3 {false, o). In the true case we use one of our premisses in the
problem statement to get {b,o) — true, and we use the induction hy-
pothesis to get {co, o) — o’ from {co,0) —1 o’. We get the end result of
(if bthenco elsecy, ) — o’ from the definition of —. The false case goes
through similarly.

[c = whilebdo¢'. ] See part (d).

2(d). Do the case of ¢ a while loop for the proof of part (c). This can be
proven by induction on the length of the computation.
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Proof: Let w = whilebdoc'.

Since this is actually a case from the preceeding proof, we are allowed to invoke
the induction hypothesis from there. In other words we may assume that if
(¢',o) =1 ¢’ then {¢/,0) = o'.

The base case is again trivial.
The inductive step is that:
(w, 6) = (if b then(c; w) elseskip, ) —] o’
and,
(if b then(c; w) elseskip, o) —] ¢

To prove that (w, o) —} ¢’ we will use the sublemma used in the case for if in
part (c). Specifically,

If (if bthencoelsec;, o) —1 o' then either (b, o) —1 (true,o) and
(co,0) =1 o' or (b,0) -7 (false, o) and (c1,0) —7 o’.

This gives us two cases.

e Here we have (b, o) —} (true,o) and (¢; w,o) —} ¢’. By the premis of
the problem we have that (b,5) — true. By part (a), we have that there
exists a o’ such that (¢,¢) —} ¢” and (w,0”) —} 0’. So by the induc-
tion hypothesis of part (d), we may conclude that (w,o””) — o’. By the
induction hypothesis of part (c) (of which this is a piece of the proof), we
may conclude that {¢,e) — ¢”. Finally using the definition of —, we get
that (w, o) — o’

o Here we have (b,0) —{ (false, o), and ¢ = ¢’. The rest of this case follows
trivially from the premiss of the problem.

2(e). Prove
Yo,0' .[{c,0) = ' = (c,0) =] o]

by rule induction (or by induction on derivations).

The solution to this part appears on the next page.

Parts (¢), (d), and (e) give us our main goal.
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Problem Set 3 Solutions

Problem 1. Let FooBar be the following IMP command:

while (X > 1)A(Y > 1) do

ify=1
then X (= X —1;
Y =2x X;
Z.=Z+1
else Y :=Y - 1;
Z:=Z+1

Prove that FooBar terminates if X, Y, and Z are initially positive. In other
words, show that for all states o

o(X)21& o(Y) > 1 & 0(Z) > 1 = I0'.(FooBar, o) — o'

Solution: This problem is very similar to showing that Euclid terminates.

So we need to show that the property
P(o) iff 30’.(Foobar, o) — o'
holds for all states s in T'={e € Ejo(X) > 1& a(Y) > 1 & 0(2) > 1}.

To show this we will in fact show that P holds for all states ¢ in the set S =
{c € Zjo(X) > 0 & ¢(Y) > 0} Notice that we have dropped the condition
on Z as it was not relevant to the termination of Foobar, we have relaxed the
condition on ¢(X) to o(X) > 0, and we have also relaxed the condition on (YY)
to a(Y) > 0 (you’ll see why we did this near the end of the proof). Notice that
T C 8, so if P holds for all states in S it will hold for all states in T'.

We show that the property holds for all states in S by well-founded induction
on the relation <, gx on S, where <, px orders states lexicographically by their
values in ¢(X) and o(Y'). In other words:

.~ €ither o(X) < o'(X),
ouex0’ W T L (%) = o(XY) & (V) < 0'(Y).
It is not so obvious that < ¢ is well-founded. It is, however, a simple variant on
the lexicographic ordering discussed in class, and it is fairly simple to translate
the argument given in class to apply to < gx. The rest of the proof is a rehashing
of the proof for Euclid.
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Let o € S. Suppose Vo' <, gx0.P(0'). Let z = o(X), y=o(Y), and 2z = o(2).

Ifz=0o0ry=0. So,sincez=0o0ry=0, {(X>21)A(Y >1),0) — false.
Using its derivation we construct the derivation

(X>1DAXY 2 1),0) — false
(Foobar, o) — o

using the rule for while-loops which applies when the boolean condition evaluates
to false. So in the case where z < 1, {Foobar,s) — ¢.

Otherwise 2 > 1 and y > 1. In this case (X > 1) A(Y > 1), ) — true. From
the rules for the executions of commands, we derive (¢, 0) — o, where ¢ is the
body of the while loop. Specifically let ¢ be the following command:

if Y=1
then X =X-~1;
Y =2xX;
Z2=2+1
else Y =Y-1;
Z:=Z+1

And where

i olz—1/X][2x (= - D)/YN( +1)/2) ify=1,
of(y - 1)/ Y)i(z +1)/2] ify#1.

In either case ¢ € S and o< zxo. (Note that if we simply did induction in
the set of states T', we would not be guaranteed that ¢ € T—why? Consider
the case of 0(X) = 1 and ¢(Y) = 1.) Thus, by induction P(¢”), and so
(Foobar, ¢"’) — ¢’ for some o’. Thus applying the other rule for while-loops we
obtain

(X>)AY 21),0) >true  {c,0) 0"  (Foobar,¢”) — o’
(Foobar, o) — o’

a derivation of (Foobar, 0) — o’. Therefore P(o).

By well-founded induction we conclude Yo € S.P(o), which is sufficient to prove
the desired result.
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Problem 2. Consider the following inductive definition of a subset M of the
natural numbers N = {0,1,2,3,.. }:

(i) 2e M,
(ii) ifn€ M, then n2 € M,
(iii) if n,m € M, then (n-m) € M.

The solution to all of the parts of problem 2 appears on the next
page.
2(a). Prove by induction on the definition of M that

M={2|k>1}.

Let f : M — N be any (possibly partial) function. Then f is said to be a
counter function if

@ f@)=1,
(i) f(n?)=2-f(n),
(iii) f(n-m) = f(n) + f(m).

2(b). Define f; : M — N to be

[(2Y) =k
Prove that fy is a counter function. (Hint: Induction on the definition of M.)
2(c). Prove that f, is the unigue counter function, i.e., if f2 is any counter
function, then fi(z) = fa(z) for allz € M.

2(d). Consider the function g : M — N defined inductively by:

(i) ¢(2=1,
(i) 9(n®)=5,
(iii)) g(n-m) =10.

Carefully prove that 1 = 0. Explain why this contradiction occurs here, but not
for counter functions.
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Problem 3.

©

(The exercise on page 38 of Winskel) Give definitions of loc(a),

loc(b), and locg(c), the sets of locations which appear in arithmetic expressions
a, boolean expressions b, and the right-hand sides of assignments in commands

C.

Solution: We define loc(a) the set of locations which appear in arithmetic

expressions a as follows:

loc(n) =
loc(X) =
loc(ag + a1)
loc(ag % ay)

loc(ag — ay)

0

{X}

loc(ag) U loc(ay)
loc(ao) U loc(ay)
loc(ag) U loc(ay)

We define loc(b) the set of locations which appear in boolean expressions b as

follows:

loc(t) =
IOC(ao = (11)

loc(ao < a1)
loc(bo A by)
loc(bo V b1)
loc(—b)

0

loc(ao) U loc(ay)
loc(ao) U loc(ay)
loc(bo) U loc(by)
loc(bo) U loc(by)
loc(b)

Notice that the definition for loc(b) relied on the definition of loc(a).

Finally, we take locg(c) to literally be the set of locations which appear in the
right-hand sides of assignments in ¢ which gives:

locg(skip)

locr(X :=a)
locg(co;c1)

locg(if bthencoelsec,)
locr(whilebdo ')

0

loc(a)

= locr(co) U locr(c1)
locr(co) U locr(c1)
= locg(¢)
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Quiz 1

Instructions. This is a closed book exam; no notes either. For your reference,
there is an appendix listing the definitions of the “evaluates to” relation —, and
the one-step rewriting relation — on configurations of the language IMP.

Write your solutions for all four (4) problems on this exam sheet in the spaces
provided, including your name on each sheet. Ask for further blank sheets if
you need them. You may assume the results of previous parts in later parts of

problems, so don’t let “getting stuck” on any one part keep you from proceeding f
to later parts.

%-« L‘W\.L L "'““‘J’QGOOD LUCK! e

" NAME )
[| prodlem | points | score ||
T ] (10)
7 (15)
3 (20)
7 (25)
Total (70)
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NAME

For Problems 1 and 2, let w be the IMP command
while45 < XdoX =X -3, Y =X -1;X:=Y -1
and let o be a state such that o(X) = 1000 and ¢(Y') = 2000.

Problem 1 [10 points]. According to the inductive definition of evaluation,

the assertion
(w, o) — o[40/X]{41/Y]

has a unique derivation. How many instances of the sequencing rule scheme

(seq —) given below appear in this derivation?

(co,0) = &, {c1,0") =o'
{(co;1),0) — o’

(seq —)

Problem 2 [15 points]. By definition, (w, ¢) —} ¢[40/X][41/Y] because there
is a (unique) sequence of the form:

(w,0) =1 (c1,01) =1 (ca,02) =1 - - =1 {cn,0n) —1 0[40/X][41/Y]
where n happens to be 2500.

Notice that ¢y must equal o, and ¢ must be

if45< Xthen(X :=X-3;Y:=X -1 X =Y - 1; w) elseskip.

Problem 2(a) [6 points]. What are

02?

o2?

C3
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63?

cn?

on?

/A(,t,.tb,wejne "t b ore , 8€Crag ‘(4{)05

Problem 2(b) (4 points]. How manare of the form whilebdo ¢?

Problem 2(c) [5 points]. There are k times as many ¢;’s which are of the form

if ¥’ thencelsec’ than are of the form whileb” doc”’. What is k?

Problem 3 [20 points]. It was noted in class that every Aexp configuration
evaluates to a number. Likewise, one can prove by structural induction on Bexp
that every Bexp configuration evaluates to a truth value, namely,

for all (b, o), there is a t € {true, false} such that (b,0) — ¢.

Problem 3(a) [10 points]. List the cases of the structural induction and in-
dicate what must be shown for each case.
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Problem 3(b) [10 points]. Pick a non-base case and prove it!

Problem 4 [25 points]. We define a “parallel evals to” relation, <, whichisa , N4t €atwr gly 275 %
variation of the “evals to” relation,;-[—l:/TTIE rules to define < are obtained from

Lhe rules defining — by replacing all occurrences of “—” by “—~”/ Tn addition,

there is one further “parallel if” rule:

{co,0) =o', (c1,0) — o’
(ifbthencpelsec,,s) — o’

(par-if <)

Problem 4(a) [5 points]. Give a simple example of a command, ¢, such that
(c, ) — o has more than one derivation for any state o.

Although the definition of — differs from that of —, it turns out to specify the
same relation on configurations as —. The nontrivial direction of this remark
is the implication '

(c,0) — o' implies {(c,0) — o'
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This implication can be proved by induction on the definition of — (that is by
rule induction on the rules for —).

Problem 4(b) [10 points]. Briefly explain what the cases of the induction
are, and why there is only one non-trivial case.

Problem 4(c) [10 points]. Prove the non-trivial case. (You may assume the
results mentioned in Problem 3.)
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A Appendix

We use n, sometimes with subscripts as in ng, nj, to denote arbitrary elements
of Num. Similarly, we assume X,Y € Loc; a € Aexp, t € {true,false};
b € Bexp; ¢ € Com; and ¢ € the set of states.

A.1 “Evals to” Rules for IMP

Notice that we give a name for each rule in parentheses to its right.

A.1.1 Aexp Rules : X " ? h l@ ("(/ /S
(n,o) = n (num —)
(X,0) — o(n) (loc —)

(ao,ﬂ’) — nq, (01,0’) — Ny

{ao +a1,0) —n (plus —) )
where n is the sum of ng and n,.
Similarly, there are rules (times —) and (minus —).
A.1.2 Bexp Rules
(a0,0) = no, (a1,0) = ny (equal —)

(a0 = ay,0) — t

where ¢ = true if ng and n; are equal, otherwise ¢ = false.

Similarly, there is a rule (< —). / |
Lt b ) g
(b,o) — 1t - |
(—b, o) —t (not ) \\.\
where ¢’ is the negation of ¢. \\
(b0, 0) =20, (41,0) = ta \
BoAbro) — ¢ (and —) \
where t is true if {3 = true and ¢; = true, and is false otherwise. \

Similarly, there is a rule (or —).
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A.1.3 Com Rules
(skip,0) —» o (skip —)

(a,0) = n

(X :=a,06) — o[n/X] (assign —)

(co0) = 0", (1,0 — o’

{(co;€1),0) — o (sea =)
(b, U) — true, (Co, 0) —a 1 —
Gf b thenco elsecy, o) = o’ (if-true —)
(b,0) — false, (c;,0) — ¢ (if-false —)

(if bthencop elsecy, ) — o’

(b, o) — false
(whilebdoc,0) — o

{(while-false —)

(b,0) — true, (c,0) = 0", (whilebdoe,o")— ¢
(whilebdoe, o) — o’

(while-true —)

A.2 Rewriting rules for IMP
A.21 Aexp Rules
(X,0) =1 {o(X), 0) (loc —1)

(20,0} —1 (a5, 0)
(ao + a1,0) —1 {ag + a1,0)

(plus-left —1)

(a,0) —y {@,0)
(n+a,0)—1 (n+d,0)

(plus-right —4)

{no + ny,0) —; (n,0) (plus-num —)

where n is the sum of ny and n;.

Similarly, there are rules (times-left —;), (times-right —), (times-num —),
(minus-left —1), (minus-right —,), and (minus-num —,).
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A.2.2 Bexp Rules

(GOvU) —1 (“6’0')
(“o = 01,0') -1 (06 = 01,0')

(equal-left —)

(a,0) =, (d,0)
(n=a,0) >, (n=2d,0)

(equal-right —;)

(no =ny1,0) = (t,0) (equal-num —,;)

where t = true if ng and n; are equal, otherwise t = false.
Similarly, there are rules (<-left —,), (<-right —;), and (<-num —,).

(b,o) =1 (¥, )
(mb,a) =y (=b', )

(not-eval-arg —)

(=t, ) =1 (t',0) (not-bool —)

where t’ is the negation of ¢.

(b010) -1 (b{),a')
(bo A by, ) =1 (bg A by, 0)

(and-left —,)

(6, o) =1 (V',0)
(tAb,g) = (tAY,0)

(and-right —,)

(to Aty, o) =1 (t,0) (and-bool —,)

where t = true if {; = true and ¢, = true, otherwise ¢ = false.

Similarly there are rules (or-left —;), (or-right, —;) and (or-bool —,).

A.2.3 Com Rules
(skip,0) =1 0 (skip —1)

{a,0) =, (d,0)

X =a,0) =1 (X :=4,0) (assign-eval-arg —1)

AX :=n,0) = ofn/X] (assign-num —,)
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(co,0) =1 (ch, 0’
e e v M

(Co,a') — o’
{(co; €1), 0) =1 {c1,0")

(seq-finish —)

(b,0) =1 (¥, 0)
(if bthencoelsecy, o) —; (if b’ thenc elsec;, o)

(if-eval-guard —;)

(if truethencg elsecy, o) — (co, o) (if-true —1)
(if false thencg elsecy, o) —1 (¢1,0) (if-false —;)

(whilebdoc, o) — {(if b then(c; whileb doc)elseskip, o) (while —1)
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Quiz 1 Solutions

Instructions. This was a closed book exam; no notes either. For your refer-
ence, there is an appendix listing the definitions of the “evaluates to” relation
—, and the one-step rewriting relation —; on configurations of the language
IMP.

Write your solutions for all four (4) problems on this exam sheet in the spaces
provided, including your name on each sheet. Ask for further blank sheets if
you need them. You may assume the results of previous parts in later parts of
problems, so don’t let “getting stuck” on any one part keep you from proceeding
to later parts.

The exam was 50 minutes.

The exam was graded out of a possible total of 70 points. The point values are
indicated on each problem. The overall statistics are as follows:

Number Submitted | 21
High 66
Low 6
Median 41
Mean 40.8

The following is a histogram of the grade distribution:

S ST SETESS I
O=§ ¢—1w u-15 le-30 d|—a5 = 30 Zkg%q/ ‘/s' ﬂ—-*o <‘/ 43" X \\<

54 b —s5 G660
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For Problems 1 and 2, let w be the IMP command
while45 < XdoX :=X-3;) Y =X-1,X:=Y -1

and let o be a state such that (X) = 1000 and &(Y) = 2000.

Problem 1 [10 points]. According to the inductive definition of evaluation,

the assertion
(w, ) — [40/ X][41/Y)

has a unique derivation. How many instances of the sequencing rule scheme

(seq —) given below appear in this derivation? 384

(co,0) — 0", (c1,0") — o
((co;e1),0) — o'

(seq —)

Note: The quiz did not ask for any ezplanation. One will be asked for on problem
set 4.

Problem 2 [15 points]. By definition, (w, ) —} ¢[40/X][41/Y] because there
is a (unique) sequence of the form:

(w, ) =1 (c1,01) =1 (€2,02) =1 -+~ =1 (€a, 00) —1 0[40/X][41/Y]

where n happens to be 2500.

Notice that &), must equal ¢, and ¢; must be

if45< Xthen(X :=X-3;Y:=X - 1; X :=Y —1; w)elseskip.

Problem 2(a) [6 points]. What are

c2?| if45<1000then(X :=X -3;Y : =X -1; X :=Y — |; w)elseskip

oy? o

ca? iftruethen(X :=X -3; Y :==X - 1; X :=Y - |; w)elseskip
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63? g
cn? skip
an? {40/ X][41/Y]

The answers for c3 and o3 were graded relative to the answers for c; and o,.

Problem 2(b) [4 points]. How many ¢;’s are of the form whilebdo ¢? 198 !
Actually the correct answer is really 192. We forgot that the first configuration
in the chain ((w, o)) was not ezplicitly described to be co. Thus the first while in
the chain does not really contribute to the count. If we had let (¢o, 00) = (w,0)
then there would not have been a problem. Full credit was given for either an-
swer, unless it was clear that 192 was arrived at via a mistake (and thus two
wrongs making a right).

Problem 2(c) [5 points]. There are k times as many ¢;’s which are of the form

if b’ thencelsecd than are of the form whiled” doc”. What is k7

Due to the slight miscounting in the preceding answer the correct answer is really
(193 % 3)/192 = 3.0156, credit was given for either answer.

Problem 3 [20 points]. It was noted in class that every Aexp configuration
evaluates to a number. Likewise, one can prove by structural induction on Bexp
that every Bexp configuration evaluates to a truth value, namely,

for all (b, o), there is a ¢t € {true, false} such that (b,s) — .

Problem 3(a) [10 points]. List the cases of the structural induction and in-
dicate what must be shown for each case.

The base cases are:

b=t E'{true, false}] We must show that, under no additional assumptions,
there ezxists a t' € {true, false} such that (t,0) — t'.
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[6=a0 = a1] We must show that there ezists a t € {true,false} such that
(ag = a1,0) — 1. To do so, we may use the analogous property for Aexp,
viz. to assume that there ezist ng and n, such that (ag,0) — no and
(01, 0) - n.

[6 = a0 < a1] Similar to the preceding case.

The non-base cases are:

[6 = -¥] Under the assumption that there exists a t € {true, false} such that .

(b',0) — t, we must show that there erisis a t' € {true, false} such that
(=b, o) —t'.

[6=bo Ab)] Under the assumption that there ezist to,t1 € {true,false} such
that (bo,0) — to and (by,0) — t1, we must show that there ezists a t €
{true, false} such that (bg Aby,0) —t.

[6=bo Vb1] Similar to the preceding case.

Problem 3(b) [10 points]. Pick a non-base case and prove it!
We pick the non base-case [b= by A §y].

Under the inductive assumption that there ezist to,t, € {true,false} such that
{bo, o) — to and (b1, ) — t1, we must show that there ezists a t € {true, false}
such that (bo A by,0) — t. But by rule (and — ), there is such a t, namely the
conjunction of to and t,.

Problem 4 {25 points]. We define a “parallel evals to” relation, <, which is a
variation of the “evals to” relation, —. The rules to define — are obtained from
the rules defining — by replacing all occurrences of “—” by “—”. In addition,
there is one further “parallel if” rule:

(co,0) =o', (c1,0) >0’
(if bthenco elsec;, o) — o

(par-if <)

Problem 4(a) [5 points]. Give a simple example of a command, ¢, such that
(¢,0) = o has more than one derivation for any state o.

if bthend elsed, for any ¢

Although the definition of — differs from that of —, it turns out to specify the
same relation on configurations as —. The nontrivial direction of this remark
is the implication

. {c,0) — ¢’ implies (c,0) — o'.
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This implication can be proved by induction on the definition of — (that is by
rule induction on the rules for <).

Problem 4(b) [10 points]. Briefly explain what the cases of the induction
are, and why there is only one non-trivial case.

There is one case for each of the inference rules of — on Com-configurations
(or on Aexp, Bexp, and Com configurations. This was slightly ambiguous dut
unimportant, since either reading gave the same definition of — ).

So there are the base cases for the Com-configuration rules: (skip — ), (assign

The inductive cases are for the rules: (seq —), (if-true — ), (if-false —) (while-
false <), (while-false < ), and finally a case for the new rule (par-if — ).

The only non-trivial case is for the new rule (par-if — ), because the other
rules for «— are the same as the corresponding rules for —. In particular,
if {¢,0) — o' follows from some (— )-rule, R, other than (par-if —), then the
antecedents if any, of R which involve <, each smplies by induction, the corre-
sponding antecedent with “—” replaced by “—”, so {¢,0) — o' follows trivially
by the —-version of R.

Problem 4(e¢) {10 points]. Prove the non-trivial case. (You may assume the
results mentioned in Problem 3.)

So, we suppose that {¢,0) — o' because of the rule (par-if — ).

Then ¢ must be of the form if b then ¢ elsecy, where (cp, o) — o’ and {(¢1,0) — o'
(so by induction, we may assume that {cg,0) — o' and {¢;,0) — o').

By Problem 3, we know that there ezists at € {true, false} such that (b,0) — ¢t.
This gives us two cases based on 1.

Suppose 1 = true. Since (b,o) — true, rule (if-true —) applies, and so then

(c,0) — 0.

The case of t = false works similarly. Since (b,o) — false, rule (if-false —)
applies, and so then (¢c,0) — o’.
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A Appendix

We use n, sometimes with subscripts as in ng, ny, to denote arbitrary elements
of Num. Similarly, we assume X,Y € Loc; a € Aexp, t € {true,false}l;
b € Bexp; c € Com; and o € the set of states.

A.1 “Evals to” Rules for IMP

Notice that we give a name for each rule in parentheses to its right.

A.1l.1 Aexp Rules

(n,0) = n (num —)
(X,0) »o(n)  (loc—)
(aﬂaa)—'n01 (01,0) —n; —
(ao + a;, a) —n (plus )
where n is the sum of ng and n;.
Similarly, there are rules (times —) and (minus —).
A.1.2 Bexp Rules
{t,o) =t (bool —)
(a0,0) = no, (a1,0) — ny (equal —)

{ap = a1,0) — ¢

where t = true if ng and n; are equal, otherwise ¢ = false.
Similarly, there is a rule (< —).

bo t
s )
where t’ is the negation of ¢.
(bo,a) _'t01 (blia) _'tl
_ (bo Aby, U) —

where t is true if {; = true and ¢; = true, and is false otherwise.

(and —)

Similarly, there is a rule (or —).
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A.1.3 Com Rules

(skip,0) — & (skip —)

x :=<:,’ :; —=T7x] (assign —)
{co, 0)((—;0:7;’1 ,)’ o<)61—’> 0;”) —d (seq —)
<(I;’f‘;)t;:3:1rc:(:lse<;0,,:)) - :" (if-true —)
(b,0) — false, (ci,0) — o' (if-false —)

(if bthencoelsec;,0) — o’

(b,0) — false
(whilebdoc,0) — &

(while-false —)

(b,0) — true, (c,0) —o”, (whilebdoec,o”)— o’
(whilebdoec, o) — o

(while-true —)

A.2 Rewriting rules for IMP
A.2.1 Aexp Rules
(X) ‘7) —1 (0(X), ‘7) (lOC _’l)

(a0, 0) =1 (ap, o)
(a0 + 01,0) —1 (06 + al;"')

(plus-left —,)

(a,0) =1 (d',0)
(n+a,0) = (n+d,0)

(plus-right —;)

{no + ny,0) =1 (n,0) (plus-num —,)

where n is the sum of ng and n;.

Similarly, there are rules (times-left —;), (times-right —;), (times-num —,),
(minus-left —,), (minus-right —;), and (minus-num —,).
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A.2.2 Bexp Rules

(ao,d') 1 (aIan')
(ap = a;,0) —1 (ap = a1,0)

(equal-left —)

(a,0) —1 (d,0)
(n=a,0) = (n=24d,0)

(equal-right —,)

(no =ny,0) =1 (t,0) (equal-num —)

where t = true if ng and n; are equal, otherwise t = false.
Similarly, there are rules (<-left —), (<-right —;), and (<-num —,).

(b,0) —1 (¥, 0)
(—b,0) —1 (b, 0)

(not-eval-arg —1)

(-t,g) =1 (t',0) (not-bool —)

where t' is the negation of ¢.

{bo, 0) —1 (b5, o)
(bo A bl,d’) — (b6 A bl; 0’)

(and-left —)

(b,0) —1 (V,0)
{tAbo) =1 (tAY,0)

(and-right —,)

(to Aty,0) —1 (t,0) (and-bool —)

where ¢t = true if {; = true and ¢; = true, otherwise ¢t = false.
Similarly there are rules (or-left —;), (or-right, —;) and (or-bool —,).

A.2.3 Com Rules
(skip,o) —, 0 (skip —1)

- (a,0) = (d,0)
(X :=a,0) - (X :=d',0)

(assign-eval-arg —)

(X :=n,0) = o[n/X] (assign-num —)
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. (CO,O') —1 (c’ ,a") ~
{(co;¢1),0) = ((2;,;,,1),,,:) (seq-start —,)

(Co, 0) —q 0 .
{(co; c1), o) —>i {c1,0) (seq-finish —,)

(b,0) =1 (¥, )
(if bthencoelsecy, o) — (if b’ thencgelsecy, o)

(if-eval-guard —)

(if truethencoelsecy, o) —1 (¢, ) (if-true —,)
(if false then ¢ else ¢y, 0) —1 {¢1,0) (if-false —)

(whilebdoc, ) — (if b then(c; whileb doc) else skip, o) (while —,)
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Problem Set 4

Due: 18 October 1991
Reading for the Problem Set. Winskel through §5.3.
Reading for Lectures. Winskel through §5.4.

Problem 1. Prove the claim made in Winskel, §5.2, p.54,1.-10 that T = R.

In Problem Set 1 we looked at extending IMP with a construct resultis which
made side effects uniformly available within all Aexp’s. Call this language
IMP,. We now consider a very similar extension of IMP called IMP,, obtained
by adding “valis” construct to IMP. Like resultis, the purpose of valis is to
allow Aexp’s to have commands within them, but unlike resultis, the valis
construct will preserve the property of IMP that there are no net side-effects
in evaluating Aexp’s and Bexp’s.

The BNF grammar for IMP,, is exactly like the grammar for IMP except for
the case of Aexp, which is now:

a:=n|X |cvalisa|ag+a1|as—a;]|aoxa

We distinguish the expressions, evaluation relations, etc., for IMP, IMP, and
IMP,, with corresponding subscripts, e.g., = for IMP, evaluation and Aexp,,
for the Aexp’s of IMP,,.

The rules defining —, include all of the rules for defining — for IMP (with
“—” changed to “—,”) for Aexp’s and Bexp’s and Com’s. In addition, we
add one further rule for valis:

(e,0)>va’, (a,0')—yn
(cvalisa,o)—yn

(valis =)

To get an intuition for the difference between IMP, and IMP,, consider the
intended behavior of the Aexp’s

a, = Euclidresultis M,
a, = FEuclidvalis M.



2 6.044J/18.423J Handout 18: Problem Set 4 -

The behavior of a, in state o is to evaluate Euclid until it stops in some state
o'. It returns the configuration (¢'(M),o') so further evaluation will continue
from state o’. So this Aexp, has some nasty side-effects—in computing the
ged of M and N, it has usually changed the values stored in those locations!

The behavior of a, in a state o is to evaluate Euclid in & until it stops in some
state o’. It returns ¢/(M) € Num. Further evaluation will continue from the
original state o as in IMP—the side-effected state ¢’ is discarded. Aexp,’s can
be easier to understand and use: this one computes the gcd of M and N without
affecting the values stored in those locations! (On the other hand, IMP, may
be more complicated to implement than IMP,—consider how you might define

“’l,v-)

The next problem is designed to further highlight the difference between IMP,.
and IMP,. For example, addition is commutative in IMP,, but not in IMP,..

Problem 2.

2(a). Exhibit ap,a; € Aexp,,ng # n; € Num, s,0’ € X such that
(ao +a, a)—'" (nO, al)

and

(a1 + ag, o) = (ny,0').

(Addition is not commutative in IMP, in that ng # ni).

2(b). Outline a proof that for all ap,a; € Aexp,,n € Num, o € ¥ that
(a0 + a1, 0)—yn iff (a1 + ag, 0)—yn.

(So addition is commutative in IMP,,.)

Problem 3. Let <, be defined by adding the (par-if) rule to the rules for —,
as done on Quiz 1 for IMP.

(COa U)""v‘fl, (cl y 6)'—*.,0"
(if bthencpelsec,,o)—,0’

(par-if —,)

3(a). Briefly sketch how to prove that (¢, 0)—,¢’ implies (¢, 0)—,0’.
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3(b). Give asimple IMP, command configuration which is a counterexample
to the claim that —, implies —,. Briefly explain where the proof on Quiz 1 of
the corresponding implication for IMP breaks down for IMP,,.

It’s worth remarking that commands and expressions of IMP are a special
case of those of IMP,. The ambiguity is harmless because, IMP commands
evaluate the same using the IMP or the IMP, evaluator (IMP, might be
called a fasthful extension of IMP). More formally, for all commands ¢ of IMP:

(e,0) — o' iff {¢,0)—0’.
The proof is a trivial rule induction, and we omit it. This also holds for IMP,;
it also holds with < replacing — (on both sides of the “iff”).

Problem 4.

4(a). Give the definition of a denotational semantics for IMP,, by structural
induction. (Your definition should satisfy the result of problem 4(b).)

4(b). The proof of the equivalence of the operational and denotational seman-
tics for IMP in Winskel §5.3 carries over to IMP,, with only minor changes.
Briefly, but clearly, indicate the changes needed in the proof in §5.3 to prove
that for all c € Com,,

(¢, 0)—yo’ iff Clc)(c) = ¢
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Revised Problem Set 5
Reading for the Problem Set. Winskel through §5.4.

Reading for Lectures. Winskel Chapter 6.

Due: 25 October 1991

We define an extension, IMP,,,, of the language IMP, by adding a recursive
command declaration construct letrec. Expressions of IMP,,, are exactly those
of IMP. Commands, Comy.;, of IMP,,; are those of IMP, with an additional
letrec construct. Let p range over a new class, OCom, of Open Commands.
Open commands are simply commands in which undeclared “procedure identi-
fiers” p; for i > 1 may appeatr.

Comy,; and OCom are specified by the following grammar, subject to a “well-
formedness” condition on letrec described below.

cu=letrecp,inp’ | skip | X := a | cp;c; | if bthencyelsec; | whilebdoc

p=p; | ¢|po;p1 | if bthenpgelsep, | whilebdop

An expression of the form letrecp, inp’ where p, = p1,...,pn forn > 1, is
well-formed only if all p; occurring in the “declaration bodies” py,...,p, and
the “procedure body” p’ are such that i < n. The idea is that p; is bound to p;
for 1 < i < n. A letrec binds all of the p;’s occurring anywhere within it, so
letrecp, inp’ is a (closed) command.

It is important to note that the p; are not metavariables ranging over differ-
ent identifiers, but specific identifiers which are reused and bound to different
“procedure bodies” p; by different (letrecp, in-) constructs. .

Evaluation rules of IMP,,; for Aexp and Bexp are the same as in IMP.

The rules for Com,; are the same as those for IMP (with “—,,” replacing
“—") with the addition of two rules for letrec. Let lIr; abbreviate the command
letrecp, in p;. The first rule is:

(p'[Iry/py] .. . (Ixn /P, ], 0)—1ee 0

(letrecp, inp’, o) — (et 0’ (letrec-bind —e;)

providing p’ #p; for 1 <i < n.

Here p'[Ir;/p;] denotes syntactic substitution of Ir; into p’ for all occurrences of
p; which are not within a letrec construct of p/, viz., letrec p, inp; replaces
the “free” occurrences of p; in p'.
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The other rule is:

(pillen/Bn), o) —1er 0*

ddnl (letrec-unwind — ;)
(letrecp, inp;, 0)— et 0’

For example, let add be the open command

if X<0
then Z:=Y
else X:=X-L;p; X =X+1,Z2:=2+1

Problem 1.

1(a). Prove that letrecaddinp, ~ if X <0thenZ :=YelseZ:=X+Y
where ~ is command equivalence (Winskel §2.4.1), and X,Y, and Z are dis-
tinct locations. Hini: By induction on n = o(X).

1(b). What can go wrong if X,Y, Z happen not be distinct?

Similarly, we could let mult be
if X'<0
then 2/ :=0
else X' :=X'-1py X' =X'+1,X:=2";p,;2':=2
and show that
(letrec add,multinp,); X :=0; Z :=0 ~
(if X' <0thenZ’' :=0elseZ’' :=X'xY); X :=0; Z :=0,
again assuming X', 2’ X,Y, Z are all distinct.
A more mnemonic syntax for this example might have been
letrec p, be add, p, be mult in p,,
but this style might encourage writing an illegal “nested open declaration” like
letrec p, be add in (letrec p, be muit in p,).

This would be disallowed according to the IMP,,, well-formedness condition:
mult has a free occurrence of p,, so the inner letrec phrase above would not
be a (closed) command. Many languages would allow such nested declarations;
others, such as the programming language C, don’t. Our design decision for
IMP,,; to allow nesting of closed commands but not open ones, is unusual. It
was made for pedagogical reasons: it gives a rich language but allows for simpler
definitions of syntactic substitution and fixed points.
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Problem 2.

2(a). Describe how to translate any IMP}.; command into an equivalent
IMP,.; command which does not contain any while constructs. Hint: Show
how to eliminate an “innermost” while.

2(b). Ilustrate your method by translating

letrec whiled, do (X := X + 1;p,),

Y=Y+1p,
in
while b; do
P
letrecY ;=Y -1
in whilebydop,

If we were given a (closed) command ¢; for each p; in an open command p, then
p could be taken to correspond to the (closed) command p[¢;/p;]. For example,
if

p =if bthenp,elsep;; ¢,

and if p; corresponded to ¢; for ¢ = 2,3, then p simply would correspond to
if bthenc; elsecs;c.

More abstractly, if we were given only the meanings (functions on states) of the
procedure identifiers, then the open command would specify a new command
meaning. For example, if the meaning of p; was ¢; : £ — T for i = 2,3, then
the p above would determine the state mapping ¢ where

_ [ e2(0) if B[b]o = true,
plo) = {C[c](saa(a')) otherwise.

In general, we can understand any open command p as denoting a function I,
from any n-vector of command meanings to a command meaning, providing
n > max{: | p; occurs in p}. In other words, for the denotational semantics
O[] of OCom we have

Ol =T, : (E— £ — (S —5),
where the key property of I'p is
Tp(Cle1d, - - ., Clea]) = Clp[én /Bl ]
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for all commands ¢, .

Now a well-formed vector p, of open commands, namely a vector such that
n > max{i | p; occurs in P, }, can be understood as defining a function Iz,
from a vector command meanings 3, to another vector of command meanings.
Namely,

[, : (E=X)* - (E-X)",
Fin(saﬂ) = (FPI (Saﬂ): IERS] rp..(S‘-"n))-

Then we define C[] for Comy,; just as for IMP commands, with one more case
for letrec:

Clletrec g, in p'] = Tp(fiz(Ty,)).

The least fixed point of I';, exists because it is continuous, as you will verify in
the next problems.

Problem 3. Carefully define I,. Hint: Structural induction on OCom.
Problem 4.
4(a). Show that I', is continuous.

4(b). Conclude that for well-formed py, the function I, is continuous.

We close this problem set with the remark that the proof of the equivalence
of the operational and denotational semantics for IMP in Winskel §5.3, and
for IMP,, in Problem Set 4 carries over to IMP,,, with one significant change.
Because IMP,.; commands contain open commands as subterms, a proof by
structural induction that C[c]o = o’ implies (¢, o)— (.t o/ requires a more general
structural induction on open commands. The “right” induction hypothesis for
open commands is not obvious. Define a command ¢ to be OK if C[e}e = ¢
implies (¢, 0)—.: o’ for all &, 0’. Define an open command p to be OK if p[¢,, /Pn)
is OK whenever ¢; is OK for 1 < i < n. With this hypothesis, it is not too hard to
prove by structural induction that all open commands are OK. Finally, because
(closed) commands are a special case of open commands, we conclude that all
commands are OK.

We won’t write this up more fully, but state that, as expected,

(¢, 0)—=1e &’ iff C[c](o) = o'.
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Problem Set 4 Solutions

Problem 1. Prove the claim made in Winskel, §5.2, p.54, 1.-10 that T = R.

Solution: The text defined T as a (total) function from sets to sets. Specifically,
if S is any set then the set I'(S) is as follows:

T'(S) = {(o,0")30".8(0) = true & (0,0') € v & (¢”,0') € S}
U{(e, 0)|8(c) = false},

Note that (o) was defined to be B[b]o, and v was defined to be Cfc]. I only
mention this to make things a little clearer, the proof that I' = R does not
depend on the actual definitions of 8 and ¥ in any way.

Also notice that in the definition of T, the binding of ¢ to C[w] was released. T
was defined as a function which given an arbitrary set ¢ returned the new set
I'(p). To make the definition clearer, I have renamed this bound varible ¢ to S.

The set of rule instances R was defined to be:
R = {({".9}/(5,0)) 16(o) = true & (s,0") € v}
U{((o, 0))|8(c) = false}.

We can rewrite R in a more formaliar style, by stating two rule schema.

(0’”, o,l)

e (true T')
whete §(o) = true and (o,0") € 7.
(o,0) (false T)

where §(s) = false.

Now that we understand the definitions of I' and R, showing that I' = R (i.e.
that for all sets S, I'(S) = R(S)) is a trivial chugging through of the defition of
R. Remember the definition of R(S) from R:

R(S) = {yI3X C S. (X/y) € R}



2 6.044J/18.423J Handout 21: Problem Set 4 Solutions

To show that I'(S) = R(S), we first argue that all elements of I'(S) must be
elements of R(S). Then we argue the converse. We also note that all elements
of either side must be of the form (5,0’) (i.e. A pair of (possibly) distinct
states).

Suppose (¢,0’) € I'(S). Then either:
(0,0') € {(0,0")|30" .8(c) = true & (s,0') €y & (¢”,0') €S}
or
(0,0") € {(0,7)|B(c) = false}.

Suppose it is the first case. Then there exists a o” such that (¢”,0’) € S,
B(¢) = true, and (0,0”) € ¥. And so by the rule (true T), (o,0') can be
obtained by one application of a rule in R to a set of elements of S (namely
{(¢”,0")}), and so by the definition of R, (s, 0’) € R(S).

In the second case then we know that ¢’ = o, and f#(c) = false. But then by
rule (false I'), (0, 0’) can be obtained by one application of a rule in R to a set
of elements of S (namely @), and so by definiton of R, (7, ¢’) € R(S).

We have now completed a proof that for an arbitrary set S, I['(S) C R(S).
We now show that R(S) C I'(S), thereby completing the proof.

Suppose that (o,¢’) € R(S), then it must have gotten there by an instance of
either (true T') or (false I'). Suppose it got there by an instance of (true T).

Then, by the form of this rule, and the definition of R, there must be a ¢/, such
that (¢”,0') €S, f(¢) = true, and (0,¢"”) € 4. But then,

(o,0") € {(0,0")|30".0(0) = true & (0,0') € v & (0”,0') €S}

and so by the definition of I'(S), (¢, 0’) € I'(S).

Suppose (¢,0’) € R(S) by the rule (false ). Then ¢’ = o, and f(c) = true,
and so,

(0,0") € {(,)|8() = false}.
Then by the definition of (I'(S), (¢, 0’) € I'(S), and we are done.

Problem 2.

2(a). Exhibit ag,a; € Aexp,,ng # n; € Num, 0,0’ € T such that
(a0 + a1, 0)—r(no, ')

and
(a1 + ao, 6)—>r(ﬂ1,dl>.
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(Addition is not commutative in IMP, in that ng # n;).

Solution: Here is a good example: ag = X, a; = ((X := X + 1) resultis5). In
a state o, such that ¢(X) = 100, then (ap + ay,0)—,(105, a[lOl/X]) whereas
(a1 + az,0)—,(106, o[101/X]).

2(b). Outline a proof that for all ag,a, € Aexp,,n € Num, o € T that
(a0 + a1, 0)—yn iff {a) + ag, 0)—un.
(So addition is commutative in IMP,,.)

Solution: This problem was a lot easier than everyone made it out to be.
There is no induction involved it all!! It is just a matter of cutting and pasting
derivations similar to the proof of:

whilebdoc ~ if b then(c; whilebdoc) else skip

We show, for arbitrary ap,a) € Aexp, ¢ € £ and n € Num, that

(ag + ay, 0)—,n implies {(a; + a1, c)—yn
Note: because ap and a, were arbitrary, showing this implication in fact shows
the “iff”.

So, suppose (ag + a1, 0)—,n. Then there must be a derivation of this. Looking
at the rules for —,, we see that the derivation must take the following form:

_____.___} Dy, D, {________
(ao, 0)—'uﬂo (01,0)—"-/"1

(ao + ay,0)—yn

where the sum of ng and n, is n. So, Dy is a derivation of {ag, c}—yno, and D,
is a derivation of (a;,0)—,n1. But by reversing the roles of ay and a,, we can
use the rule (plus —,) to obtain the derivation:

_.___.} D, Dy, {______
{a1,0)—yny (a0, 0)—yn0o

(a1 + ap,0)—yn

Which is a legal derivation because we already had the legal derivations I}y and
Dy, and because the last step is a legal application of (plus —,). One part of
verifying the legality of this rule application is to check that the sum of ny and
no is n. This follows trivially, from the fact that we already have that the sum
of no and n, is n, and that addition is commutative. It is in this very last step
that chugging this proof through for “—” would fail, as it should.
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Problem 3. Let <, be defined by adding the (par-if) rule to the rules for
—, as done on Quiz 1 for IMP.

(Co, U)H“UI, (Cl, a)""vUI

(if bthencg elsecy, o)—, 0’

(par-if <)

3(a). Briefly sketch how to prove that (¢, 0)—,0’ implies (c, o) —yo'.
Solution on Attached Page.

3(b). Give a simple IMP, command configuration which is a counterexample
to the claim that <, implies —,. Briefly explain where the proof on Quiz 1 of
the corresponding implication for IMP breaks down for IMP,,.

Solution on Attached Page.
Problem 4.

4(a). Give the definition of a denotational semantics for IMP,, by structural
induction. (Your definition should satisfy the result of problem 4(b).)

Solution: As mentioned in class, for IMP,, it is not possible to seperate struc-
tural induction on Aexp’s from structural induction on Com’s since Aexp’s
might now contain Com’s , and since Com’s may contain Bexp’s and Bexp's
can contain Aexp’s. We typically will need to define or prove something about
IMP, code considering all Aexp’s, Bexp’s and Com’s at the same time.

For the definition of .A[a], B[], and C[c}], all of the cases are defined to be as
they were for IMP, except we obviously must add the case of @ = ¢o valisag.
Which is

Alco valis ag} = {(o,n)|3¢’ .(0,0") € C[c] & A[ao}e’ = n}

In addition since we are doing this more complex induction, we observe that the
only base cases in a structural induction on « € IMP,, are: « = n, a =, and
a = skip.

All other forms of IMP,, code, are no longer base cases.

4(b). The proof of the equivalence of the operational and denotational seman-
tics for IMP in Winskel §5.3 carries over to IMP, with only minor changes.
Briefly, but clearly, indicate the changes needed in the proof in §5.3 to prove
that for all ¢ € Com,,

(¢, 0) =0’ iff C[c](0) = o'
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Solution: Here the story is somewhat complicated. We combine half of Lemmas
12 and 13, with Lemma 15, and prove by structural induction on « € IMP,,
that P(a) holds, where P(a) is defined to be:

Vo,n.Alalo =n implies (a,0)—,n ifa=a€ Aexp
Vo,t.B[blo =t implies {c,0)—,t if a=b€ Bexp
Yo,0'.(0,0’) €C[c] implies (c,0)—,0’ ifa=c€ Com

Then all of our old base cases become inductive cases, except for a = n, t, skip
as in part (a).

Showing P(a) holds for all « € IMP, is at the top level a case analysis on
whether & € Aexp, Bexp or Com. All of the work on the next level is the same
as that for IMP, except, of course we also need to do the case of a = ¢ valis ap.

For this case we fix an arbitrary & and n. We must show:
A[co valisag]o = n implies (¢, valis ag, 6)—,n

So, suppose A[co valisaglo = n. Then by the definition of A[-], there ex-
ists a o’ such that (o,0’) € C[co], and A[ag)Je’ = n. By induction we have
P(co) and P(ap), so {co,0)—y0’, and (ao,0’)—n. Finally, by rule (valis —,)
(co valisag, o) —yn.

A separate induction (this time a rule-induction) captures the other halves of
Lemmas 12, 13, and all of Lemma 14. Here define the property P(a,o,v) by:

(a,0)—yn implies A[a]o=n ifa =a€ Aexp,7=n € Num
(b,0)—,t implies B[blo =t if a = b € Bexp,y =t € {true, false}
(¢,0)—,0’ implies (0,0')€C[c] fa=c€Com,y=0¢'€X

Again, we have our top level case analysis depending whether a is an Aexp,
Bexp, or Com. There is the same shifting of base cases to inductive cases, leav-
ing only the three base cases as before. Finally, what was a structural induction
for Aexp’s and Bexp’s has become a rule induction. The only appreciable dif-
ference within each case is the precise manner in which the induction hypothesis
is invoked. But it works well enough.

In addition we need to add our case of @ = covalisag, v = n. Suppose
(co valisap,0)—yn, this can only happen by the rule (valis —,), and so we
know that there exists a o’ such that (co,0)—,0’ and (ag,0’) = n. So, by
induction P(eg,o,0') and P(ao,o,n), thus (0,0’') € C[co], and A[aole’ = n.
Finally, by the definition of A[-], we have that A[co valisag]lo = n.
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Addendum to Problem Set 5

All of the definitions in Revised Problem Set 5 (handout 20) still holJ.

Due: 25 October 1991
All definitions remain as in Handout 20

Problems 1 and 2 remain unchanged.

Revised Problem 3 T, can be defined by an induction on the structure of
OCom. Setting up this induction has some subtle points. In particular consider
the case of p = whilebdopy. For this case have:

T'whileb dopo(Pn) = A(T'),
where I' is defined by:
, _J e if B[b]e = false,
T'($)e = { ¥(Tpo(Pn)o) otherwise.

The goal of this problem is to show that I'whiles dop, i8 Well-defined (assumming
that T'p,) is well defined. To do so we show that fiz(I") is well-defined.

3(a). Prove that I' : (¥ — ) — (¥ — X) is continuous. i.e. show that if

%o, %1, ... 18 an ascending chain in ¥ — X, then
L) = @@
n>0 n>0

Recall that we order ¥ — ¥ under C.

3(b). Show that I'" has a least fixpoint, and thus conclude that fiz(T’) is well
defined.

Revised Problem 3-OPT. (OPTIONAL) Do the original Problem 3 from
Problem Set 5.

Revised Problem 4-OPT. (OPTIONAL) Do the original Problem 4 from
Problem Set 5.
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Some Exercises on CPO’s

Included are 4 exercises taken from Chapter 6 section 3 of the class handouts
from 6.821 this term. The solutions to exercises 6.7 and 6.9 are taken from
6.821 handout #14 from 5 October 1990, which was entitled “Problem Set 3
Solution.”

These exercises use “domain” in two different ways. A function is a maf from
its domain to its range. And a cpo with a bottom may also be a domain. It
should always be clear from the context which is intended.

These should give you an idea of the level of understanding which we expect for
the quiz.

Exercise 1. Try exercises 6.6 to 6.9 taken from 6.821, they are on attached
pages.

Exercise 2. Try and prove Theorem 16 on page 64 of Winskel, without looking
at the proof there.



> Exercise 6.8 Consider the .:i1zd flat domain D = {a,b,¢c} . How many monotonic functions
are there from D to D? ©

> Exercise 6.7 Suppose the domains £ and F are defined as follows:

E = {a,b} where aCb
F = {e,d} where ¢ and d are incomparable

Counsider the domain £| — F; . The elements of £}, — F') are themselves related by a partial
order. Draw the partial order whose elements are the members of E| — F, where you represent

a function in £) — F'; by its graph. (Hint: for an example of partial orders on functions, see
page 119 of Schmidt.) ©

> Exercise 6.8 In the function descriptions given below, we specify on the left-hand side of the =
the name and the of each function. The signature describes the domain and range of the function.
For example, the familiar > function on the natural numbers, which tests whether its first argument -
18 strictly greater than its second, has the signature:

> : (Integer x Integer) — Boolean

For each function specified below, say whether or not the function is monotonic. Briefly explain

your answer. (Recall that Whole-Number is the flat domain of whole numbers.)
¢ Nz d '

i
b. fa: Whole-Number; — Whole-Number) m 3

N+l Gther w[.rpz—f
c. fa: Whale-Number) — Whole-Number | =

d. f4 : (Whole-Number, — Whole-Number| ) — (Whole-Number, — Whole-Number, ) =

—

\:ﬁ;\n.(nzL)-’wg(ma—\_\?) /\3‘,\,\“ f 3 l" n=_{

._l_rxfejgr = /\/,m j[nj o-r)\-frW\SQ.,
TN

a. fi: Whole-Number; — Whole-Nymber) = An.3J

WAisle o

5 Vember 2001y 0 J

210 an [+rv€ £ /J’e,_?

> Exercise 6.9

3. Suppose that the result of the application (fix i i
fuopose that ! p u (fix z) has the signature A — B. What is the

b Assuxiun th&t the U, Ctlon&l dol]]aln A hnad B 18 & poO ted Cpo, W at Condltlonﬂ l]lust be laced
( ) p 1 p H h

. Consider t i :
c. Consider the function FACT : Who(chumberJ_ — Whole-Number | whose graph is given by

(8Taph FACT) = {{L, LIu{(n,nl) | ne Whole-Number}
What is (fix FACT)?
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Answers to Exercise 1

-
Tt we  map <4 to AL 20 we  all pw all X Y~ =13

fonctisns from {a' '3 45 1, (ﬁ\) 'y cj
4

TL(Lrl S OAI)/ 1 th\c{' ren  wh,chAh Can Map L fo A

( fl\& CD/\S"A’V* o {,n(flo,\/

§.N\i/~xr(// Thered <o o g TR fw\c{,\mi‘

Fo. n total of 15

The domains £ and F look as follows:

b
¢ d
E.L a F_LZ \ / )
J.F-L
-LE.L

Recall that the domain £, — F, contains all continuous functions from E, to F.
For function domains X' — } where \ is finite. continuous and monotonic mean exactly
the same thing {convince yourself of this). Out of the 33 = 27 possible functions between
E, and F,. only 7 are monotonic. These 7 are pictured below as a partial ordering on
functions. As in Schmidt’s notation. we have elided pairs whose second element is L: the
key advantage of this notation is that the partial order on functions is the same as the
partial order on their graphs induced by the subset relation.

{(-LE_L~C).(a.c).(b-C)} {LLE‘L.d) (a.d).(b.4)}

\ /

{{a.c).(b.e)} (a.d).(b,d)}

/

{
E_L bt F_LZ
{(b.c)} {(6.d)}

{}
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e suppose nx £ :{AdA — H). Fix computes the least fixed point of r. so bv definition of

a fixed point.

fixr =r(fixr)

Suppose y = fixz. Since r can be applied to y. then z must be a function whose inputs
come from the domain which is the signature of y. Thatis r : (4 — B) — something.
But we know that r y = y, so r applied to something results in elements of A — B.
Therefore.

r:{d—B)—(4—B)

: x#t7) If A — B is a pointed CPO. then fix r exists
if  is continuous. i.e. if r is monotonic and preserves least upper bounds of chains.

Careful' The answer is not the factorial function. The signature of fix over a domain
Dis

fixp:(D—D)—D

For defining recursive functions, we take the fixed point over a function domain. i.e.
D = A — B. But fix works over anv D that is a continuous poiuted C'PO. The
graph given in this problem is the graph of the factorial function. not a function that
generates factorial approximations (like FACT-EQN in the notes). This function has
3 fixed points: L.l.and 2. L Z 1 and L € 2 (note | and 2 are not comparable) 50
the least fixed point is L.

)
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6.3 Domain Theory

This section is under development. For more information about domain theory, includ-
ing complete partial orders, least fixed points, and recursive domains, please consult the
following:

¢ Schmidt, David. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986. Of particular interest are chapters 2 & 3 (domains), chapter
6 (recursive functions), and chapter 11 (recursive domains).

¢ Stoy, Joseph. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. M.I.T. Press., 1977. See especially chapters 2 & 3 (introduction to
denotational semantics), chapter 6 (lattices and domains), and chapter 7 (recursive
domains).

o Tennent, R. D. “The Denotational Semantics of Programming Languages.” Commu-

nications of the ACM, Volume 9, Number 8, August 1976, pp. 437-452. A tutorial
paper explaining the fundamentals of denotational semantics.

> Exercise 8.6 Consider the lifted flat domain D = {a,},c} ;| . How many monotonic functions
are there from D to D? ©

t> Exercise 6.7 Suppose the domains F and F are defined as follows:

E = {a,b} where aCb

F = {c,d} where c and d areincomparable
Consider the domain E; — F|. The elements of E; — F) are themselves related by a partial
order. Draw the partial order whose elements are the membersof E| — F '| , where you represent

a function in E) — F) by its graph. (Hint: for an example of partial orders on functions, see
page 119 of Schmidt.) ©

> Exercise 6.8 In the function descriptions given below, we specify on the left-hand side of the =
the name and the of each function. The signature describes the domain and range of the function.
For example, the familiar > function on the natural numbers, which tests whether its first argument
is atrictly greater than its second, has the signature:

> : (Integer x Integer) — Boolean

For each function specified below, say whether or not the function is monotonic. Briefly explain
your answer. (Recall that Whole-Number is the flat domain of whole numbers.)

a. fi: Whole-Number| — Whole-Number| = An.3
b. fa: Whole-Number| — Whole-Number| = An.3

c. f3: Whole-Number| — Whole-Number| =An.(n=1)—3[(n+1)

d. fs : (Whole-Number| — Whole-Number| ) — (Whole-Number; — Whole-Number; ) =
Ag.An.(n=1)—3]g(n)
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Q
> Exercise 6.9
a. Suppose that the result of the application (fix z) has the signature A — B. What is the
signature of 2?7
b. Assuming that the functional domain A — B is a pointed cpo, what conditions must be placed
on z so that (fix z) exists?
c. Consider the function FACT : Whole-Number| — Whole-Number | whose graph is given by
(graph FACT) = {({, L)} U {(n, n!) | n € Whole-Number}
What is (fix FACT)?
Q
> Exercise 6.10 Suppose that n € Integer and that f € Integer — Inieger| . Also assume that
+, -, ¥, /, =, <, square, even? have their usual meanings on the integers.
For each of the functions below:
1. Characterize all of its fixed points.
2. Indicate which of its fixed points is the least fixed point.
Ezample:

M. An. if (= n 0)
then 1
else if (< n 0)
then (f (+ n 1))

else (f n)
endif
endif

1. For any choice of ¢ € Integer , the function f. whose graph is

{{n, 1) | n<0}u{(n, ¢} | n>0}
is a fixed point of the above function.
2. The least fixed point is fy .
a. Af. An. (square (+ n 1))
b. Af. An. (square n)
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Problem Set 5 Solutions
Problem 1.

1(a). Prove that letrecaddinp, ~ if X <0thenZ:=YelseZ =X +Y
where ~ is command equivalence (Winskel §2.4.1), and X,Y, and Z are dis-
tinct locations. Hint: By induction on n = ¢(X).

Solution:

We first recall the appropriate definition of ¢g ~ ¢; for IMP,,,. It says, for all
states o, o’/

(co, o) =1t 0 Mff {1, 0)—1ee 0

We will actually prove this by establishing two Lemmas which together will
imply the desired result.

Lemma 1. For all o, there is exactly one ¢’ such that
(ifX <0thenZ :=YelseZ := X+Y,0)—. 0
specifically,

o { olo(¥)/2] if o(X) < 0,
of(e(X) +o(Y))/Z] otherwise.

Proof: Trivial. Just consider the evaluation rules with an arbitrary . There
are then two cases, one for #(X) < 0 and one for otherwise. Both are easy. B

Lemma 2. For all o, there is exactly one ¢’ such that

(letrecaddinp,,o)— . 0’

o = { olo(Y)/2] if ¢(X) <0,
ol(e(X)+0o(Y))/Z] otherwise.

It is then trivial to prove the desired result from the two Lemmas.

We now prove Lemma 2
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Proof: It is not possible to do a “mathematical induction” all of the integers,
because there is “no place to start.” So first we prove the Lemma in a single
step for all o such that ¢(X) < 0. Then we prove that the Lemma holds for
all ¢ such that ¢(X) > 0 by an induction on n = ¢(X). Combining these two
pieces proves the lemma for all & which is what we need, as all states o fall in
at least one these two cases (o such that ¢(X) = 0 falls in both cases, but that
is ok!)

So we wish to show that for all & such that o(X) < 0 there is exactly one state
which (letrec eddinp,, o) evals to, namely o[o(Y)/Z).

A careful examination of the rules for IMP,,, show that there is exactly one
derivation, D starting from the configuration (letrec eddinp,, o) when o(X) <
0. The derivation looks like:

: D' :

(X €0,0)—t.true { (Z:=Y,0)—a 0

(if X <0thenZ:=Yelse(X =X —-Llr; X:=X+1,Z2:=24+1),0)>0
(letrec addinp,, o) — it 0’

where Ir, is letrec addinp,.

Looking at the subderivation D of D, we see that there is exactly one possible
D/, which enforces that ¢/ = o[0(Y)/Z], and so we are done with this case..

Now we use induction on n = o(X) to prove the Lemma for all ¢ such that
o(X) > 0. Specifically the property P(n) which we are trying establish is
defined to be:

For all states ¢ such that ¢(X) = n, there is exactly one ¢’ such
that (letrec addinp,, 6)— . o', specifically o/ = o[(n + o(Y))/Z].

Basis. n = 0. By the preceeding case of the proof (¢(X) < 0) we know that for
any o such that 0(X) =0, ¢/ = g[0(Y)/Z]. Asn =0, ¢/ = o[(n+ o(Y))/X].

Inductive step n = n’ +1 (n’ > 0). We now consider the form that a derivation
D, of (letrec addinp,, o)— . 6’, must take.

. ! .
. X =X —1,0)e 0{n' [ X] {
= { o
(X £ 0,0)—1e: false (X=X-Lley; X:=X4+),,2:=Z+1,0)—+0
(ifX <0thenZ:=Yelse(X =X -1,Irn; X:=X+1;Z:=2Z+1),0)—~ 0
(letrec addinp,, 6) -1 o’ '
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Where D' is must exist and have the form:

(Iry, o0’ /XN —iet0” (X :=X+1,Z2:=Z2+1,0 V=10
(Ir; X:=X+15 Z:=Z2+1,0n [ X])~tec0o

Examining the form of D, we see that it exists iff we have a derivation D’ for
(Iry, o[n'/X])— 1.t 0”. We do. Moreover, once o” is chosen there remains exactly
one ¢/ which allows this derivation to exist, moreover there will always be such
a o/, forcing this derivation to exist. Specifically, ¢’ = o”[(1 + ¢”(X)/X][(1 +
o"(2))/2).

By induction, there was exactly one ¢” such that (Iry, o[n’/X])— i ¢, namely
o" = o[n'/X][(n' + ¢(Y))/Z]. Consequently, there is exactly one o’ such that
(letrec addinp,, o)— . o', specifically,

o[n’/X][(n" + o(Y)/Z][(1 4 n')/ X][(1 + 0’ + 0(Y))/ 2] = o[(n" + o(Y))/2]

exactly as required. B

1(b). What can go wrong if X,Y,Z happen not be distinct?

Solution: A lot. Consider, for example if X and Z are the same. Then we will
end up with the end state having ¢(X) -2+ o(Y) in location X. If X and Y
coincide, you end up with Z getting 0. Or, if Y and Z coincide, nothing bad
happens. If all 3 coincide then you end up with 2 times the original value in
that location.

Summary: for this particular piece of code problems only arise when X is the
same Loc as Y or X is the same Loc as Z (but not when all three are the same
Loc).

Note any violation of the distinctness property violates the soundness of the
proof of Lemma 2.

Any combination of problems, or an abstract discussion of where the proof
breaks down, will be accepted with full credit.

Problem 2.

2(a). Describe how to translate any IMPy,; command into an equivalent
IMP,,; command which does not contain any while constructs. Hint: Show
how to eliminate an “innermost” while.

Solution: We show how to convert an IMP,,, command containing a while
structure into a new IMP,.; which contains one fewer while structure. It
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would then be a trivial induction on the number of while structures to show
that repeated application of this conversion is guaranteed to reach an IMP,,;
command which does not contain any while structures.

We do this by showing how to eliminate an “innermost” while from an IMP,,,
command. (An “innermost” while is a subpart of a command which is itself a
while structure, but which has no while structures contained within it). We
have two cases depending on whether the innermost while structure is closed
or open.

Without loss of generality, we may assume that there is a single innermost while
structure (if in fact there are several, we can just pick an arbitrary one, and call
it “the innermost” while structure).

If the innermost while structure is closed, then it is of the form whilebdoc
where both b and ¢ are closed. We can replace it by:

letrecif b then(c; p,) elseskipinp,

If the innermost while structure is open, then we need to look at the enclosing
letrec structure. Suppose this enclosing letrec is of the form:

letrecp, inc

Let the while structure be whilebdocg. We then extend the vector of p,’s by
if bthen(co; P41 ) elseskip and we replace the while structure by p,, ;.

In other words, we end up with:
letrecp, ',if b then(co; p,, 4, ) else skipin ¢’

Where, if the while structure which we were eliminating was in ¢, then ¢’ is
¢ with the while structure replaced by p,,,, and 5’ = p,. Otherwise we
were replacing the while structure in p; for some i. In which case ¢/ = ¢, and
pj = pj(for 1 < j < nand j # i), and p! is p; with the while structure replaced
by Py

2(b). Illustrate your method by translating

letrec whileb, do (X := X + 1;p,),
Y =Y+1;p,
in
while b; do
Py
letrecY :=Y -1
in whileb; dop,
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Solution:

letrec py
Y:=Y+1,p,,
if b; then (X := X + 1;p,); ps else skip,
if b; then p,;
letrecY :=Y -1,
if b3 then(p, ; p,) else skip
in P2
else skip
in p,

Revised Problem 3 T', can be defined by an induction on the structure of
OCom. Setting up this induction has some subtle points. In particular consider
the case of p = whilebdo py. For this case we have:

thilebdopo (San) = ﬁI(F,),
where I is defined by:
, _J e if B[b]o = false,
F'(¥)e = { ¥(Tpo(Pn)o) otherwise.

The goal of this problem is to show that I'whiiesdop, 18 Well-defined (assuming
that I'p,) is well defined. To do so we show that fiz{T"’) is well-defined.

3(a). Prove that I’ : (¥ — ) — (£ — X) is continuous. i.e. show that if
%o, ¥y, ... is an ascending chain in ¥ — X, then

: (U "’") - L @)

n20 n>0

Recall that we order ¥ — X under C.

Solution. To show that two partial functions f,g : A — E are equal, it is
necessary to show that for all d € D,

either f(d), and g(d) are both undefined,
or  f(d) and g(d) are both defined, and have the same value.

So, to show that I is continuous, we must show that for an arbitrary ascending
chain in £ — T (say, ¢¥1,¥2,...), and all states o:
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either  I'(Ll,50 ¥n)(0), and (L5 I'(¥n))(0) are both undefined,
or they are both defined, and have the same value.

We prove this by cases on Bfb]o.

If B[b]o = false, then both functions at o give &. Why? By the definition of
I, I'(anything)o = o. So, I'(,>0 ¥n)o = o. Similarly, for all n, ['(¢,)o = 0.
Thus |, 5o(I"(¥s)) = LI{e} = 0, and so we are done.

If it is not the case that B[b]o = false then,

v (|_| ¢,,) o= (|_| 1/),.) (Tpa (Fn) 0)
n>0 n>0

moreover, by the definition of E(z—~T)~(T~T)
Ll M(Yn) | o Ll I'(¢n)o
n>0 n>0

L] (4 (Tpee))

n>0
The last step came from the definition of I''. Let o' = T'p (&n )0, if it is defined,
(if it is not defined then we are done—as “f(o)” and “g(c)” both end up being
undefined).

So, if we can prove the following statement, we will be done.

(L_] :/».) o'=| | (¥n)o’

n>0 n>0

We can in fact prove the stronger statement:

(L_l I/"n) (rPo (San)) = L_l ('/’n (rPo(San)))

n>0 n>0

which comes directly from the definition of Cx_x.

Actually, this case has not properly worried about the possibility that one of
two sides of an equation might be undefined. This can be done by replacing
certain occurrences of = by ~, which stands for: the two things on both sides,
are either both undefined, or they are both equal. Don’t worry about this for
now.
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3(b). Show that I has a least fixpoint, and thus conclude that fiz(T') is well
defined.

Solution. In part (a) we have shown that IV : (X — ) = (£ — X) is
continuous. We mentioned in class that ¥ — ¥ ordered under C is a cpo.
Moreover, this cpo has a bottom (viz. least element). Specifically the least
element of ¥ — ¥ is the completely undefined function (the function whose
graph is the empty set). This enables us to apply Theorem 16 from page 64 of
Winskel, to say that IV has a least fixpoint. And since I' is well-defined, and
I has a least fixpoint, fiz{I') is well-defined.

Revised Problem 3-OPT. (OPTIONAL) Do the original Problem 3 from
Problem Set 5.

Carefully define T'p. Hint: Structural induction on OCom.

Solution: We define I', by induction on the structure of OCom. There are
some subtle problems involved in properly setting up the induction and really
showing that I, is well defined. The main problem arises from the fact that
defining T, involves C[-], which in turn would involve I', because of the letrec
construct. Some additional cleverness (which is not worth going into here)
actually justifies the straightforward definition which follows. There is also
some work involved in showing that I', was well-defined. What was assigned as
Problem 3 in the addendum, shows what is necessary to show that I'whiles doe
is well-defined, one of the harder cases.

There are five, top level cases based on the structure of p.

The base cases are:

[p = p; ] All of the complex definitions we have set up, and the whole structure
of this problem was designed to make this case work out easily. The rest
of the work is then to show that the other cases still come out ok. For

this case, we have:
def
Fpi(‘Plv . -:‘Pn) = @i

= ¢ ] For a closed command we simply ignore @,. Giving,
- def
Te(n) = Cle]
The inductive cases are:

[p = po; ;1 ] This is simply a composition, we just need to be careful where we

do it.
def

Pp:;pa(‘z"n) = (Ppa(‘i"n)) ° (Fm(‘ﬁn))
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[p = if b thenpo else p; ] This is not too hard either...

o v def [ Tpo(pn)o if Blb)o = true,
Tits thenpo etsep: (#n) = { [p,($n)o  otherwise.

[p = whilebdopo ] For while structures, we still need to define an auxiliary
function and find the fixpoint of that function. So, we have

thilebdopo (‘ﬁn dér ﬁl'(r')
Where it B) fal
’ def | o i o = false,
T'(¥)e = { Y(Tpo(Pn)o) otherwise.

Notice that I’ depends on &,.

Revised Problem 4-OPT. (OPTIONAL) Do the original Problem 4 from
Problem Set 5.

4-OPT(a). Show that I, is continuous.

Solution: There are too many separate pieces involved in showing I’ contin-
uous, so at this point, we are not writing up official solutions to the problem.
Problem 3 (the new version), contains the hardest case, which is in fact a com-
bination of several of the tricks needed.

4-OPT(b). Conclude that for well-formed py,, the function I's_ is continuous.

Solution: This follows directly from a generalization of the fact given in class:
Fact 1. A function f : A x B — C is continuous iff

fa is continuous for all a € A,
and f* is continuous for all b € B.

In English, the generalization is that a function in n arguments is continuous
iff it is continuous in each of its arguments separately. e.g. f with all but its
fifth argument fixed at arbitrary values, considered as a function in just that
fifth argument, is continuous. If this happens for all n argument slots, then f
is continuous. Obviously I's, will fit this bill!!
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Problem Set 7
Reading assignment. Winskel Chapter §7.1- §7.3.

Quiz 3 Room Announcement: Quiz 3, which the class unanimously de-
cided would take place on Tuesday November 19, from 7 to 9pm, will be held
in Room 34-301, across the hall from the usual classroom.

Due: 15 November 1991.

Problem 1. Let loc(B) be the set of locations which occur in a formula B €
Assn.

Let £ be a subset of Loc. We define an equivalence relation on states, ~, as
follows:

o1~cor It VX € L.0y(X) = Uz(X).

In other words, oy~ 0 iff the states oy and o2 agree on all locations in L.

1(a). Prove that an assertion depends only on locations explicitly mentioned
in it, that is:

if 01~1oc(py72 then (o3 ! B iff o, ! B).

Hint: Use structural induction on B.

1(b). Using part (a), give a direct semantic proof that
if loc(B) N locp(c) = @, then |= {B}c{B}.

(Do not appeal to soundness or completeness of the Hoare rules.)

Hint: Winskel Proposition 8, p. 45.
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Problem 2. In this problem, you will give a syntactic proof of the result of
the preceding problem. Specifically, we want you to show that:

if loc(B) N loc(c) = O then Fy,...{B}c{B}

Prove this by structural induction on ¢. Do so directly from the definition of
the Hoare rules and axioms. (Do not appeal to the Completeness Theorem or
the result of Problem 1).

Problem 3. In class we gave the following definition of the DynAssn abbre-
viation for the weakest precondition under ¢ for d € DynAssn:

w(e, D) ::= {true}c{D}

Note we used a small “w” in this definition. This is not to be confused with
W (e, B) € Assn, which we defined in class for B € Assn (although w(c, B) is
equivalent to W(c, B)).

Prove from the definition of validity for DynAssn:
E w((e1; €2), D) = w(er, w(ez, D))

(Of course the converse (<) also holds, but we thought that it was enough of
an exercise to prove the equivalence in one direction)

Problem 4. An important technical fact for demonstrating the expressiveness
of Assn comes from demonstrating that you can code sequences in Assn. In
class we assumed there was a formula SEQ € Assn. Winskel describes the
f-function, which is one way of implementing SEQ in Assn.

Instead of building up SEQ from some ingenious number theory (which is what
B requires), we can code up SEQ by “string manipulation.” As a first step, we
observe that a Num can be represented as a sequence of characters (via their
representation in some particular base, say base 3). We expect that everyone
knows how to write a positive integer as its base 3 representation (which is
some particular sequence of “0”’s, “1”’s and “2”’s). We could then perform
some “string” operations on the base three representations, and then finally
convert the end string s to the number which has s as its base 3 representation.
It is easy to code a sequence of strings as one long string by concatenating the
strings in the sequence, separated say by delimiter symbols. We do not have
time to go all the way up to coding SEQ, but will just work out how to define
string concatenation.
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We show to think of numbers as strings and how to represent concatenation of
two strings. For this problem we will use the following notation: for n > 0 we
write (n)s to denote the base 3 representation of n (without leading zeros). In
our informal discussion, we will use - do denote the concatenation of strings, for
example “aab”-“bbba”=“aabbbba”

For a more concrete example of what will go on in this problem:

(B)s = “12
(2 = “10”
(5)3-(21)s = “12210”
= (3*+2x33+2x3%2+3),
= (156)3

Concretely, in this problem we will guide you to defining a formula F € Assn
with free variables i, j, k such that F means: “(i)3 - (j)s = (k)3”.

4(a). Define a formula POW3(i) € Assn, which is true iff i is a power of 3.

Hint: i is a power of 3 iff any divisor of i other than 1 must itself have 3 as a
divisor.

4(b). In our informal language, let length(i), for ¢ > 0 be the length of the
base 3 representation of i. Find alformula LEN(3, j) € Assn, such that LEN
is true iff j = 3length(),

Hint: j is the largest power of 3 with a certain relation to i.

4(c). Define a formula F(i, j, k) € Assn, which is true iff (k)3 = (¢)3 - (§)a.
Hint: k = 3lengthG) » ; 4 J-
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Notes on Expressiveness

Lemma 1. There is a formula SEQ € Assn which means “i is the code of a
sequence whose j*P element is k.”

Proof: Ingenious specification using elementary number theory. Winskel gets
such a formula using Godel’s “4” function. Another approach is hinted at in
Problem Set 7. H

With a SEQ formula we can obtain “pairing” as a special case:

LEFT := SEQ[0/j]
RIGHT := SEQ[l/j]

So LEFT means “i is the code of a pair whose left element is k” and similarly
for RIGHT.

We will want to use other integer variables besides i, j, k in formulas, so we
write

SEQ(#', 5, k')

as an abbreviation for SEQ[:'/i]['/jl[k'/k]. Note that Winskel does not define
what it means to substitute an Aexp with integer variables for an integer vari-
able, so technically we need to define A[i’/i]. However, as long as ¢’ is “fresh,”
namely there are no occurrences (free or bound) of ' in A, then the definition
used for A[a/i] also is ok for A[#/i], and the formula SEQ(#, j, k) will mean, as
expected, that “#' is the code of a sequence whose j"*! element is k'.” Likewise
for LEFT(¢, k'), etc.

(To illustrate the technical problem with substitution of integer variables which
are not fresh, consider the formula A ::= (3.2 x ¢’ = ) which means “i is even.”
Now the naive definition of A[i’/i] yields the formula A ::= (3i'.2 x ¢ = i’) which
happens to be valid, and so certainly does not mean “i’ is even.”

We now show how to construct a formula W(ec, B) € Assn expressing the weak-
est precondition of ¢ for any B € Assn where ¢ = whilebdoc¢y. By structural
induction we have formulas W (co, B') for all B’ € Assn.

For notational simplicity, assume Loc(B) U Loc(c) = { X1, X2}.

For formulas and commands with only locations { X1, X2}, the only part of a
state which is relevent for satisfaction or command meaning are the pair of values
of X; and X3, so we “code” a state ¢ as a number n such that LEFT(n, n;) and
RIGHT(n, ny) are both valid, where n; = ¢(X;) and ny = #(X3). Conversely,
let state(n) be a state, o, such that ¢(X;) = n; and o(X2) = na for the
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(necessarily unique) numbers ny, ra such that = LEFT(n, n1) A RIGHT(n, n2).
For definiteness, we may assume (state(n))(Y)=0for Y # X1, Xs.

The formula SAT(k, B') will mean “state(k) }= B’ where B’ € Assn and
Loc(B') C {X1, X2}.

SAT(k, B') ::= 3ky.3ko. LEFT(k, k1) A RIGHT(k, k2) A B'[k1/ X1][k2/X2].
(Note that both k; and k; have to be “fresh” integer variables for SAT to work
properly.)

Our explanation of the meaning of SAT has been informal about the role of the
interpretation, I. More precisely, we should have said that

o = SAT(k, B') iff state(I(k)) ! B’
Notice that the truth or falsehood of SAT(k, B') depends only on the interpre-
tation I, not the state &, since SAT(k, B’) does not contain any locations.
Another useful formula is PS(k) which means “the present state has code k.”
PS(k) ::= LEFT(k, X;) ARIGHT(k, X2)
So ¢ = PS(k) iff [0(X;) = state(I(k))(X;) for i = 1,2).
The formula NEXT(cg, I3, l4) means “Cleg](state(ls)) = state(ly)”
NEXT(co, I3, 1) ::= SAT (I3, W(co, PS(l4))) A SAT(Is, ~W(co, false))

Exercise. Why is the second conjunct needed in the definition of NEXT?

Now we can define W(e, B) as follows. We use n as the length of a sequence
00, 01, ..., On Of states, i as the code for the sequence of numbers coding these
states, I, as the code for og, and I, as the code for o4,

Then oo = W(e, B) iff
{oi = b and Cfo;] = 0j41 for i < j <n, and o, |= b} implies o, = B.
So, W(c, B) ::=Vn.Vi.vl, .Vi2.

{n >0
SEQ(4,0,11)A “oq = state(l,)”
SEQ(, n, i2)A “o, = state(lz)”
PS(11)A “op is the present state”
V.0 < j A~(n < ) =
313.314.(SEQ(3, 4, I3)A “o; = state(l3)”
SEQ(z,j +1, 14)/\ “0’j+1 = staie(14)”
SAT(Is, b)A “oj = b”
NEXT(CQ,I;;,L;))]/\ “C[O’j] = 0’j+1”
SAT(l2,-bd)} = “on, = —b”

SAT(Iz,B) “o’n b Bn
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Problem Set 6 Solutions

1 General Information

This handout includes some of the best solutions submitted by students for
Problem Set 6. These solutions are a good representation of the level of detail
expected.

2 Grades

Attach to each graded solution is a printout of our current record for each
student’s grades. Please check that all of the raw data is accurate—inform the
TA for corrections. In addition we have ranked everyone’s quiz scores {from 1
to 17, 1=best), and everyone’s homework totals. This information is included

on the printout.

For your convenience,

the following is a summary of the grade statistics to this

date:
|PS1 |PS1 |PS1 [PS2 |PS2 |PS3 |PS3 {PS3 PS4 (PS4
Quiz1{Quiz2|' |Prob0|Prob1|Prob2{Prob1|Prob2/prob1|Prob2/Prob3|Prob1 |Prob2
# Submittel 17 16 16 16 16 13 13 16 16 16 12 14
High 66 95 10 10 10 8 20 10 10 10 7 10
Low 23 28 8 1 1 3 1 0 1 4 1 3
Median 45.0| 62.5 10.0/ 3.0/ 4.0y 5.0/ 7.0/ 9.0{f 8.0{ 10.0{ 2.50] 7.50
Mean 46.2| 62.1 9.8/ 4.2] 5.2/ 5.3 9.2y 8.3} 7.71 8.6] 3.25| 7.36
St. Dev. 14.7} 20.4 0.6f 3.3] 3.3] 1.8y 6.4 2.6/ 2.21 1.9] 1.76] 1.74
PS4 |PS4 PS5 |PS5 |PS5 |PS6 |PS6 [PS6 |HW
Prob3|Prob4 |Prob1|Prob2/Prob3|Prob1|Prob2/Prob3iTots
# Submitt 14 14 14 14 8 15 15 15 17
High 10 10 10 10 5 10 10 10 158
Low 2 5 3 2 0 3 6 5 27
Median 4.00| 7.00{ 8.00{ 3.00{ 3.00{ 9.00] 9.00| 8.00| 104.00
Mean 4.711 7.21] 7.64| 4.71| 2.63| 7.73| 8.53| 7.80{ 103.00
St. Dev. 2.76] 1.72] 2.13| 2.87] 1.60] 2.46{ 1.25| 1.47] 37.32
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Problem Set 7 Solutions

Problem 1. Let loc(B) be the set of locations which occur in a formula B €
Assn.

Let £ be a subset of Loc. We define an equivalence relation on states, ~¢, as
follows:

o1~eor It VX € L.01(X) = 02(X).

In other words, o;~¢05 iff the states ¢, and o4 agree on all locations in L.

1(a). Prove that an assertion depends only on locations explicitly mentioned
in it, that is:

if 71~1oc ()72 then (o1 E! Biff o, ! B).
Hint: Use structural induction on B.

Solution. We first prove the following Lemma as suggested in an e-mail message
to the forum.

Lemma 1. Let a be in the extended Aexp language (remember the cases):
n|X|i|a0+a1 |a0xa1 |a0—a1
if 01~c09, and loc(a) is a subset of £, then:

Avfallo, = Avfa]lo,.
We prove this by induction on the structure of a.

1. The cases of a = n, i are trivial, as Av[a}lc does not depend on o.

2. The case of a = X, is interesting. Since X € £, 01(X) = ¢2(X), and so
by the definition of Av[X], Av[X]Ioy = Av[X}Io,.
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3. The inductive cases are easy applictions of the induction hypothesis. We
do the case of a = ay + as. Since loc(a;) C loc(a), T1~loc(ay) 02" Thus we
may apply the induction hypothesis to ay, to get Av[a1]loy = Avfa,]lo2,
a similar argument will get us Av[as]lo, = Av[az]lo;. This lets us say:

Avla1]lo1 + Av[az]lo) = Av[az]loy + Av[az]los.
Finally be the definition of Av[a; + a2], we get:

Avfa; + a2]loy = Av[ay + a2]lo2

We now prove the main part of the subproblem by an induction on the structure
of B. Due to the substantial difference in Assn from other syntax we have used,
this merits a full description of the detail this time around.

So, we do cases on the structure of B:

[B = true ]| Both, o1 = true, and o3 =7 trueby definition, so o E!Biffo,='B.

[B = false ] Similar to preceeding case.

[B = ap = a; ] By the Lemma, Av[ao]Io, = Av[ag]ios = no and Av|[a1]Icrl =
Av[a;]Ios = n;. Either ng = ny, in which case both ¢y |=/ B and 02! B,
or both o #IB and o, #IB, exactly as required.

[B = ao < a; ] Similar to preceeding case.

[B=BoA By |oiE!Bo A By iff

oy }:IB() and oy }:IBI.(*)

Since loc(Byg) C loc(B), T1~1o¢(Bo)72 (similarly "1~Ioc(Bl)"2)§ by induc-
tion, (*) holds iff
02" By and ao=! By (%)

By the definition of =, (¥#) holds iff,
o2="By A By
Following the chain of “iff”’s, we have the required result.
[B = Bo V By ] Similar to preceeding case.

[B = Bo = B; ] Similar to preceeding case.
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[B = =B’ ] This is not too different from the other propositional operators, but
I suppose it is different enough. By definition of |=, o1}=! B’ iff

a1 #IBI, (*)

As before, T1~loc(B) 02 By induction () holds iff

o9 I;GIB',(**)

Finally, by the definition of |=, (#) holds iff g2}=" = B’, following the chain
we have o=/ B iff o2=!B.

[B = Vi.B' ] Well, by definition of |=,
o Vi B iff oy £/ B for all n € Int.

Again, T1~loc(8)72> however this time when we use induction, we use
I[n/i] as the interpretation. So by induction:

o1 |=I[n/i] B iff oy |=I[n/l'] B’
to summarize:

o EVi.B' iff oy M B for all n € Int.
iff oy ET"1 B’ for all n € Int.
iff oo=!Vi.B
[B = 3i.B’ ] Similar to preceeding case. Just write “for some n € Int in place

of “for all n € Int.”

1(b). Using part (a), give a direct semantic proof that
if loc(B) Nloct(c) = 0, then |= {B}c{B}.

(Do not appeal to soundness or completeness of the Hoare rules.)

Hint: Winskel Proposition 8, p. 45.

Solution.
Suppose loc(B) P)locL(c) = 8, and o |=‘JB. We must then show that C[c]o |=JB.

We have two cases: C[c]o is undefined, in which case we are done (as C[c]o |=‘LB
trivially), or Cfc]o = ¢/ € ©. We now want to show that °’~loc(3)‘7l so that we
may use part (a).
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To show that o~ loc( B)a’ , we consider an arbitrary X € loc(B). By our premis
that loc(B) and locy(c) were disjoint, we know that X ¢ locr(c). By the
equivalence of the operational and denotational semantics for IMP we know
that (c,s) — o’. We can now use Winskel Proposition 8, p. 45 to conclude that
o(X) = o'(X). Since X was arbitrary, ‘7~loc(3)‘7"

In the beginning we supposed that o |= B, and we just showed that o~ B)a’ .
So .%y part (a) o’ E="B. So, in the case that Clc]o is defined C[c}o B, so,
o E'{B}c{B}.

Problem 2. In this problem, you will give a syntactic proof of the result of
the preceding problem. Specifically, we want you to show that:

if loc(B) N loc(c) = 0 then k... {B}c{B}

Prove this by structural induction on ¢. Do so directly from the definition of
the Hoare rules and axioms. (Do not appeal to the Completeness Theorem or
the result of Problem 1).

Solution. We have one important Lemma:

Lemma 2. If X ¢ loc(B), then B = B[n/X] (note: here we are using = to
denote syntactic equality).

(This is proven by first proving (by structural induction) the analogous result

for the extended Aexp language, and then by an induction on the structure of
B)

We now prove Fy,...{B}c{B}, by induction on the structure of ¢, taking cases
on the structure of c.

[c = skip ] Trivial. By the rule for skip, Fy....{B} skip{B}.

[c= X :=a ] By the rule for assignments, by,,.,.{Bla/X]}X :=a{B}. Since
loc(B)fY locr(c) = 0, X & loc(B). By the Lemma, Bla/X] = B, thus
Froare { B} X := a{B}, is precisely the same statement as \,,,.{ Bla/X]} X := a{B},
and so we are done.

[e = co;¢1 ] Since locy,(co) gyloc[,(c), loc(B) U locr,(¢o) = 0. Thus, we may use
induction to say: Fy,.,.{B}co{B}. A similar argument gives us Fy..,.{B}c1{B}.
Finally, we may apply the rule for sequencing, to obtain by,,,.{ B}co; c1 { B}.
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[c = if bthencg elsec; ] Similar uses of induction will give us: Fy,...{B}co{B},
and Fy,...{B}c1{B}. Since BAb = B (by the definition of A), we may use
the rule of consequence to obtain: Fy,,,.{B Ab}co{B}. Similary we can
get Fuoue{B A =b}e {B}. Finally, we may apply the rule for conditionals
to obtain:

Fuosre{ BYif bthen cq elsec; { B}.

[c = whilebdo ¢’ ] Another use of induction will give us Fy,...{B}c'{B}. Since
B A b= B, we can use the rule of consequence to obtain

Froue{B A b}c'{B}.

We can then apply the rule for while-loops to obtain Fy,,,.{B}c{B A —b}.
Finally, since B A -b = B, we may use the rule of consequence to obtain:

Fuoue{B}e{B}.

Problem 3. In class we gave the following definition of the DynAssn abbre-
viation for the weakest precondition under ¢ for d € DynAssn:

w(e, D) ::= {true}c{D}

Note we used a small “w” in this definition. This is not to be confused with
W (c, B) € Assn, which we defined in class for B € Assn (although w(c, B) is
equivalent to W (e, B)).

Prove from the definition of validity for DynAssn:
| w((e1;€2), D) = w(er, w(ez, D))

(Of course the converse (<) also holds, but we thought that it was enough of
an exercise to prove the equivalence in one direction)

Solution. So, we must show that:
E {true}c;;co{ D} = {true}c, {{true}c.{D}}
In other words, suppose o t:'i"{true}cl;q{D}, then we must show that
~
o E {true}e, {{true}c,{ D}}.
Since o |= true, we must show that

Cle:]o E{true}e,{D}.
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We now have, two cases, either C[e1]o is undefined (L), in which case we are
done as LE* Anything, or there is a ¢ € £ such that C[e;]o = o”, in which
case, since o’ = true, we must show that C[cz]o” = D. We now again have two
cases: Cfep]o” is undefiped (in which case we are done), or C[co]lo” = o’ € £,
and we must show o’ =D,

4 'A{true}cl;cz{D}, to show that o’ }iL D.
Well, since o ="true, Ceci; c2]o °D. But, by the definition of C[ey; ¢2],

Cles; ealo = Clea(Cleio) = Cleal(e”) = o,

and so ¢’/ = D, and we’re done!!

We now use our other premis, o

Problem 4. An important technical fact for demonstrating the expressiveness
of Assn comes from demonstrating that you can code sequences in Assn. In
class we assumed there was a formula SEQ € Assn. Winskel describes the
B-function, which is one way of implementing SEQ in Assn.

Instead of building up SEQ from some ingenious number theory (which is what
B requires), we can code up SEQ by “string manipulation.” As a first step, we
observe that a Num can be represented as a sequence of characters (via their
representation in some particular base, say base 3). We expect that everyone
knows how to write a positive integer as its base 3 representation (which is
some particular sequence of “0”’s, “1”’s and “2”’s). We could then perform
some “string” operations on the base three representations, and then finally
convert the end string s to the number which has s as its base 3 representation.
It is easy to code a sequence of strings as one long string by concatenating the
strings in the sequence, separated say by delimiter symbols. We do not have
time to go all the way up to coding SEQ, but will just work out how to define
string concatenation.

We show to think of numbers as strings and how to represent concatenation of
two strings. For this problem we will use the following notation: for n > 0 we
write (n)s to denote the base 3 representation of n (without leading zeros). In
our informal discussion, we will use - do denote the concatenation of strings, for
example “aab”-“bbba” =“aabbbba”

For a more concrete example of what will go on in this problem:

(5)3 -— “12”
(21); = “210”
(5)3-(21)s = “12210”

(3*+2x3+2x32+3);
= (156)3
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Concretely, in this problem we will guide you to defining a formula F € Assn
with free variables i, j, k such that F means: “(i)3 - (§)s = (k)a”.

4(a). Define a formula POW3(i) € Assn, which is true iff i is a power of 3.

Hint: i is a power of 3 iff any divisor of ¢ other than 1 must itself have 3 as a
divisor.

Solution. This requires merely a direct encoding, which we do in two steps first
we code up: DIVISOR(i, j), which is true iff i is a divisor of j.

DIVISOR(i,j) n=3k.j=k x 1
The full formula is then:

POWS3(i) ::= Vj.(DIVISOR(j,i) A2 < j) = DIVISOR(3, j)

4(b). In our informal language, let length(), for i > 0 be the length of the
base 3 representation of i. Find a formula LEN(4, j) € Assn, such that LEN
is true iff j = 3length()

Hint: j is the largest power of 3 with a certain relation to 1.

Solution. Well the hint was on the right track; however, there was a fence post
problem, I guess we were actually looking for the SMALLEST power of 3 strictly
greater than i.

LEN(i, j) == POW3(j) Ai < j AVE.(POW3(k) = j < k)

4(c). Define a formula F(i, j, k) € Assn, which is true iff (k)3 = (?)a - (§)s.
Hint: k = 3lengthG) « ;4 ;.

Solution. For this part, we just need to code up the hint.

F(i,j k) == 3((k = I x i + j) A LEN(5,1))
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Sample Exercises for Quiz 3

Quiz 3 Coverage: Quiz 3 will cover material from Winskel §6.1-§7.3. The
material on Problem Sets 6 and 7 (except problem 3 on Problem Set 6) represent
a reasonable distribution of what we expect to cover on the exam. In addition
we offer the following additional representative problems (some of which were
part of an early draft of the Quiz).

Problem 1. In a certain sense the ability to express weakest preconditions
as assertions gives an ability to short-circuit Hoare Logic. We define a short-
circuited Hoare logic derivation, tu/, as generated by only the single axiom:

{W(c, B)}c{B}
and the consequence rule:

E(A=4) {A}c{B} k(B =B)
{A}e{B}

Prove that Fw is complete, that is, show that if = {A}c{B} then bw {A}c{B}.

Problem 2. Show that every D € DynAssn is equivalent to some A € Assn.

Hint: Define a translation from DynAssn to Assn by induction on the structure
9{ D € DynAssn. To simplify the notation it may be helpful to use the notation
D to talk about the translation of D. For example the case of D = Dy A D is:

-~ o~ o~
o A Dy = Dy A Dy

Problem 3. Find an appropriate invariant to use in the while-rule for proving
the following partial correctness assertion:

{i = Y}while~(Y =0)doY :=Y - 1; X := 2 x X{X =2}

Problem 4. Define a formula LCM € Assn with free integer variables i, j
and k, which means “i is the least common multiple of j and k,” that is, we
require that:

o l=! LCM iff I(k) is the least common multiple of I(7) and I(j).

Hint: The least common multiple of two numbers is the smallest non-negative
integer divisible by both.
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Quiz 3

Instructions. This is a closed book exam; no notes either. For your reference,
there is an appendix giving the syntax and the definition the “evaluates to”
relation —, for the language IMP,..

Write your solutions for all five problems on this exam sheet in the spaces
provided, including your name on each sheet. Ask for further blank sheets if
you need them. You may assume the results of previous parts in later parts of
problems, so don’t let “getting stuck” on any one part keep you from proceeding
to later parts.

You have 110 minutes, GOOD LUCK!

NAME

[[ problem | points | score ||

1 (20)
2 (15)
3 (20)
1 (%)
5 (20)
Total (100)
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NAME

Problem 1 [20 points].

Problem 1(a) (5 points]. Define a formula DIVIDES € Assn with free integer
variables i, j, which means “j divides i,” that is, we require that:

o =/ DIVIDES iff  I(j) divides I(3).

Problem 1(b) {7 points]. Define a formula PRIME € Assn with free integer
variable i, which means “i is a prime.” You may assume the result of problem

1(a).
Hint: A prime is a number larger than 1, whose only divisor greater than 1 is
itself.

Problem 1(c) [8 points]. There is a while-invariant of the form
nyXi+nyxY+n3gxX=0
appropriate for a Hoare logic proof of the partial correctness assertion:

{X=0A2xY =i}e{X =i}

where ¢ is the command: while (Y = 0) do
Y=Y -1,
X =X+1
X=X+1

What are the values of n;, na, and ns (Partial credit may be awarded, please
show your work)?
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Problem 2 (15 points].

Problem 2(a) [5 points]. State the definition of & |=! {A}¢{B}.

A weakest precondition of an assertion B under a command c is any logical
formula, W, such that o =/ W iff

if C[c]o is defined, then C[c}s = B.

Note that, by definition, all weakest preconditions of B under ¢ are equivalent
logical formulas.

Problem 2(b) [10 points]. Exhibit an A € Assn such that A is a weakest
precondition of B under ¢ where:

[

B

ifX <Y xYthenY :=Y + Y elseskip
YxY<Z+1
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Problem 3 [20 points]. Although primality is easy to express with an arith-
metic first-order formula, other familiar number-theoretic functions, e.g., expo-
nentiation, are not so straightforwardly expressible as Assn’s. But our study
of expressiveness implies that exponentiation and indeed every function which
can be computed by, or even “checked” by, an IMP command, is expressible
by Assn’s.

More precisely, we shall say that a binary relation, R, on numbers is called
IMP-checkable iff there is an IMP command which halts in precisely those
states o for which R(o(X1), 0(X32)).

Problem 3(a) [8 points]. Explain why the relation R(n,m) defined by (n =
2™) is IMP-checkable.

Problem 3(b) [12 points]. Show that for any IMP-checkable relation R, there
is an Ag € Assn, such that

o B! Ag iff R(0(X1), 0(X2))

Hini: Expressiveness.



6.044J1/18.423J Handout 35: Quiz 3
NAME

The next problems concern a Hoare logic for the language IMP,, obtained by
extending IMP with a resultis construct, as in Quiz 2. Recall that IMP,
evaluation contrasts with IMP evaluation because IMP, expressions have side
effects and so return both states as well as values. The syntax and evaluation
rules of IMP, are repeated in Appendix A. This is sufficient to determine the
denotational semantics, since:

(a,0)—,(n, 0y iff Afs)o =(n,d')
and (c,0)—, 0’ iff Cla}e =o'

and similarly for Bexp, ’s.

As for ordinary Hoare logic, we will need to prove the expressiveness of Assn
for IMP,. (We will NOT change the definition of Assn! It is precisely as it
was for IMP; so there are no commands embedded within Assn’s.) To do this
we will need a notion of weakest precondition for expressions, referring to both
the value and the state after evaluation. We define a weakest precondition for a
number n and assertion B, with respect to an expression a € Aexp,, to be a
logical formula W which means “if a successfully evaluates, then its value is n
and the final state satisfies B.” More formally we have o =/ W iff

Ala)o = (n,0") implies (I(3) =n & o' ' B), for all n € Num, o’ € £.

We can define Assn’s W, (a, ¢, B) expressing weakest preconditions for Aexp,’s
and likewise Assn’s W, (¢, B) for commands (and similarly for Bexp,’s, which
we omit) by structural induction simultaneously on expressions and commands.

For example, some cases in the definition of the formulas W, (a, ¢, B) and W, (¢, B) €
Assn are:

W,(n,i,B) == (n=i)AB
W,-(al + ag, 1, B) = 3i1.3i2.(i= i +i2) /\W,(al,il,(W,-(ag,ig,B)))
where i; and i, are “fresh.”

B

W, (skip, B)
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Problem 4 (25 points]. Supply definitions for the following cases, assuming
by structural induction the existence of Assn’s W,(...) for subexpressions and
subcommands:

Problem 4(a) [5 points]. W,.(X,1, B)

Problem 4(b) [10 points]. W, (cresultisa,i, B)

Problem 4(c) [10 points]. W,(X := a, B)

Hint: A straightforward version is of the form Qi.W (a, 1, B[-/-]), where Q is one
of ¥V or 3, and of course the dots need to be filled in.
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Problem 5 {20 points]. In IMP,, all of Hoare logic is essentially embodied
in the assignment axiom because ¢ and X := cresultis X are equivalent com-
mands. So we content ourselves with defining a Hoare logic just for IMP,
assignment statements.

We observed in the previous problem that for any IMP, command ¢ and B €
Assn, there is a formula W, (¢, B) € Assn which is a weakest precondition.
(The present problem does not depend on the correctness of your answer to the
Problem 4(c).) The provability relation, I, of the logic is determined by the
following two rules:

Rule for assignments:
{W.(X :=a,B)}X :=a{B}
Rule of consequence:

E(A=4") {A)}e{B'} (B = B)
{A}e{B}

Show that F, is complete for partial correctness assertions about assignments.
In other words, show that

E {A}X :=a{B} implies l—,.{A}X := a{B}.

Hint: You may use the fact that the assertion A = W, (e, B) is equivalent to
the partial correctness assertion {A}c{B}.
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A IMP,

A.1 IMP, Syntax

We use n, sometimes with subscripts as in ng, n;, to denote arbitrary elements
of Num. Similarly, we assume X,Y € Loc, a € Aexp,, t € T = {true, false},
b € Bexp,, c € Com, and ¢ € £ = the set of states.

a:=n|X]as+a1|as—a;|aox a; | cresultisa

bu=tlao=a1|ao<ai|=b]boAbL|boVb

c::=skip| X :=a|co;c; | ifbthencoelsec; | whilebdoc

A.2 “Evals to” Rules for Aexp,

(n,0)—r(n,o) (num —)
(X,0)—r(0(n),0) (loc —)
(a0) U)—»,-(no, U”)) (01, U”)_’r <nl y U,) N
(a0 + a1,0)—,(n,o’) (plus —)
where n is the sum of ng and n;.
Similarly, there are rules (times —,) and (minus —,).
A.3 “Evals to” Rules for Bexp,
(t,0)—,{t,0) (bool —,)
' ' '}
(00) U)""r(”O;U )1 (01,0' )_"‘(nl’a’) (equal _’r)

{(ao = a1,0)—,(t,0’)

where t = true if no and n; are equal, otherwise ¢ = false.

(¢,0)—r0”, {a,0")—.{(n,o)
(cresultisa, o)—,(n, ')

(resultis —,)
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Similarly, there is a rule (< —,).

(b,0)—>,(t,0)
(=b, 0)—(t', o)

where t’ is the negation of ¢.

(bO;a)_’f(tOﬂ"”)’ (blro'”)_’ralvo")
(o A b1, )= (0,0

(not —)

(and —,)

where t is true if {yp = true and ¢; = true, and is false otherwise.
Similarly, there is a rule (or —,).
A.4 “Evals to” Rules for Com,

(skip, o)—,0 (skip —)

(a,0) = (n,o")

(X i=a,0)—>r0'[n/X]

(assign —)

{co,0)—=ra”, (c1,0")—=r0’
((eo; €1), 0)—r0’

(seq —v)

(b,0)—,(true,o”), (co,0”)—>,0’
(if bthenco elsecy, o) —,0’

(if-true —,)

(b, 0)—,(false, "), (cy,0")—, 0’
(if bthenco elsec;, o) —,0’

(if-false —)

(b,0)— (falsé, o’)
(whilebdoc, g)—,0'

(while-false —,)

(b, g)—r(true, d”), (c,0")—,0", (whilebdoc,o"”)—,0’

(whilebdoc, 0)—,0’ (while-true —)
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Quiz 3 Solutions

Instructions. This was a closed book exam; no notes either. The original
exam had one appendix, giving the syntax and the definition the “evaluates to”
relation —, for the language IMP,.

Write your solutions for all five problems on this exam sheet in the spaces
provided, including your name on each sheet. Ask for further blank sheets if
you need them. You may assume the results of previous parts in later parts of
problems, so don’t let “getting stuck” on any one part keep you from proceeding
to later parts.

You had 110 minutes.

The exam was graded out of a possible total of 100 points. The point values
are indicated on each problem. The overall statistics are as follows:

Number Submitted | 16
High 99
Low 31
Median 68
Mean 67
St. Dev. 22.4

Also written on the graded exams is a projected final grade. The projections are
based on the expectation that the last exam score would be roughly comparable
to previous exams, and that the last problem set(s) will be turned in, with a
performance comparable to the other homeworks.

The following is a histogram of the grade distribution for this Quiz:

< X X X
D IS Yo 4y 50 4y o &5 70 7580 §5 G0 94

L T T Y D I A T B
I 39 Y 49 sy 57 6y 69 7¢ 7‘(27&7%9?
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Problem 1 [20 points].

Problem 1(a) [5 points]. Define a formula DIVIDES € Assn with free integer
variables i, j, which means “j divides ¢,” that is, we require that:

o =1 DIVIDES iff  I(j) divides I(3).

Solution: 3k.j x k=1

Problem 1(b) [7 points]. Define a formula PRIME € Assn with free integer
variable ¢, which means “i is a prime.” You may assume the result of problem

1(a).

Hint: A prime is a number larger than 1, whose only divisor greater than 1 is
itself.

Solution: 2 < i AVj.((2 < j A DIVIDES) = j = i)

Problem 1(c) [8 points]. There is a while-invariant of the form
Ny xXi4+nxY+ngxX=0
appropriate for a Hoare logic proof of the partial correctness assertion:

{X=0A2xY =i}e{X =1t}

where c is the command: while (Y = 0) do
Y =Y-1;
X =X+1
X =X+1

What are the values of n;, na, and ns (Partial credit may be awarded, please
show your work)?

Solution: The expected invariant is i = 2 x Y + X, so n; = —1, ny = 2 and
n3 = 1 (or any multiples thereof). :
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Problem 2 [15 points].

Problem 2(a) [5 points]. State the definition of ¢ =7 {A}c{B}.
Solution: if ¢ = A, and if C[c]o is defined, then C[c}o ! B.

A weakest precondition of an assertion B under a command ¢ is any logical
formula, W, such that o =7 W iff

if C[c]o is defined, then C[c])o =7 B.

Note that, by definition, all weakest preconditions of B under c are equivalent
logical formulas.

Problem 2(b) [10 points]. Exhibit an A € Assn such that 4 is a weakest
precondition of B under ¢ where:

¢ = IfX <Y xYthenY :=Y + Y elseskip

B = YxY<Z+1

Solution: The best way to solve this problem was to chug through the definition
of the formula W(c, B) given in class. So:
W(,B) = (WY =Y+Y,B)JAX <Y xY)
= V(W(skip,B)A-(X <Y xY))
W :=Y+Y,B) = BlY+Y/Y] = (Y+Y)x(Y+Y)<Z+1
W(skip,B) = B

and so anything logically equivalent to:
(Y+Y)x(Y+Y)SZH+IAXSY xY)V(I xY < Z+1)A-(X LY xY))

is acceptable.

Problem 3 [20 points]. Although primality is easy to express with an arith-
metic first-order formula, other familiar number-theoretic functions, e.g., expo-
nentiation, are not so straightforwardly expressible as Assn’s. But our study
of expressiveness implies that exponentiation and indeed every function which
can be computed by, or even “checked” by, an IMP command, is expressible
by Assn’s.

More precisely, we shall say that a binary relation, R, on numbers is called IMP-
checkable iff there is an IMP command which halts when run on precisely those
states o for which R(c(X1), 0(X2)).
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Problem 3(a) [8 points]. Explain why the relation R(n,m) defined by (n =
2™) is IMP-checkable.

Because the following IMP command ¢ halts when run on precisely those states
o for which R(¢(X1),0(X2)). The key to an acceptable solution is a convincing
argument that such a command does exist. Clearly exhibiting one will do the
job.

X3 :=1;

while 1< X; do
X3 := X3 x 2;
X2 = X2 - 1;

if X; = X3 thenskip else(while truedo skip)

Problem 3(b) [12 points]. Show that for any IMP-checkable relation R, there
is an Ar € Assn, such that

o E! Ag iff R(0(X1),0(Xa))

Hint: Expressiveness.

Solution:
Apg 1= —W(cg, false)

will have the required properties, where ¢g is a command which checks R.

A weakest precondition of false under cg, will be true in precisely those states
o in which R(o(X1),0(X2)) does not hold, the negation of W,(cg,false) is
satisfied by the desired set of states.

The next problems concern a Hoare logic for the language IMP,., obtained by
extending IMP with a resultis construct, as in Quiz 2. Recall that IMP,
evaluation contrasts with IMP evaluation because IMP, expressions have side
effects and so return both states as well as values. The syntax and evaluation
rules of IMP, are repeated in Appendix ?7. This is sufficient to determine the
denotational semantics, since:

(a,0)—(n,o') iff Ala]oe =(n,d’)

and ({c,0)—,0’ it Clajo =o'

and similarly for Bexp,’s.
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As for ordinary Hoare logic, we will need to prove the expressiveness of Assn
for IMP,. (We will NOT change the definition of Assn! It is precisely as it
was for IMP; so there are no commands embedded within Assn’s.) To do this
we will need a notion of weakest precondition for ezrpressions, referring to both
the value and the state after evaluation. We define a weakest precondition for a
number n and assertion B, with respect to an expression a € Aexp,, to be a
logical formula W which means “if a successfully evaluates, then its value is n
and the final state satisfies B.” More formally we have o |2 W iff

Alalo = (n,0') implies (I(i) =n & ¢’ ! B), for all n € Num, ¢’ € .

We can define Assn’s W, (a, i, B) expressing weakest preconditions for Aexp,’s
and likewise Assn’s W,(c, B) for commands (and similarly for Bexp,’s, which
we omit) by structural induction simultaneously on expressions and commands.

For example, some cases in the definition of the formulas W;(a, 7, B) and W;(c, B) €

Assn are:
Wr(n,i,B) == (n=4{AB
W,.(al +a2,i,B) = 3i1.3i2.(i: i +i2)/\W,.(al,il,(W,.(ag,ig,B)))
where #; and i3 are “fresh.”
~~~~~ W.(skip,B) == B

Problem 4 [25 points]. Supply definitions for the following cases, assuming
by structural induction the existence of Assn’s W,(...) for subexpressions and
subcommands:

Problem 4(a) [5 points]. W,(X,i, B)
Solution: i = X A B

Problem 4(b) [10 points]. W,(cresultisa, i, B)
Solution: W,(c, W,(a, i, B))

Problem 4(c) [10 points]. W,(X := a, B)

Hint: A straightforward version is of the form Qi.W,(a,i, B[-/-]), where Q is
one of V or 3, and of course the dots need to be filled in.

Solution: 3i.W,(a,1, B[i/X]), where ¢ is “fresh.”
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Problem 5 [20 points]. In IMP,, all of Hoare logic is essentially embodied
in the assignment axiom because ¢ and X := cresultis X are equivalent com-
mands. So we content ourselves with defining a Hoare logic just for IMP,
assignment statements.

We observed in the previous problem that for any IMP, command ¢ and B €
Assn, there is a formula W, (c, B) € Assn which is a weakest precondition.
(The present problem does not depend on the correctness of your answer to the
Problem 4(c).) The provability relation, |, of the logic is determined by the
following two rules:

Rule for assignments:
{Wi(X :=a,B)}X :=a{B}
Rule of consequence:

(A A) {4)e(B) k(B =B)
[A)(B)

Show that F, is complete for partial correctness assertions about assignments.
In other words, show that

= {A}X :=a{B} implies +.{A}X :=a{B}.

Hint: You may use the fact that the assertion A = W, (¢, B) is equivalent to
the partial correctness assertion {A}c{B}.

Solution: By the assignment rule:

Fr{W,(X :=a, B)}X = a{B}

By assumption, = {A}X := a{B}. Since {A}X :=a{B}, and A => W, (X :=
a, B) are equivalent, it is also the case that | A = W, (X := a, B). Obviously,
= B = B, so by the rule of consequence (with ¢ := X := ¢, A" := W, (X =
a, B), and B’ ::= B):

F-{A}X := a{B}
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| Problem Set 8

Reading assignment. Winskel Chapter 8-9.

Due: 6 December 1991.

Instructions. Throughout this problem set we use the function #(z) to be the
function which gives us the “Godel-number” of 2. Note, we are not assuming
that there is some universal scheme for Godel-numbering all things which we
might wish to Gédel-number. Rather, we will use # in a variety of contexts,
each of which might be Godel-numbering different things. In any case, the
intended meaning for # will either be more clearly spelled out, or will not be
relevant.

Problem 1. In this problem we consider a new kind of formula, which we
call Bform (to stand for boolean formula). The set of Bform’s is built up
inductively out of a collection of boolean variables, and the boolean connectives:
-, A, V. Wewilllet P, P, P»,Q,...range over Bform’s and we let p, p1,p2,9,...
range over boolean variables. Since Bform’s don’t have Loc’s or IntVar’s
contained within them, states and our old notion of I’s will not be relevant
to the semantics of Bform’s. Instead, we will use Boolean Inierpretations,
J : boolean variables — {true, false}.

We wish to have a collection of equations between Bform’s. But first, we
define: Bf[[] : boolean interpretations — {true, false}, we do so by a structural
induction. Specifically:

Bffpld = J(»)
ZU R e vt
BflpApl = {;;;;2 if Bffp]J = true and Bf[p} = true
Bitpves = | tre /Pl = true or B/l = true

Our goal is to talk about equalities of the form P, = P,, where P;, P, € Bform.
Our semantics for such equations is given by:

JEP =P, iff Bf[Pi)J =Bf[P}
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We say the equation P, = P, is valid, written P, = P, iff J | P, = P, for
all J.

We now have a semantics for equations between Bform’s, but we would also
like to develop a logic (F) for syntactically proving equalities between Bform’s.
 will have the axiom of reflexivity, and the usual rules for equality:

P=P (reflexivity)

P=P
P, =P

P1=P2 P2=P3
Pr=Ps

(symmetry)

(transitivity)

Py =P
A=A
Py = P,
PiopP = P,opP
P1=P2
PopP,=Poph,

(congruence)

for op € {V,A}.

We define the substitution of the Bform @ in for all occurrences of the boolean
variable p, in the Bform R (written R[Q/p]) by an induction on the structure
of R:

plQ/p] = Q
PiQ/p) = pifp#p
(-R)Q/r] = ~-(R[Q/p])
(RiAR2)Q/p) = (Ri[Q/p]) A (R2(Q/p))

(R1V R2)Q/p] = (Ra[Q/p])V (R2(Q/p])

1{(a). Show that - @; = Q2 implies  R[Q;/p] = R[Q2/p] by structural
induction on R and the definition of substitution.

1(b). Every Bform is equal to a formula in full disjunctive normal form, i.e.
a sum (V) of products (A), with all products being products of the same set of
variables or their negation. By a suitable ordering of variables and terms, one
can define a canonical form for Bform’s, such that every P is equal to a unique
P’ in canonical form. State very clearly such a definition of canonical form for
Bform’s.
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1(c). Write down a set of axioms which, when combined with the usual axioms
and rules for equality (written at the beginning of the problem), will have the
property that

FP=Q iff |= P=Q

In addition, briefly explain why your axioms have this property.

Problem 2. The goal of this problem is to prove an important result of Tarski:
that truth is not expressible in Assn. Specifically, we will prove, through an-
other diagonal argument, that there is no assertion T, with FV(T) = {io}
(FV==“free variables,” see p. 84, Winskel) such that, for all n > 0,

T[n/ig] is true iff A, is valid,

where A,, 1s the Assn with Godel-number n.

There is a function p(m, n) such that Ap(m n) = An[m/io] (where = denotes syn-
tactic identity), where p(m, n) can be obtained be composing pairing functions
on its inputs m, and n, and using some additional constants. Thus the relation
“p(n1,n2) = m” is IMP-checkable, and is therefore expressible in Assn.

Assume there was such a T € Assn.

2(a). Let F be an Assn of the form:

Bi(,.“p(io, Zo) = 16” A 31016 = io AT
Argue that F' has the property that, for alln > 0

| Fln/i)] iff | —An[n/i]
2(b). Conclude, by contradiction, that no such T € Assn exists.

Problem 3. In this problem, we will explore another set, £ which is not IMP-
checkable (that is “r.e.” or “recursively enumerable”), and whose complement
18 also not r.e.

The intuition behind £ is the Gédel-numbered version of the problem of whether
two commands halt on exactly the same inputs. Formally,

& ::= {n | Vm.C[[compet(n)]] (5(m)) is defined iff C[[compighe(n)]] (s(m)) is defined}
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3(a). Consider the function p(n), which has the property that:
p(n) = mkpair(#(X, := n; com,), #(while truedo skip))

It should be pretty easy to see that the function p(n) is computable by an IMP
command, in the sense that there is some ¢ € Com that has the effect setting

X1 to p(¢(X1)) when run on state &, and setting a bunch of temporary registers
to 0.

Suppose we had such a command ¢. Furthermore, suppose we had a v € Com
which was a verifier for £.

Justify the statement that “c;v would then be a verifier for the not-self-halt
set,” where

not-self-halt ::= {n | com,, does not halt on input n}

Then conclude that £ is not r.e.

3(b). Prove that the complement of the set £ is not r.e. That is prove that
€ == {n | Im.C[[compen(n)]] (s(m)) is defined iff *C[[compighe(n)]] (5(m)) is undefined}
is not r.e.

Hini: Just make a small change in the argument for 3(a).

Problem 4. Given a set of §, we informally say “S is decidable” to mean
that the set of G3del-numbers of elements of S (GNs) is IMP-decidable. More
formally, we define GNs to be

{#(s)|s€ 5.}

of course, this can only make sense of we have a sensible way to assign Godel-
numbers to the sorts of things which might be in §.

We now think about how to inductively define sets of Num’s, using rules. So
suppose we have a set of rule instances, R, whose premises and conclusions are
Num'’s. Remember what such a rule instance looks like—it is of the form X/y,
where X is the set of premises, and y is the conclusion. We can view an axiom
instance as a special case of a rule instance; an axiom is simply a rule with no
premises (so it looks like 8/y).

There are many different ways to Gédel-number rule instances, and which we
choose does not really matter, for example we could take:

#({z1,...,zx},y) = mkpair(k, mkpair(z, mkpair(zs, - - -mkpair(z, y) - - -)))

where
T1 < T2 - < Tp
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4(a). Suppose we have such a set rules, R, which is IMP-decidable. Show
that the set D, of R-derivations is decidable. That is, show that

GNp = {#(d) | d is an R-derivation}

18 IMP-decidable.

Hint: From the assumed IMP command which can check GNg indicate how to
construct an IMP command deciding GNp.

4(b). Conclude that if R is IMP-decidable then Ig is IMP-checkable.
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Problem Set 8 Solutions

This handout includes some of the best solutions submitted by students for
Problem Set 8. These solutions are a good representation of the level of detail
expected.

In addition there are some notes about Problem 1.

Problem 1 comments. The definition of Bform did not include the propo-
sitional constants true or false. No points were deducted, however, if solutions
inculded the use of these constants. (Note that P A =P behaves exactly like
false and P V —P behaves exactly like true).

Many suggestions for canonical forms did not observe the difficulty that arises
because p2 and (p1 Ap2) V (—p1 A p2) are logically equivalent, and so must have
the same canonical form. The hint suggested that if we are using variables p;
and p; then the canonical form of p; should, in fact be (py A p2) V (—p1 A p2).
There is a way to make p; the canonical form, but it is much, much harder to
get right.

An alternative collection of axioms to make F complete could be:
The distributive laws:

PA(QVR) (PAQ)V(PAR)
PV(QAR) = (PVQ)A(PVR)

The associativity laws:

(PA(QAR)) (PAQ)AR)
(PV(QVR) = ((PVQ)VR)

The commutativity laws:

PVQ = QVP
PAQ = QAP

Demorgan’s laws:
~(PAQ) = (-P)V(-Q)
~(PVQ) = (-P)A(-Q)
The Idempotence laws:

PAP = P
PVP = P
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Behavior of “true” and “false”:

PVv-P = QV(PV-P)
Q = QA(PV-P)
PA-P = QA(PA-P)

Q = QV(PA-P)

e
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Massachusetts Institute of Technology 11 December 1991

Incompleteness and Undecidability

Let s(n) be the state in which X; contains n and all other location s are set to
zero. A set M C Num is IMP-checkable iff there is an IMP command ¢ such
that
neM iff Clc]s(n) #L1.

That is, given input n in location X, with all other locations initially zero,
command ¢ “checks” whether n is in M and stops when its checking procedure
succeeds. The command will continue checking forever (and so never succeed) if
nis not in M. Checkable sets are usually referred to as “recursively enumerable”
(r.e.) sets.

Closely related is the concept of an IMP-decidable set D C Num. D is IMP-
decidable iff there is an IMP command ¢ such that

n €M implies Clc]s(n) = s(1),
and
n¢& M implies Cfc]s(n) = s(0).

That is, given input n, command ¢ tests whether n € M, returning output 1 in
location X if so, and returning output 0 otherwise. It terminates with such an
output for all inputs. Decidable sets are sometimes called “recursive” sets.

If c is a “decider” for M, then
¢c;if X; = 1thenskipelsediverge

is a “checker” for M, where diverge ::= whiletrue doskip. Thus:
Lemma 1. If M is decidable, then M is checkable.

Exercise 1. Show that if M is decidable, so is the complement M of M. (M =
Num-M.)

Exercise 2. Show that if M is checkable, then there is a checker ¢ for M such
that Cfc}s(n) #L implies C[c]s(n) = s(0) for all n € Num. In other words, ¢
only halts after it has “cleaned up all its locations.”

Conversely, if ¢; is a checker for M , and c3 is a checker for M, then by con-
structing a command ¢ which “time-shares” or “dovetails” ¢; and c2, one gets
a decider for M.

In a little more detail, here is how ¢ might be written: Let T, F, S be “fresh”
locations not in Loc(c1) U Loc(cz). Let “Clear;” abbreviate a sequence of as-
signments setting Loc(¢;) — {X1} to 0. Then ¢ might be:
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T:=Xy; % save X, in T
F:=0; % F is a flag
S:=1; % how many steps to try
[while F =0 do
Clear; Xy :=T;

“do ¢; for S steps or until ¢; halts”;
if “c; has halted in < S steps” then

F:=1; % all done
X :=1; % Tisin M
else S:=S5+1; % increase the step counter

if F = 1 then skip else
Clears; X, :=T;
“do cq for S steps or until ¢g halts”;
if “co has halted in < S steps” then

F:.=1; % all done
X, =0; % T is not in M
else S:=S5+1]; % increase the step counter
Clear;; Cleary; T:=0; F :=0; S:=0 % clean up except for X,

Exercise 3. Describe how to transform a command ¢; into one which meets
the description “do ¢; for S steps or until ¢; halts (whichever happens first).”

So we have
Theorem 1. M is decidable iff M and M are checkable.

Let comg, comy, ..., comy, ...be a list of all possible IMP commands. The
details of how numbers are assigned to commands does not matter for the mo-
ment.

Exercise 4. Why is it “obvious” that there are only a countable number of
IMP commands, even before an orderly way to assign “Godel-numbers” to
commands has been developed?

Let H C Num be the “self-halting” set:

H={n>0|C[comu]s(n) #L}.
Theorem 2. H is not IMP-checkable.

Proof: Suppose ¢ was an IMP-command which checked H. That is, for all
n € Num
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(n < 0or Cleom,]s(n) =1) iff neH iff C[c]s(n) #L .

Now ¢ must appear somewhere in the list of commands, say as com743. We have
for all n > 0,

Clcomy]s(n) =L iff Clcomras]s(n) #L .

Now let n = 743 and we have reached a contradiction. B
Corollary 1. Neither H nor H is IMP-decidable.

Notice that H depends on the order in which commands are listed, e.g., they
can be listed with numerous repetitions, as long as every command appears at
least once. Any H obtained by picking such a listing is not IMP-checkable.

Exercise 5. Prove that there are an uncountable number of different sets H
obtainable by varying the order in which commands are listed. (Hint: Don’t
make the false assumption that different listings necessarily yield different H’s.)

Now if we use a sensible assignment of numbers to commands, it will turn out
that H is IMP-checkable.

Let mkpair be a pairing function for pairs of integers. For example,
mkpair(n,m) = 9%8(n) , glnl | 5eg(m)  7lml

will serve, where

_f1 ifn>0,
Sg(")‘{o ifn<o.

The details of the pairing function don’t matter; the important point is that
there are functions “left” and ”right” such that

left (mkpair(n, m))
right (mkpair(n, m))

n,

m,

and moreover there are IMP commands which act like assignment statements
of each of the forms

mkpair(Y, Z),
left(Y), and
right(Y).

X
X
X
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Exercise 6. Let ¢ be a text which is of the form of an IMP command, except
that ¢ contains assignment statements of the form “X :=left(Y).” Describe how
to construct an authentic IMP command ¢ which simulates ¢ up to temporary
locations (cf. Problem Set 6, Problem 3, Handout 27); notation é <emp €.

Exercise 7. Suppose that the definition of Aexp, and hence of IMP, was
modified to allow Aexp’s of the form “mkpair(a;, az),” “left(a)” and “right(a)”
for a, a;, a; themselves modified Aexp’s. Call the resulting language IMP’.
Explain how to translate every ¢/ € Com’ into a ¢ € Com such that ¢ <emp ¢’

To number commands, we begin by numbering Loc, which we assume consists
of Xy, X5, .... We use 0 as the “location-tag” and define

#(X;) = mkloc(i) = mkpair(0, ¢).
We also number numerals by using tag 1:

#(n) = mknum(n) = mkpair(1, n).

We proceed to number Aexp’s by using 2, 3, 4 as tags for sums, differences,
and products, for example:

#(a1 + a2) = mksum(#a,, #a2) = mkpair (2, mkpair(#a1, #a2)) .

We number Bexp’s using tags 5, 6, 7, 8, 9 for <, =, A, V, -, for example:
#(al < (12) = mkleq(#ala #(12) = mkpair (51 mkpair(#al’ #62)) )
#(b1 V ba) = mkor(#b,, #b2) = mkpair (8, mkpair(#by, #b2)) .

Finally, number Com using tags 10-14 for :=, skip, if, sequencing, while,
eg.,

#(ifbthencoelsec;) = mkif(#bd, #co, #c1)
mkpair (12, mkpair (#b, mkpair(#co, #¢1))) .

We now define a specific listing of commands using this numbering:

com. =4 € if ##e =n,
" 7 | skip otherwise.

This definition is ok because #c uniquely determinines c. This method of num-
bering syntactic or finitely structured objects was first used by the great logician
Kurt Godel in the 1930’s. #c is called the Godel number of c.
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Now that commands are numbered, it makes sense to talk about supplying
a command as an “input” to another command, namely, supply its number.
It is nowadays a commonplace idea (although it was a strikingly imaginative
one in the 1930’s) that one can write a “simulator” for IMP commands; in
fact, the simulator itself could be programmed in IMP. That is, we want a
command SIM which, given input mkpair(n;, ns), will give the same output
as comy, running on input n,. Using X; for input and output, the precise
specification is

L if Cfcom,,]s(ns) =L,

CISIM]s(mkpair(n,, n,)) = { s(k) otherwise,

where

k= (Clcompn, }s(n2)) (X1).

Theorem 3 (Universal Machine Theorem). There is an IMP command,
SIM, meeting the above specification for all n;, n, € Num.

Proof: A long programming exercise to construct SIM, and a longer, challeng-
ing exercise to prove it works correctly. B

Corollary 2. The self-halting set H based on the Gédel-numbering-list of com-
mands is IMP-checkable. ‘

Proof: “X; := mkpair(X;, X;); SIM” describes an IMP-checker for H. H

A set M C Num is ezpressible iff there is an A € Assn with no locations and
only one free integer variable 7 such that

E An/i] ff neM.

In other words, the meaning of A is “i is in M.” Once 1 is instantiated with
a number, say 7, the resulting assertion A{7/i] is true or false (depending on
whether 7 € M) independent of the state o or interpretation I used to determine
its truth value.

Theorem 4. Every IMP-checkable set M C Num is expressible.

Proof:

Let ¢ € com be an M checker, and let Y be a list of Loc(c) except for X;. Let
W (c,false) € Assn mean the weakest precondition of false under c. Then A
expresses M where A is:

(=W (c, false)) [0/Y][i/ X,).
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Now suppose Ag, A1, Ao, ..., isa list of all the location-free closed Assn’s. Such
assertions are either true or false independent of the state and interpretation.
We let

Truth={n>0| E 4, }.

Now if there were a theorem proving system which was powerful enough to prove
all (and of course, only) the true Assn’s, then we would expect to be able to
write a program which given input n, searched exhaustively for a proof of A,,
and halted iff it found such a proof. Such a program would thus be a Truth
checker.

Put another way, any system which could reasonably be called a “theorem-
prover” would provide a notion of how to decide if some structured finite
object—usually a finite sequence of Assn’s—was a “proof” of a given asser-
tion. A provability checker would work by exhaustively searching through the
structured finite objects to find a proof object. Thus, in order to be worthy of
the name “theorem-prover,” we insist that the set

Provable={n| + A, }
must be IMP-checkable.

We shall shortly show, however, that Truth is not IMP-checkable. Therefore,
for all theorem-provers, Provable # Truth. At best, Provable ;Ca Truth,
and so, for any theorem-prover whose provable assertions are indeed true, there
must be some true assertion which is not provable. So the theorem-prover
cannot completely prove the true assertions. This is known as Gédel’s (first)
Incompleteness Theorem. In abstract form, it is simply:

Theorem 5. Truth is not checkable.

Now before proving this, we first note that the set Truth depends, like the
self-halting set, on the order in which things are listed. In fact, if we choose a
contrived way of listing all closed Assn’s, we could even ensure that Truth was
decidable (Exercise: contrive such a list Ag, A, ...).

But if we assigned Godel numbers to Assn just as we did for Com, we could
obtain a list of closed, location-free assertions by letting

A = A if #A = n and A is closed and location-free,
" true otherwise.

This numbering has the following important property: for any assertion A with
no locations and a single free integer variable i, let f(n) = #(A[n/i]); then we
claim there is an IMP command which acts like an assignment X := f(Y).

One way to see this is to assume that A is of the form

Jj.j=inA
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where A’ has no free occurrences of i. There is essentially no loss of generality
in this assumption, since any A € Assn is equivalent to an assertion of the form
above. Now we see that

f(n) = mkexistential(#(j), mkand (mkeq (#(j), mknum(n)) , #(A4"))),

so f(n) is definable by an Aexp extended with a “mkpair” operator, and there-
fore by an exercise above we know there is an IMP comand for X := f(Y).

This property is the only fact about the numbering of closed assertions which
we need to use to prove the Incompleteness Theorem, as we now show.

Proof of the Incompleteness Theorem:

Suppose ¢ € Com was a Truth checker. Since the self-halting set H is check-
able, there is an assertion B expressing H. That is, for all n € Num,

neH iff [ B[n/i.
Letting A be —B, we have
neH iff | A[n/i] iff f(n) € Truth

where f(n) is the function describing substitution into A.

But then “X; = f(X;);c” describes an H checker, a contradiction.
Exercise 8. Show that Truth is not checkable either.

Exercise 9. Prove or give counter-examples to the claims that decidable (check-
able, expressible) sets are closed under complement (union, intersection). Note,
we are asking nine questions, not three.

Theorem 6 (Zero-state halting problem). Let
Ho={n>0]|C[com,]s(0) #L}.

Then Hy is not checkable.

Proof: Clearly, com,, halts in state s(n) iff the command X; := n; com, halts

in state s(0).

Let g(n) = #(X1 := n;com,) = mkseq(mkassign(mkloc(1), mknum(n)) , n).

Son € H iff g(n) € Ho. Now if ¢ were an Ho checker, then “X; := g(X1);¢”
decribes an H checker. ®
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Exercise 10. Show that Hy is checkable.

We now examine more closely what it is about Assn’s which makes their truth
(and falsehood) not even checkable, let alone decidable. It might seem that the
source of the problem was the quantifiers “v” and “3” whose checking seems
to require an infinite search in order to complete a check. However, this is a
case where naive intutition is misleading. The “hard part” of Assn’s has more
to do with the interaction between additive and multiplicative properties of
numbers than with quantifiers. In particular, if we let PlusAssn’s be assertions
which do not contain the symbol for multiplication and likewise TimesAssn be
assertions which do not contain the symbols for addition or subtraction, then
validity for PlusAssn’s and also for TimesAssn’s is actually decidable, and
there are logical systems of a familiar kind for proving all the valid PlusAssn’s
and likewise for TimesAssn’s. These facts are not at all obvious, and the long,
ingenious proofs won’t be given in this course.

On the other hand, when we narrow ourselves to Assn’s without quantifiers,
that is Bexp’s, it turns out that validity is still not checkable. This is an
immediate consequence of the undecidability of “Hilbert’s 10*® Problem,” which
is to decide, given a € Aexp, whether a has an integer-vector root. More
precisely, let

Hi={#(a)|lac Aexpand o = a=0forsomeseX}.
Theorem 7 (Matijasevic, 1970). Hg is not decidable.

This is one of the great results of 20'* century Mathematics and Logic. Mati-
jasevic, a Russian, building on earlier work of Americans Davis, Putnam and
Robinson, learned how to “program” with polynomials over the integers and
so obtained this theorem. The proof uses only elementary number theory, but
would take several weeks to present in lecture.

Exercise 11. Explain why H,g is checkable, and so T{};@ not checkable.
Matijasevic actually proved the following general result:

Theorem 8 (Polynomial Programming). Let M be an r.e. set of nonneg-
ative integers. Then there is an a € Aexp such that M is the set of nonnegative
integers in the range of a.

Remember that an a € Aexp can be thought of as describing a polynomial
function on the integers. In particular, the range of a is { Afa}e |[c € £ }.
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Exercise 12. Explain why the undecidability of Hilbert’s 10** Problem follows
directly from the Polynomial Programing Theorem.

We now can conclude that the validity problem for Assn’s of the simple form
“=(a = 0)” is not checkable. Let

ValidNonEq = {# (—(a =0)) | a € Aexp and &= —-(a =0) }.
Corollary 3. ValidNonEq is not checkable.

Proof: #(a) € Hyo iff #(—(a = 0)) € ValidNonEq. So
X, := mkneg (mkeq (X, mknum(0))); ¢

would describe an H 1o checker if ¢ were a ValidNonEq checker. B

On the other hand, an easy, informative example which is both decidable and
even nicely axiomatizable are the valid equations, i.e., Assn’s of the form “a; =

»

as.

We begin by giving the inductive definition of the “provable” equations. We
write F ¢ to indicate that an equation e is provable.

Fa=a (reflexivity)
+ a; = as
p— (symmetry)

Fay=a, Fay;=as

T — (transitivity)

I—a1=a2

Fa,opa=azopa (right COngruence)

Fa; =a;

left
Faopa; =aopa; (left congruence)

- (a1 op a2) op as = a; op (a2 op a3) o
where op € {+,—, x} (associativity)
Fa Opl a2 = asp op’ a;

where op’ € {+, 7} (commutativity)
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Fa+0=a (+-identity)
Faxl=a (x-identity)
Fa—a=0 (additive inverse)
Fa—b=a+((-1)xb) (minus-one)

F ay x (a2 + a3) = (a1 x a2) + (a1 x a3) (distributivity)

F(-n)=(-1)xn (negative numeral)
Fl+1=2
F2+1=3

F34+1=4 (numeral successor)

Theorem 9. a; =a; iff Ea; =as.

Proof:

(=) This direction of the “iff” is called soundness of the proof system. It follows
immediately from the inductive definition of “t,” once we note the familiar facts
that all the rules (including the axioms regarded as rules with no antecedents)
preserve validity.

(<=) This direction is called completeness of the proof system. The axioms and
rules were selected to be sufficient to reduce every expression a to a “canon-
ical form” &. A canonical form is either “0” or a sum-of-distinct-monomials
representation, with each monomial (product of locations) having its locations
occurring in increasing order of subscript, and parenthesized to the left. More-
over, each monomial has a “coefficient” of the form “n” where n is a nonzero
numeral, and these monomials-with-coefficients are added in decreasing order
of degree (i.e., length), in alphabetical order of the monomials for monomials of
the same degree, with the sum associated to the left also. ?
™~
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For example, let a be the Aexp corresponding to
2 ((X3)* = ((X2)* (X3 + 2X4)X3) + X3X4(X3)?)) .
Then & would be described as l

(X2)°X3 + 3(X2)’ X4 ~ (X3)? + 2.

We have described a and @ using the usual mathematical abbreviations in
which parentheses and multiplication symbols are omitted, exponents indicate
repeated products, etc. The canonical form é € Assn would be written formally
as follows:

(((1 % (((X2 x X2) x X2) x X3)))) + (3 x (X2 x X3) x X3) x X))
+((-1) x (X3 x X3)) + (2 x 1).

Note that we regard “1” as a monomial of degree zero.

The idea is that first differences can be eliminated using the (minus-one) axiom.
Then distributivity can be applied repeatedly to remove occurrences of products
over sums. The result is an expression consisting of sums of products of loca-
tions and numbers. The products can be internally sorted using associativity
and commutativity. Identical monomials with different coefficients can then be
combined by distributivity, and a sum of numerical coefficients can be simplified
to a single number using the numerical and identity axioms with associativity
and commutativity. Enough said; we thus have:

Lemma 2. For every a € Aexp, there is a canonical form G € Aexp such that
Fa=a.

We now state the following fact about polynomial functions on the integers.

Fact 1. If 4; and &, are syntactically distinct canonical forms, then Afa;] #

Afa:].
Exercise 13 (optional). Prove the Fact.

Proof: [Completeness] We now can prove completeness. Suppose & ay = aa,
i.e., Afa1] = Afa2]. By the Lemma, I a; = &;, so by soundness,  a; = a; for
i = 1,2. So Afa;:] = Afai] = Afa2] = Alaz]. Then by the Fact above, 4, is
actually syntactically identical to @2, so we have

Fay=a, and Fas;=aq

and by symmetry and transitivity we conclude - a; =a,. B
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No Grades or Quizzes for 6.044)/18.423 will be available until 10AM on De-
cember 23rd. After that time, we will reply to E-mail queries addressed to
6044-staff@theory.lcs.mit. edu. You may also contact David Jones in NE43-
316 (Tech Square} on 253-5936 to find out your grades. Quiz 4 may also be
picked up from David’s office after this time.

Early final grades will not be available anywhere else.
Please detach and keep this sheet for your reference.
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Quiz 4

Instructions. This is a closed book exam; no notes either.

There are four (4) problems. Write all your solutions on this exam sheet in
the spaces provided, including your name on each sheet. Ask for further blank
sheets if you need them. You may assume the results of previous parts in later
parts of problems, so don’t let “getting stuck” on any one part keep you from
proceeding to later parts.

You have 120 minutes, GOOD LUCK!

NAME

I problem | points | score ||

1 (17)
2 | (29)
3 (28)
4 (35)
Total | (100)
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NAME 3

Problem 1 (17 points]. For any sets S, T, let S~ T be the set of all elements
of S which are not elements of T

Problem 1(a) [10 points]. Show that if S and T are decidable subsets of
Num, then S — T is decidable.

Problem 1(b) [7 points]. Give an example of two checkable (r.e.) subsets S
and T of Num such that S — T is not checkable. No explanation is required.
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Problem 2 [20 points]. Let

. def

Divergent = {n > ¢ | [eomn]s(k) =L for all k}.

gf%vi thathivergint 18 not checkable. (Here com,, is the commmand with
odel number n, i i i i )i

loeatione and s(k) is the state with & in location X; and 0 in all other

Hint: [com,)s(n) =L  iff [&:: n; coma]s(k) =L for all k.

Problem 3 [28 points]. An assertion A is satisfiable iff there exists a state
o and interpretation [ such that o =/ A.

Problem 3(a) [10 points]. Let SAT % {#(A) | A is satisfiable}. (Here

#(A) € Num is the Godel number of A € Assn. The assertion 4 need not
necessarily be closed.) Prove that SAT is not checkable.

Hint: Consider closed, location-free assertions.
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Let BSAT = {#(b) | b € Bexp and b is satisfiable}.

Problem 3(b) [10 points]. Explain why BSAT is checkable.

Hint: We don’t expect you to write an IMP program. Just describe in high-level
terms an algorithm to deeide whether or not a Bexp is satisfiable.
Check

Problem 3(c) [8 points]. Prove that BSAT is not decidable.
Hint: Hilbert’s 10" Problem.
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Problem 4 (35 points]. We consider axioms for symmetries (rigid, “in place”
transformations) of an equilateral triangle. For example, given the triangle with
vertices labeled as in Figure 1, we can apply

Transformation “r”: rotate 120° clockwise, obtaining the triangle in Fig-
ure 2;

Transformation “f”: flip about the vertical axis, obtaining the triangle in
Figure 3;

Transformation “/”: leave unchanged, obtaining the triangle in Figure 1 again.

2 3

Figure 1: The original triangle.

2 2 3

Figure 2: The original triangle after performing transformation r, a 120° clock-
wise rotation.

A AN

2

Figure 3: The original triangle after performing transformation f, a flip about
the vertical axis.

Let W be the set of finite sequences (of length at least 1) of the letters r, f, and
[. Elements of W are called words over the alphabet {r, f,{}.
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By interpreting concatenation of letters as composition of permutations, we
can associate with any word, w, a permutation, [w], of {1, 2,3} indicating the
movement of vertices of a triangle. So the basic permutations defined by r and

f are:
[r1(1) 2, [r1(2) 3, [r)(3)
sV L (12 3, 1113)

Note that [{] is simply the identity function. Inductively, let [aw] = [a] o [w]
for a € {f,r,1}. For example, [rfri](z) = r(f(r(I(2)))), so0

Irfrl(1) =1, [rfri)(2) =3, [rfri)(3)=2.
Define “truth”, }=, of a “triangle” word equation as follows:
F(wi=w) iff [wi]=[w]

For example, = rfrl = f.

1.
2.

Problem 4(a) [3 points]. Exhibit w; and w-, such that

# W)Wy = WaW).

Problem 4(b) [7 points]. The “standard” rules for equality are reflexivity,
symmetry, transitivity, and congruence. State these rules for the case of word
equations.
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Problem 4(c) [10 points]. Show that if a sound axiom system is strong enough
to prove any word equal to one of the six “canonical” forms below, then we can
obtain a sound and complete axiom system by adding the standard rules for
equality. The six canonical forms are:

L, r, rr, f, rf, rrf.

Problem 4(d) [15 points]. Consider the proof system for triangle word equa-
tions whose rules are just the standard rules for equality plus the axioms:

rer=ff=l=1 (cycle)
rl=lr=r, fl=If=Ff (identity)
fr=rrf (swap)

Briefly explain why this proof system is sound and complete. Hint: Show how
to prove that an arbitrary word equals one of the six canonical forms of prob-
lem 4(c).
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Quiz 4 Solutions

Instructions. This was a closed book exam; no notes either.

There are four (4) problems. Write all your solutions on this exam sheet in
the spaces provided, including your name on each sheet. Ask for further blank
sheets if you need them. You may assume the results of previous parts in later
parts of problems, so don’t let “getting stuck” on any one part keep you from
proceeding to later parts.

You had 120 minutes, GOOD LUCK!
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Problem 1 [17 points]. For any sets S, T, let S — T be the set of all elements
of S which are not elements of T'.

Problem 1(a) {10 points]. Show that if S and T are decidable subsets of
Num, then S — T is decidable.

Solution A: There are two reasonable solutions to this problem. The first solu-
tion uses the fact that the set of decidable languages is closed under intersection
and complement,

We observe that S — T = SNT. In class we were told that the set of decidable
languages is closed under complement, so if we can show that S and T are
decidable then we are done. By the premis we have S decidable. It is then a
simple task to show that if 7" is decidable then so is T. Specifically, if d is a
decider for 7', then

d;if X; = 0then X; :=lelseX; :=0

is clearly an IMP command which decides T.

Solution B: Let d; be a decider for S and ds be a decider for T', and let T be
a fresh location. Then the following IMP command is a decider for S — T..

To = X1
dy;
ifX; =0
then 75 :=0
else Xy :=Ty;
da;
To = 0;

if X; =0thenX; :=1lelseX; ;=0

We then verbally argue that this does the job...

Problem 1(b) [7 points]. Give an example of two checkable (r.e.) subsets S
and T of Num such that S — T is not checkable. No explanation is required.

Solution: Let S = Num, and T be any set which is checkable, but not de-
cidable, for example T = H. Then Num —7T is simply T = H which is not
checkable.
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Problem 2 [20 points]. Let

Divergent % {n > 0| fcom,ls(k) =L for all k}.

Prove that Divergent is not checkable. (Here com, is the command with
Gédel number n, and s(k) is the state with k in location X; and 0 in all other
locations.)

Hint: [comp]s(n) =L iff [X :=n;com,]s(k) =L for all k.

Solution: Assume ¢ € Com is a checker for Divergent. Then the command:
“X1 := mkseq(mkassign(mkloc(1), mknum(n)), n)”; ¢

will, by the hint, check NOT-SELF-HALT—a contradiction (since the NOT-
SELF-SET is not checkable). Thus our assumption that Divergent was check-
able is incorrect, and so Divergent is not checkable.

Problem 3 [28 points]. An assertion A is satisfiable iff there exists a state
o and interpretation I such that o |=/ A.

Problem 3(a) [10 points]. Let SAT Lt {#(A) | A is satisfiable}. (Here
#(A) € Num is the Gidel number of A € Assn. The assertion A need not
necessarily be closed.) Prove that SAT is not checkable.

Hint: Consider closed, location-free assertions.

The true closed, location-free assertions are not checkable. But the subset S, of
Godel-numbers of assertions which are Godel numbers of closed, location-free
assertions is a decidable set. As a closed, location-free assertion is true iff it is
satisfiable then SAT US = the true closed, location-free assertions.

Suppose SAT were decidable. As S is obviously decidable, and decidable sets
are closed under intersection, then SAT US would be decidable—which it is
not. Thus SAT is not decidable.
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Let BSAT = {#(b) | b € Bexp and b is satisfiable}.

Problem 3(b) [10 points]. Explain why BSAT is checkable.

Hint: We don’t expect you to write an IMP program. Just describe in high-level
terms an algorithm to decide whether or not a Bexp is satisfiable.

Solution: We can evaluate B:

Just check all possible assignments of numbers to X1,Xa,..., X € loc((b))
(there must be a finite number of locations, wlog assume these are them). If B
is satisfiable, one will yeuld true and the algorithm stops. Note: it is possible
to cananically odere the assignments of the locations.

When checking a particular assignment, plug the values of the X;’s into b. (This
is easy to do). Then replace all Aexp’s in b by their value (as the Aexp’s no
longer have locations or integer variables, this is easy to do). We can then replace
all the equalities and inequalities by their appropriate truth values (again this
is easy as they are of the form ny < ns or n; = ns. Finally, we simply have
a boolean combination of true and false which is also easy to evaluate. If
the result is true then B was satisfiable, if it was falgse, we go on to the next
assignment. This process of checking an assignment will always terminate, and
give the right answer.

Problem 3(c) [8 points]. Prove that BSAT is not decidable.
Hint: Hilbert’s 10" Problem.

Solution: Suppose BSAT were decidable. Let d be a decider for BSET. As
satisfiability of polynomial equalities is a special case of BSAT, the following
command would be a decider for Hilbert’s 10" Problem.

“X) := mkeq(X,, mknum(0))”;d

Since there can be no decider for Hilbert’s 10" Problem, we have a contradic-
tion, and so BSAT is not decidable.
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Problem 4 [35 points]. We consider axioms for symmetries (rigid, “in place”
transformations) of an equilateral triangle. For example, given the triangle with
vertices labeled as in Figure 1, we can apply

Transformation “r”: rotate 120° clockwise, obtaining the triangle in Fig-
ure 2;

Transformation “f”: flip about the vertical axis, obtaining the triangle in
Figure 3;

Transformation “!”: leave unchanged, obtaining the triangle in Figure 3 again.

L
2 d 3

Figure 1: The original triangle.

-b
3 1

Figure 2: The original triangle after performing transformation r, a 120° clock-
wise rotation.

3 48 A

Figure 3: The original triangle after performing transformation f, a flip about
the vertical axis.

Let W be the set of finite sequences (of length at least 1) of the letters r, f, and
l. Elements of W are called words over the alphabet {r, f,!}.
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By interpreting concatenation of letters as composition of permutations, we
can associate with any word, w, a permutation, [w], of {1, 2, 3} indicating the
movement of vertices of a triangle. So the basic permutations defined by r and

f are:
[r1(1) 2, [rl(2) 3, [rl(3) L.
71V 1, [52) 3, [113) 2.

Note that [{] is simply the identity function. Inductively, let [ew] = [a] o [w]
for a € {f,r,1}. For example, [rfri](z) = r(f(r(I(z)))), so

Irfrll(1) =1, [rfrl)(2)=38, [rfri(3)=2.
Define “truth”, |=, of a “triangle” word equation as follows:
Ew =w) iff [un]=[w.]

For example, = rfri = f.

Problem 4(a) [3 points]. Exhibit w; and ws, such that

# wiwa = wawsi.

Solution: For example, w; = r and wp = f.

Problem 4(b) [7 points]. The “standard” rules for equality are reflexivity,
symmetry, transitivity, and congruence. State these rules for the case of word
equations.

Solution:
Fw=w (reflexivity)
F w) = wa
Twa=w1 (symmetry)
’_wlzwz "wzzws L
Fw, = ws (transitivity)
F w) = Wwa '
F aw; = aws (left congruence)
where a € {r, f, 1}
F w) = w2 -
Fwia = wea (right congruence)

where a € {r, f,1}
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Problem 4(c) [10 points]. Show that if a sound axiom system is strong enough
to prove any word equal to one of the six “canonical” forms below, then we can
obtain a sound and complete axiom system by adding the standard rules for
equality. The six canonical forms are:

i, r, rr, f, rf, rrf

Solution: Suppose |= w; = ws, i.e., [w;] = [wz]. By the presumption, there
are canonical forms 1; and 1, such that F w; = 1, and F wy = 19,. Since the
system is sound, | w; = w;. [} = [wi] = [w2] = [w]-

In addition, each of the six “canonical” forms have different meanings. So, we
have
|“w1:1f)1 and |“u)2=1f)2

and by symmetry and transitivity, we conclude + w; = w,.

Problem 4(d) [15 points]. Consider the complete proof system for triangle
word equations whose rules are just the standard rules for equality plus the
axioms: '

rer=ff=1ll=1 (“nit)
rl=lr=r, fl=Ilf=Ff (identity)
fr=rrf (swap)

Briefly explain why this proof system is sound and complete. Hint: Show how
to prove that an arbitrary word equals one of the six canonical forms of prob-
lem 4(c).

Solution Assuming the result of Problem 4(c), it should be clear that all we
need to do us show, using the above axoims and the rules for equality, that it
is possible to prove that any triangle world is equal to one of the six canonical
forms.

The following process will halt and reduce an arbitrary word to a canonical
form.

Step 1 Erase all I’s (unless w = I, in which case we are done) This follows from
the identity axioms, plus the rules for equlity.

Step 2 Move all f’s to the right. This is possible from the rules for equality
and the swap axiom. So now we have a word containing only r’s and f’s
with all f’s on the right.

Step 3 Replace rrr (if it occurs) by {. This is possible from the rules for
equality and the unit axiom.
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Step 4 Erase all I’s (unless w =/, in which case we are done)
Step 5 If there is still rrr left in w go to Step 2.

Step 6 Replace ff (if it occurs) by l. This is possible from the rules for equality
and the unit axiom.

Step 7 Erase all I’s (unless w = {, in which case we are done)

Step 8 If there is still ff left in w go to Step 5.

Clearly this will halt, as we are always making the word shorter.

Clearly if it halts it will have f’s to the right of r’s, if there are any s left then
the result is {. If there are r’s left, they all must be adjacent on the left, thus
by Steps 3 to 5, there can be no more than 2 r’s. If there are f’s left they all
must be adjacent on the right, thus by steps 6-8, there can be no more than 1
f. This paragraph now precisely characterizes the canonical forms.
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Grades

Last NFirst NdQuiz1 |Prob0|Prob1|Prob2|Prob1|Prob2|prob1|Prob2|Prob2|Tots
Brown Chris 41 9 3 10 5 4 10 10 8 59
Duda {Ken 66 10 10 10 7 15 8 10 4 74
Fan |Mike 63 10 3 4 4 5 9 9 10| 54
Hasel{Mark 65 10 2 7 8 8 9 9 10/ 63
Hirayg Scott 18 8 1 1 3 1 2 3 7 26
HorniJosh 38| N/A| N/A| N/A| N/A| N/A| N/A;i N/A| N/A 0
JimergWill 24 8 2 1 3 4 0 6 8 32
Koon |Normary, 54 10 10 10 4 15 10 7 3 69
Li Sheung 16 7 2 2! N/A| N/A 2 6 3 22
MartinEliseo 6 8 1| N/A} N/A| N/A| N/A| N/A| N/A 9
Medin{Alex 35 10 2 4 3 14 9 9 10| 61
Moe |David 37 10 10 10, N/A| N/A 9 9 10, 58
NortolJoe 23 10 8 2 6 1 9 1 6 43
Power|Mike 31 9 2 6 N/A| N/A 10 7 10| 44
Purdie/ Denise 30 10 1 3| N/A| N/A 7 6 10| 37
Rauch|Pete 60 10 3 6 6 2 9 10 8 54
Sheld¢Mike 45 10 10 10 7 18/ 10 8 10/ 83
SzafrgJim 54 10 2 1 4 7 9 8 6 47
TaylonLarry 50 10 3 3| N/A{ N/A 5 7 8 36
Wood|Sasha 65 10 2 2 8 20 10 8 7 67
Yoder|Conrad| 41 10 4 4 4 6 10 9 10 57

# Subnn 21 20] 20 19 14 14 19 19 19| 21

High 66 10 10 10 8 20 10 10 10/ 83

Low 6 7 1 1 3 1 0 1 3 0

Median| 41.0} 10.0| 2.5/ 4.0, 4.5/ 6.5/ 9.00 8.0/ 8.0 54.0

Mean | 41.0/ 9.5/ 4.1| 5.1 5.1| 8.6/ 7.7 7.5| 7.8 47.4

St.Dev 17.8/ 0.9 3.4| 3.5/ 1.8/ 6.5/ 3.1] 2.4] 2.4} 21.2

Page 1
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) RECEIVED
| ALBERT R. MEVER

Department of Ocean Engineering

REFER TO.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY » CAMBRIDGE, MASS. 02139 FILE
J. Kim Vandiver Tel: (617)253-4366
Chair of the MIT Faculty FAX: (617) 253-8125
MIT Room 5-222 e-mail: kimv@athena.mit.edu
August 29, 1991
TO: Members of the Faculty
FROM: J. Kim Vandiver, Chair of the Faculty

SUBJECT: Beginning-of-Term and End-of-Term Regulations
Creative Uses of the Final Exam Period
Policy on Evening Exams/Quizzes in Undergraduate Subjects

I am writing to emphasize several important matters that require the attention of each faculty
member teaching a graduate or undergraduate subject this term:

Beginning-of Term Expectati

1. In accordance with the Faculty rules, exercises should, in general, be held between 9 am and
5 pm Monday through Friday. For undergraduate subjects, there can be no required academic
exercises between 5 pm and 7 pm Monday through Friday.

2. Instructors are asked to provide, during the first three weeks of classes, a clear and complete
description of the requirements in each subject, including the due dates for required work, the
schedule of examinations during the term, and the grading criteria and procedures to be used.
Major assignments should be assigned early enough to allow students the opportunity to manage
their time effectively throughout the term.

3. The fact that a final examination will be given in your subject must be announced to your stu-
dents before the end of the third week of the term (September 27). Final examinations are held
during the final examination period following each term and must be scheduled through the Office
of the Registrar. (You should already have received the form for scheduling final exams and re-
turned it to the Registrar.) The final examination scheduled in a subject may be of any length
from one hour to three hours.

For those of you who have not been in the habit of using the final examination period, I encourage
you to consider an alternative use. For example, you might schedule an ordinary one-hour quiz as
if it were a final exam, but allow the full three-hour examination period. This removes the time
pressure as a factor in the exam and frees up one lecture period during the term. Such an exam
need not count more than others during the term or be comprehensive in nature. It must, however,
be scheduled with the Registrar as soon as possible and announced to your class at the beginning of
the term.

4., In accordance with the "Departmental Guidelines Relating to Academic Honesty," it is your
responsibility early in the term to inform students of your expectations regarding permissible
academic conduct. Particular attention should be given to such questions as joint work on home-
work assignments, and the use of prior years' materials in completing problem sets, lab reports,
and other assignments.

(over)



End-of-Term Planning

Each term, a number of subjects come to my attention which have requirements that are in conflict
with the Faculty rules restricting exams and work assignments in subjects at the end of the term.
While usually well-intended, requirements that are in violation of the rules often impose hard-
ships on students, given their overall loads. When violations occur, the Chair of the Faculty has
the responsibility to contact the instructor to rectify the situation. It is usually difficult and
awkward to resolve such situations late in the term in a way that is fair to the students and which
preserves the educational value intended by the instructor.

Since effective planning early in the term can help avoid these problems, I have summarized be-
low the Faculty's End-of-Term Regulations. They apply to both undergraduate and graduate sub-
jects. This term, the last day of classes is Thursday, December 12; Reading Period is December
13-15 (Friday-Sunday), followed by final exams, December 16-20 (Monday-Friday).

1. In a subject with a final exam, no other examination may be given and no assignment may
fall due after Friday, December 6. Of course, regular classes and reading assignments may con-
tinue during the last week of the term (through December 12), and new material presented during
this period may be covered in the final exam. The scheduled time for a final exam cannot be
changed once it has been officially published; inquiries about limited exceptions to this policy
should be directed promptly to the Registrar.

2. In a subject with no final exam, only one of the following may be given during the last week of
classes (December 9-12): either a one-hour quiz may be given during a regularly scheduled class
period or one assignment (term paper, lab report, take-home exam, problem set, oral presentation,
etc.) may fall due. (A quiz of one and one-half hours is allowed, but only if done within a regular
class period.)

3. It is inappropriate for comprehensive examinations (exams covering most of the term's work)
to be given at any time other than during the final exam period.

4. No classes, examinations, or exercises of any kind may be scheduled beyond the end of the last
regularly scheduled class in a subject, except for final exams that have been scheduled through the
Registrar's Office. Any formal reviews of subjects should be held during regular class periods,
but the rule does not exclude the possibility of sessions after the last day of classes at which the in-
structing staff is available to answer questions of students who choose to attend. (The Architecture
design reviews that occur during the final exam period are considered to be equivalent to final
examinations and are scheduled by the Department.)

5. No assignment, of any kind, may be given which falls due after the last regularly scheduled
meeting of the class for that subject. This does not prevent an instructor from giving an extension
to an individual student, but an extension should not need to be given to the majority of the class.

6. Students are entitled to expect that no Faculty member will deviate from these rules except with
prior permission of the CAP for undergraduate subjects and the CGSP for graduate subjects, and
that any such approved exception will be announced early in the term and emphasized appropri-
ately. Having students vote on some deviation from the rules is not an acceptable procedure.

These regulations are intended to improve the quality of education at MIT by balancing student
workloads, thereby reducing end-of-term stress. If there are questions about any of these
provisions, I will be happy to help resolve them.



The following policies are applicable to undergraduate subjects only.

1. An evening exam must be the equivalent of a quiz that could be given in a normal one-hour
class period. The duration of an evening exam may not exceed two hours. An evening exam is
defined as a written exercise (quiz) that is not given in a regular class period and begins after
7:00 pm.

2. During the week that an evening exam is given, a regularly scheduled class hour (lecture or
recitation) shall be cancelled; or, alternatively, no homework shall be assigned for that week. It is
the intent of the Faculty that evening exams be used only to ease the time pressure on students of
one-hour exams given during a regular class period, and not as a means of adding to the number
of class periods in a term.

3. No evening exams or review sessions are to be scheduled on Monday evening, and faculty are
urged to avoid scheduling exams and review sessions on Wednesday evening. There is a need
for times when evening classes and undergraduate seminars can be scheduled free from potential
conflict with evening exams.

4. When possible, evening exams should be scheduled through the Registrar’s Office three weeks
before Registration Day so that dates can be included on students’ Class Schedules for planning
purposes during the Registration process. In any event, faculty must announce the schedule of any
evening exams during the first week of the term.

5. Students who have a conflict between a scheduled evening exam and other scheduled academic
or extracurricular activities will be provided with an exam at an alternate time,

Thank you for your help and best wishes for a successful semester.



Eta Kappa Nu Faculty Sybject Evalyation Form

Please return compieted form to 38-476

This form is intended to help us make our subject evaluations more complete and accurate.
Please return it promptly so that we can include the information in this term's Underground
Guide to Course VI. The first few questions are about whether the course is true to the "official”
description; we appreciate your candid response. Feel free to write more than we have provided
space for on this sheet.

Subject Number: 60-0‘/737/8,7‘p J Date: tyvl.&‘
Lecturer(s): A/ég,—-f /V]é}er TA(8): Aqta, - lent
Recitation instructor(s): o

% T/\,'_g Focm was \C.Hi,,ﬂ out 5/ the TAActro- écq{ After Consltng, . ‘/A/ﬁe,fme;

Is™te subjec description in the MlT‘Buﬂaﬁra&Ur“are"‘"Wﬁ” { have you———_
emphasizod and de-emphasized thus term? Also comment on the balance between application and
theory.

This Class (S abat Afﬁ).ﬂj rigoras Mmathtnaticn| prine. P/'QS to Lomp te ~
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7/ prerequisites for this subject?’ (The e to.be subjects.)
Ageaal Und.el‘ffiﬂ"d|f:} of I¥.063, and a -_F.\m Inc / f} with  lagical  potation,

)f\dlp

3. How much time shouild this subject require? Give weekly class-lab-preparation hours,

- -Z . How hard is this class? Rate the difficulty of the subject on a scale
of 0 to 10 where Ostrivial, S=average MIT, 10=very difficuit. This is not asking how much
time it takes, just how hard it makes the students think. -9 . (Wae're trying to get a feel for
the think/tool ratio here.)

4. On what basis is the grade for the subject determined (for instance, quizzes, problem sets,
labs, panidpaﬂon)? Is there an equation that will suffice for this answer"
u\ Z.Q,S YN Qb,wl we. jA‘f’ - 50-60/5

Pioblom sets  Yo- s0%

~ 5. Please comment on the the teaching philosophy of the course. For instance, are problem sets
and labs intended to reinforce material already taught or to lead students to discover new
resuits? Are quizzes similar to or different from the problem sets in terms of content and
ditficulty? Probiem sets arg desigaed To reinfurce matlonl taughy 1o ltctuscs
bt offea +k¢, dicet !)‘udeaf;r Fu Mi ing ‘oot Aelaly lef? oLt A lectie 0 Cxplos

“57
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6. What recommendations do you have for students taking the class or considering taking the

class? What are students doing right, and what are they doing wrong this term?

I/\ls C/A*. '\cl-.z )f.\l_ll\,f M 8 f-ﬂ‘fS./C, A\/.A\J I?Ci.-'i'\g 1.1\.\;\ | /jlﬂ%;u_’“

.y A
£ tet.s / /51 ulO Slovld e C\-NE f'o LQ, INTRractyes we "\m.rﬁ {aVng(

't e ’ _ :

P ;/U # FF':L’I{ toore ('9‘9-4( ﬁﬂcK Fogm .‘?'f'.g(ln_'f_r ,;lutu;;_, Clnss — Dlt( +(£/ endessr,, |
ad L FoAcE, g . ’ -~

. ALEen LJ T C Pas £ c-é,w,,\c,,.?? UA}, Ay we Core’ LVA/ Ad g/ch,,,,,

L 3 _ v
_ v A &—7 ; 71\44’(’ are g‘udi#.,nj Jﬂfdllp*; oSt /\4"@ {1
R Y T e P Fe
doFfcuin,

7.

Kol rat vao,sc. g
frapu// [Ace Bl et pes ..,w( Al (J\f'd le.ef «J{



%;‘#210,‘ 7

7. Do you have any responses to expected criticism of the subject? Do you have any criticism
of your own?

8. What textbook(s) are used? Please give the authors as well. Are they available anywhere

other than the Coop? _
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9. What changes do you suggest for the next time the class is taught? Will you be teaching the

class again in the future (in particular, the next time it is offered?) _
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10. What facet of the course (if any) do you think could be changed to make the students focus
on understanding the material instead of what grade they receive? Would you be willing to make
such a change(s;? .

-

b

11. If student evaluations arrived on your desk next term, would you pitch them,
distribute them to staff but not read them yourself, read them time permitting
and then distribute them to staff, read them all and then distribute them to staff?

12. Please use this space ﬁor’general comments about the course in general. Add any other
comments which you feel are appropriate. :

Please  See attcched .

13. Wae are also very interested in your comments on the Underground Guide io Course VI and
on this form. How can we make the Guide more helpful to you and this form more helpful to
everyone?

A

Thank you for your cooperation.
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val ion Form
Return compteted form to 38-476 before Spm today

Subject Number: (. 294 3

Today's date: Z Z~vov 9,
Lecturer(s): pAeF GuBCrT MUYIR

Your vyear: 4
Recitation Instructor:

TA(s):  ARTHUR Lo~T

1. Briefly describe the subject. What did you learn? What are the subject's stréng and weak points? Also
comment on the balance between application and theory.
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2. What should be the prerequisites and corequisites for the subject? (They don't have to be subjects.)

3. Rate the difficuity of this subject on a scale of 0 to 10, where O=trivial, 5=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you think!

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. - - <5

The Quality of-thd Teaching 7¢S

5. Comment on the lecturer's teaching. @re you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the leC fively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)
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6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?
: e

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?
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The Structure of the Subject
8. Which of the following are essential to do well on the quizzes? problem sets X labs fecture

< recitations x tutoriais > readimg—— . Comment on the length, difficulty, grading, etc. of the™
quizzes, and compare them to the problem sets and labs.

9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
recitations _ X tutorials ___—reading labs

10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staff?

11. Comment on the @)/elass notes. How could they be improved? Are they useful in learning the

material? X
ateria ! D/p N T VMDG/’-"ANA A WwWILD O il e e >

BUDN AFTER | 1GARNGD ™G A ATERIAC 729 Ly TuRE w2 TYTDMAL, | ipap n
NARD Tl mong @ACH § ABADIME THE Semp emidpidc in i,
s ey
12. Is the class worthwhile? What advice would you give friends planning to take this subject?
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T gPel T A< A LACQUIREAINT . s W AY TAVGH e BEC &e. g
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13.  What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments.

2

14. Did you get enough time to fill out this form? yes no



N i val ion Form
Return compteted form to 38-476 before S5pm today

Subject Number: G . 0Y/¢ 3/19.49237T

Today's date: il }a&;@;
Lecturer(s): Hu))u/ j

Your year: 4/

Recitation Instructor:

TA(s): Rethor lent M‘\ Lourst: (-5

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory.
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2. What should be the prerequisites and corequisites for the subject? (They don't have to be subjects.)

6035, 6.00(, 13.0¢3
3. Rate the difficuity of this subject on a scale of 0 to 10, where O=trivial, S=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you think! _ 7

4. How much time does this subject actually require? Give the standard weekly ciass-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. 3 Q - 9

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being "intuitively obvious?" Also
comment on the lecturer's presentation methods (use of biackboard, transparencies, handouts, demos, etc.)
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6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

N e WS uuy e

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?
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The Structure of the Subject /
8. Which of the following are essential to do, well on the quizzes? problem sets labs ___ lectur
recitations ____ tutorials ____ reading 7>§ Comment on the length, diffiéulty, grading, etc. of the™
quizzes, and compare them to the problem sets and labs.
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9. Comment on the problem sets. |s the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge\zou? What is essential to do the problem sets? lectures
recitations tutorials reading labs

Pm\inm% Sek oy VQ/\)B \or\c%\ KA\OVS \ GJ\A Oomp\\CakA.
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10. What is your opinion of the labs and how can they be improved? Comment on equipment gquality,
availability, accessibility, etc. How helpful is the lab staff?

No )0\\95

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the
material?
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12. Is the class worthwhile? What advice would you give friends planning to take this subject?
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13. What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments.

14. Did you get enough time to fill out this form? yes 7X< no



Eta Kappa Nu Subject Evaluation Form

Return completed form to 38-476 before Spm today

Subject Number: [0(044\;"

Today's date: 22 /-, 7
Lecturer(s): MUBM y
' Your year: 70
Recitation Instructor: —_

Tas):: A Lewt

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory.

c;ﬁmy/wim 5} &W propane - (st c)} Lo T'Q/
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2. What should be the prerequisites and corequisites for the subject? (They don't have to be subjects.)

3. Rate the difficulty of this subject on a scale of 0 to' 10, where Ostrivial, 5=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you think!

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. S . O _ép

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being "intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)
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6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved? '

TA v W*a Cﬂ/‘@‘a . Ne frcs 4o le MW(%-“‘?;F\
No Reetalio, .

7. Comment on your TA's availability and willingness to ahswer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical backgrgund?
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The Structure of the Subject '
hich of the following are essential to do, well on the quizzes? problem sets 72{ labs lecturas
recitations tutoriais _}i reading . Comment on the length, difficulty, grading, etc. of the

q

vizzes, and compare them to the problem set§ and labs.
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9. Comment on the problem sets. Is the material taught before you have to do them? Are they heipfu! in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
recitations tutorials reading labs

D%wa o ch &JQ»Q/W%W‘E: ) waleuad ?(auf LY K/fﬂé@z /aﬂj

10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staft?

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the
material?

Teythort v a clhef ; )

12. Is the class worthwhile? What advice would you give friends planning to take this subject?
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13.  What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments.
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-14. Did you get enough time to fill out this form? yes/< no___ .



a N j lyation Form
Return completed form to 38-476 before Spm today

Subject Number: & (¥4 T /‘54’153

Lecturer(s): {V‘Q\,/Qf"
Recitation Instructor:

TA(s): A "-'(/‘«(,x/ U/ﬂf

Today's date: / Vs

Your year: J~

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory.
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2. What should be the prerequisites and corequisites for the subjéct? (They don't have to be subjects.)

3. Rate the difficulty of this subject on a scale ot 0 to 10, where O=trivial, S=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you think! ___/» .

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. 2 .0 -
fa =)

The Quallty of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being “intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)
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6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?
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The Structure of the Subject / ;

8. ich of the following are essential to do well on the quizzes? problem sets labs __ lectures

v/_ recitations ____ tutorialsy/~__ reading ____. Comment on the length, difficulty, grading, etc. of the
qunzzes and compare them to the problem sets and labs.
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9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
f .

ecitations tutorials reading labs
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10 What is your opmion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staff?

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the
material?
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12. Is the class worthwhile? What advice would you give friends planning to take this subject?

13.  What should have been taught that wasn't? What material shouid be dropped? Use this space for any
general comments.
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14. Did you get enough time to fill out this form? yes no



K a N i | ion Form
Return compteted form to 38-476 before 5pm today

Subject Number: é,O“H J /IB,‘(ZSI

Today's date: ||-22- 9}
Lecturer(s): YV\e\/er |{2v0

Your year: H
Recitation Instructor:

TA(s):

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory.
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2. What shouid be the prerequisites and corequisites for the subject? (They don't have to be subjects.)
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3. Rate the difficulty of this subject on a scale of 0 to 10, where O=trivial, S=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you think! _7

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. >3 .o . 4

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being “intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)
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6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how

can they be improved?

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?
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The Structure of the Subject /
B.ﬁich of the following ar. essential to do well on the quizzes? problem sets _¥ labs ___ lecturds
_V recitations ____ tutorials ____reading ____. Comment on the length, difficulty, grading, etc. of the
quizzes, and compare them to the problem sets and labs.
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9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
recitations tutorials reading labs
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10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staff?

—

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the

material? - /nw.:,)l,\)( Mo lrec(l 0‘¥ol~f "l('UL (.(/}\vu‘é(’,// Lot ﬂ(e“/"t* T lave

—
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12. Is the class worthwhile? What advice would you give friends planning to take this subject?
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13. What should have been taught that wasn't? What material should be dropped? Use this space for any

eneral comments. .

g (7 I kA‘ — Mpff’(,,,{‘u} a épev"q’_ ﬂ;; 5“,9'6‘_7/ .g’k{df Tl

et T oo ek v Mo sy 5, T lave so idon !

14. Did you get enough time to fill out this form? yes ‘/no



N i val ion Form
Return compieted form to 38-476 before Spm today

Subject Number: & OT < . .
) Today's date: |[-22~7)
Lecturer(s): )4‘ “"t87’e(‘
: Your vyear: 3’
Recitation Instructor: ‘

Ta(s): Aotherlent

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory. A C[ags on Yhe lo/j ¢ and Thes Y

a‘]o‘ r)"f? r‘amm“fn,) v 4 g;Mf) 1/& (h‘ﬂﬁra%.'v‘e_ 'Q’\} VC‘&& wq; s €d f‘-9 ff_ -?/\n
al’ZU f €valvdtonsynfase seveql minds of Se mantics ond reasoning
“Gpov ’

p ( ijram S . Th’? 5]""\01*& lqr\;‘/qﬁe ma k.e/s €V8r7 H]’fn:/u, c[@a‘/\ bvf
Jreee PP-I‘PC’“*'O” 5 hat shressed.

2. What should be the prerequisites and corequisites for the subject? (They don't have to be subjects.)
MG’HLemq‘HCQ S of "lfS‘chq 7(/'0;{'

3. Rate the difficulty of this subject on a scale of 0 to 10, where Oatrivial, 5=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you think!

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. _3 - © . &6

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being "intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)

. Lechwe 7 much clearer Then  The readiy 3. frof. MﬁZ‘em '5 willing
CVA\A Cq[}aW& OP m‘lkl! pvelfyane »U"Ae"sgr\o( i [ec‘f*urveg_ Vs gfz
BICLC[’{WQCW\C[ 13 yOOCI/‘ Per ‘/Lﬂps +00 man?, [ony f)rog{s'jr

6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background? «7-/4 05 avq{[awf_ mn ésl ©-maq, !

Lhich s Canvenfen‘}*,TA was cafabl& ot y,“v{/gy entire  Jeevl)
bzc l?imS’e,(“F ! He. Qw@dy lknowg 7"%7 sfvlc)e mside a/\d gt !
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The Structure of the Subject
8. Which of the following are essential to do well on the quizzes? problem sets __ labs __ lectured™
____recitations ____ tutorials ____ reading ____. Comment on the length, difficulty, grading, etc. of the
quizzes, and compare them to the problem sets and labs.

9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
recitations tutoriais reading labs

10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staff?

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the
material?

12. Is the class worthwhile? What advice would you give friends planning to take this subject?

13.  What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments.

14. Did you get enough time to fill out this form? yes no



| a N i | ion_ Form
Return completed form to 38-476 before S5pm today

Subject Number: (.044 T
Today's date: 11/a2

Lecturer(s): Me,\‘e,(‘
Your vyear: 4
Recitation Instructor:

TA(s): Arthor e

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory.

2. What should be the prerequisites and corequisites for the subject? (They don't have to be subjects.)

Pre(‘ea‘ . \?.Ob_} ) love. for Im‘uc:{‘\of'\
3. Rate the difficulty of this subject on a scale of 0 to 10, where Os=trivial, S=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you thinki _q .

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. 2 0 . &

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being "intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demeos, etc.)

The lectners ave oCten 3{,,0\(35\‘& o o Yhe resdin, . More e_xa\w\p‘t
pvmble.ms W Yeckare wpAd be_ l’k,(pﬁ/\ Me\,e,(‘ alwety < T)Oes 10 mnies
Overtime 1 levteres yalsy, We pever gt ot unkl 205 The [ectues are
ﬁcv\emil\‘ well orjamveol and e/kﬂf‘, +l«nuj‘q (exce gt deviry He lent prin Jtes)

6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

/‘/o rec vt

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?

A('H"-u(‘ fs ven o\va.\‘q‘o"&' 5’-WA LY V‘er-( ‘Oa{*sen‘f W) a‘:w‘.\-/ﬂ--nv\\] 7W\7lf943_
He <o to lnow at oot o5 wuch oy -;at_,ngcr. The qUaz reviews

he Wolds  aee ﬂfﬁoﬂ+.



8. hich of the following are essential to do well on the quizzes? problem sets labs lectures”
recitations tutorials reading . Comment on the length, difficulty, grading, etc. of the
quizzes, and compare them 1o the problem sets and labs.

TL)Q qv\zvﬂS e, lOV'\‘fj) ]ﬂu+ Fé\'\f‘ Tt"e/ A€ udeHY ﬂM\!ﬂf‘ "‘G‘H/\O, Y?(’o b)‘-‘.‘,\m

The Structure of the Subject ,

s, ﬂe“( e al¢p j\(‘CAClCJ very ‘pwm},}_}{\' —a c"ffm\"'@- If'}!"SL

9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they chailenge yod? What is essential to do the problem sets? lectures
i/ recitations tutoriais reading _ labs

1_C \(.ACJ' 0"(}1‘\»1&' c’lc ‘{'V‘Q_ P(Dbieh/‘ 6@5\“5 ) YOKJ/(‘Q' l’bSeO(\ TL\Q\I'I’Q (‘:ﬂd( y hqu(J
\)J\ IF‘ \ev*ev&bu_lkl Flgu(t 'H‘em nX J\,ou‘ W \at.. WA ﬁood si"qﬁ [0/‘ ‘H/-Q
Feds, |

10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staff?

No lala

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the
material?

TL\@,_ y\g"_'c; Afe. ‘Jst_‘pd“}b(/'\/ '\'C—friu&_ QLOIJ"' M'@mmc"s‘

12. Is the class worthwhile? What advice would you give friends planning to take this subject?

13.  What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments.

14. Did you get enough time to fill out this form? yes _\V no__ .



a N i val ioh _Form
Return completed form to 38-476 before S5pm today

Subject Number: £ CY\Y J

Lecturer(s): MZYE 3

Recitation Iinstructor: —

Today's date: '{/22/1

Your year: ‘97
| N)7 conise . 63
TA(s): A' LenT

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory.

/{noﬁf’\a‘ borc‘%f math c)a;; regalrcc{ gol‘ <.S,

2.. What shou/ld be the prerequisites and corequisites for the subiéct? (They don't have to be subjects.)

None |
3. Rate the difficulty of this subject on a scale of 0 to 10, where Ostrivial, 5saverage MIT, 10=painfu!.
This is not asking how much time it takes, just how hard it makes you think!

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. 3 0O . 2

, The Quaiity of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syliabus? Does the lecturer assume too much as being "intuitively obvious?" Also
comment on the lecturer’s presentation methods (use of blackboard, transparencies, handouts, demos, etc.)

Lockucer i (()?mc‘l . Bthaugh  he &5 has o
é’@hc{@nc o ‘o 2" ce . his train g‘f th oug’/ﬂ{ Frof  nevet
SL”‘{ C{ - often very con mrc'ng.

6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

/—\.

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?

T/q DS a\/@()a}.\)e arw( W(;)/{”g to f"e)f .

Nog {utoffa\‘j , bm{- FOVLC S@s(0ns gt e he‘ﬁf"‘)

k(/f‘, {7@ Sepms o koo ey the fukéfct “*f')/



The Structure of the Subject
8. Which of the following are essential to do well on the quizzes? problem sets 79 labs —__ lectures”
a ltt'e recitations — _ tutorials —— reading 4¢5_. Comment on the length, difficulty, grading, etc. of the
quizzes, and compare them to the problem sets and labs. -

\ 4 ot o )L + not  Zoo many  of
?{o N g >e($ LIePEe fome\kf"\f} C{L\’\‘\"]({v cn, 4 é"‘ too [Oﬂg- 4

&Alﬁe; e fé"\f@c{ N R O long or hard - fes ted yo-r acteal

ok"\ OLJ)@c e .

9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
recitations tutorials reading labs

YE’)’ m3£€_r(‘_d) \’S f&,g/:;( ng)re }W&/\// ?Zo;/ f}-::; a1 c(la[(c‘/gj (:/157’,

No, the, are nd csontial (G )earntnf the materdal
T e

10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staft?

—

11. Comment on the textbook(s)/class notes. How couid they be improved? Are they useful in learning the
material? )
(ot

gavk s © i/\('S}‘\(?C{ anc( need)’ Cfg((_%(’\g , éuﬁ LLL JS
vet ; Le){{b :;Dr Zeapnimg ‘C%ﬁ coufse.

12. |s the class worthwhile? What advice wouid you give friends planning to take this subject?
F/Q wch{,«{ f:kg f/ais cZas; L'f ¢ C{Cdn’f have ‘o,

13. What shouid have been taught that wasn't? What material should be dropped? Use this space for any
general commaents.

éemr;) cormmert :f,}:is was ’oosft\b)j e best organized amf’
EJM;I\’\:S é(‘_’ l’@d 6265 { Cve 4% beeﬁ A

14. Did you get enough time to fill out this form? yes >< no .



a N i | ion Form
Return completed form to 38-476 before 5pm today

Subject Number: (o.oHHT

Today's date: el
Lecturer(s): MNaeyer, A bt

Your year: <
Recitation Instructor: |

TA(s): JASR N o lew¥

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory. <,
e YU madlBuns !’V = !
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Y el werld . T pw Xnow ~dueden (A 3V Plavds,
2. What should be the prerequisites and corequisites for the subject? (They don't have to be subjects.)

I$.0@Y  an~ck %000\ ngmnd A ‘amafs,

3. Rate the difficuity of this subject on a scale of 0 to 10, where Os=trivial, S=average MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you thinkl _] . s.ch o '¢ X

veally ot Wlalrce
4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. _ % -~ O - (I

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being “intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)

e \adkres \M\g wundor Staadh. Yo CryeRC rr Ywad Way
Cr\/?\;\( (Xamoh& Howerow, S LWhuren deesn + alworny Ceme

X s
Ry pegered  andh oy can walic oud of (ks witn alig ?

6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

No FQ,C\'&.L'

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?
: o~ wWho ey Towy ¥
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The Structure of the Subject
8. Which of the following are essential to do well on the quizzes? problem sets X IabsX lecturds
recitations tutorials ‘zn reading . Comment on the length, difficulty, grading, etc. of the
quizzes, and compare them to the problem sets and labs. a

Ta quiw ‘Ore C«"\Ak( reQre;e\Jrf—«hw.
.o N\2

qxw\pw ik ot nc)'& ‘)r\(p\caﬂx( V‘f‘&\“}: O(Ef\f\cvx"“ A QO/
Zw\ ondarSnd e . odleway (¢ mht i d hews s
9. Com

Cre gro
ent on the problem sets. Is the material taught before you have to do them? Are they h£pfu| in
learning the subject matter? Do they chalienge you? What is essential to do the problem sets? lectures
recitations __ X tutorials X reading labs

10. What iS your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staff?

YIS

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the

Ty e Ghoblsei)  are gl tocly out
w\/ o8 %Q C(\/PH.Q ‘tU re&d‘\l(’ \/UJL C(C»V;‘{' a vl
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12. Is the class worthwhile? What advice would you give friends planning to take this subject?
O eux T wanald A & T Jv\}l-— 4. ~y
Oun @ hjw* o s <« Mywrtmq\‘r'.

13. What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments. .

Tle \octaces, Y\ vwaed to oo ij‘“ﬁ"'
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14, Did you get enough time to fill out this form? yes L no .



| ion Form
Return completed form to 38-476 before 5pm today

Subject Number: (g O 44’

Today's date: ///Z
Lecturer(s): MC\{Q'/

Your year: 4

6-3

e as ]l 1/ -
Recitation Instructor: /v“’rf L.cu
TA(s):

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Aiso
comment on the balance between application and theory.

‘/gf,u.«w }ww “o 'Drov'f_ an 0VCV‘W¢/M:-«5 Qv = = 07[
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2. What should be the prerequisites and corequisites for the subject° (They don't have to be subjects )
21 lo+ of Hooveelisul wnesl o Lf'e“: V Lt aw. *'H\._ al’ ”f‘b “"ZI/C( N

3. Rate the difficulty of this subject on a scale of 0 to 10, where O=trivial, 5-average MIT, 10= palnful
This is not asking how much time it takes, just how hard it makes you think! __ <

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. 3 .o -9

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Zoes the
lecturer follow a syllabus? Does the lecturer assume too much as being "intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)

Lgchrﬂ/ d)fj ?OOJ /Ob U{/t/f. gOu[c.( Aém/ﬂ‘— {féw\ mosre
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6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?
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The Structure of the Subject -
n the quizzes? problem sets / labs lectures™
Comment on the length, difficulty, grading, etc. of the

A\
8. udh of the following are essential to do well
ecNatlons tutorials reading
quizzes, and compare them to the pre problem sets and labs.
(jZ Ui a ES  pEE DTF T gor T iee0do 2lE i Tl L
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| = fles

v
Is the material taught before you have to do them? Are they helpful in

LECH R e Y

9. Comment on the probiem sets.
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
BESUEEN

v~ recitations tutoriais reading labs
henrnd . { (/\ew ‘e gk Govs  Cio

do JVDO nev ek .i'ax_‘“’f- va/k ) be o e less C.‘ZI\Q\II:LQMT;.A
l .#Ln_ Mo e L(. //#M/ 74) 3’,4('\ Q Sa[- Lacéq/‘avué , (',S‘{“T’:Of‘aikj

Q. A o ¢ )
10. What is your opinion of the labs and how can they be improved? Comment on equipment quality
How helpful is the lab staff?

availability, accessibility, etc.

Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the

MATY THEIRY Cocns T,

11.
material?
| xR 15 Ok R A
17 Cevetd SI¥nl B Fevl e s ELAT D
A Coirie BETRER L rpcrrns Cest T WD ool
12. Is the class worthwhile? What advice wouid you give friends planning to take this subject?
g Don'T S&&E AN - S Tud TR T L Lol Sum e
koo, ¢ THE KLNawCeDeE [OER Trrr UASIC fATH (ogrcy M MT o =
13. What should have been taught that wasn't? What material should be dropped? Use this space for any
9

general comments.

3
e

14. Did you get enough time to fill out this form? yes X_no



a N i valyation Form
Return completed form to 38-476 before Spm today

Subject Number: /¥l IRHLRT
j A

Lecturer(s):])rof mbj@

Recitation Instructor:

TA(s): Arthor Lent

1. Briefly describe the subject. What did you learn? What are the subject’'s strong and weak points? Also
comment on the balance between application and theory.

"’Orm\ 6&//641(/\‘(_5 O; ,PIG Tomm. &GRS, mtﬁﬁ“ Q. ‘VEQIQJ' CM JZL7L
wih wvaljalle appg o of\é ] % 3

Today's date:f;/Zg/Cf/

Your year: Q?Z

Corse (3

2. What should be the prerequisites and corequisites for the subject? (They don't have to be subjects.)

3. Rate the difficulty of this subject on a scale of 0 to 10, where Ostrivial, Ssaverage MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you think! _ 4 .

4. How much time does this subject actually require? Give the standard weekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. 3. 0 - 15

The Quality of the Teaching
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being “intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)

Lectured Was proks \‘j Wj 300&‘ ‘HW(T\S§ 30‘} 1o "”‘}'f"‘:ao_‘(;"‘f\j ‘FN ne

6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
atiend them? Does your TA have enough techmcal background?

TR 5 ene of Hie best Tie hed ny 4 oyeans. Krows ewgﬁi«\ﬁc\
. No dutorials, TA ave\akle Yr extra kelp )



The Structure of the Subject
8. /Which of the following are essential to do well on the quizzes? problem sets % labs lecturés

: recitations tutorials reading . Comment on the length, difficuity, grading, etc. of the
" Quizzes, and compare them to the problem sets and labs.

A Uzzes Wee bour, 00 ﬂm‘h& &\J\,B‘ Qe 3 vag IOIS\ kot ampig,

W QS G VA (extrg 1:0S), Probles sets “oce diFficlH.

9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
recitations tutorials reading labs

Prod ek a1 voy vl cyard

10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibillty, etc. How helpful is the lab staff?

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the

material? {{XMK wWas @ dl‘q]u cf‘ oA on?oU u‘:s)\{co 5064\/ E(Cf‘ Lu[’ rjo:J-L

12. 1Is the class worthwhile? What advice woulid you give friends planning to take this subject?

j:‘\: Lsa) \_)a;\“f 4o \Qar/\ *}1\‘5 ﬁ’)’u‘FF, ‘H\;ﬁ 1< M‘}'@ 6&47 ,47,

13. What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments.

14. Did you get enough time to fill out this form? yes X ne .



The Structure of the Subject
8. Which of the following are essential to do well.on the quizzes? problem sets _&abs —_ lectures
_____ recitations _____ tutorials reading . Comment on the length, difficulty, grading, etc. of the
quizzes, and compare them to the problem sets and labs.

9. Comment on the problem sets. Is the material taught before you have to do them? Are they helpful in
learning the subject matter? Do they challenge you? What is essential to do the problem sets? lectures
v/ recitations ____ tutorials ____ reading labs

10. What is your opinion of the labs and how can they be improved? Comment on equipment quality,
availability, accessibility, etc. How helpful is the lab staff?

11. Comment on the textbook(s)/class notes. How could they be improved? Are they useful in learning the
material?

12. Is the class worthwhile? What advice would you give friends planning to take this subject?

7

13. What should have been taught that wasn't? What material should be dropped? Use this space for any
general comments. ‘

14. Did you get enough time to fill out this form? yes ___ no

.
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a N i val ion Form
Return completed form to 38-476 before Spm today

Subject Number: é()('[q
Today's date: -

Lecturer(s):
Your year: 4/
Recitation Instructor:

TA(s):

1. Briefly describe the subject. What did you learn? What are the subject's strong and weak points? Also
comment on the balance between application and theory.

2.. What shouid be the prerequ_ié.itfs d corequisites for the subject? (They don't have to be subjects.)

v e ik’

3. Rate thé difficulty of this subject on a scaiedf 0 to 10, where O=trivial, Ssaverage MIT, 10=painful.
This is not asking how much time it takes, just how hard it makes you thinkl
4. How much time does this subject actually require? Give the standard ekly class-lab-prep hours.
Remember that a 6-hour lab every other week averages to 3 lab hours. :g - - .

The Quality of the Teaching —
5. Comment on the lecturer's teaching. Are you learning more in lecture than from the reading? Does the
lecturer follow a syllabus? Does the lecturer assume too much as being "intuitively obvious?" Also
comment on the lecturer's presentation methods (use of blackboard, transparencies, handouts, demos, etc.)

TEXT — LECTORES \1,«2,%) NN/

6. Comment on the recitation instructor's teaching. How do the recitations benefit you? If they don't, how
can they be improved?

7. Comment on your TA's availability and willingness to answer questions. Are there tutorials, and do you
attend them? Does your TA have enough technical background?

Goad TA |
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Solutions to Diagnostic Quiz

Problem 1. Describe the function which is the composition of the integer
successor function, i.e., successor(z) = z + 1, with itself. Answer: z + 2.

Problem 2. How many strings of length four are there over the alphabet
{a,b,c}? Answer: 3 % 3+3*3 = 81; for each position there are three possible
letters, and there are 4 possible positions.

Problem 3. Give an example of an uncountable set. Examples: the real
numbers, and the real numbers between 0 and 1.

Problem 4. Which is a synonym for “injective”? Answer: (e) one-to-one.

What sets have the property that there is no injection from the set into itself?
Answer: NONE. The identify function from a set onto itself is always well-
defined, and always an injection.

What sets have the property that there is no injection from the set into a proper
subset of itself? Answer: Precisely the finite sets.

Problem 5. Define a binary relation, <, between sets A, B as follows:
A<XB if (3f:A— B)(fis injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a counterexample.

(a) reflexive. Answer: YES. The identity from A to A always exists and is
always injective.

(b) symmetric. Answer: NO. Consider A = {1} and B = {1,2}. A < B but
B £ A.

(c) transitive. Answer: YES. If f, is an injection from A to B and f; is an
injection from B to C then f5 o fi is an injection from A to C.

(d) equivalence relation. Answer: NO. A relation is an equivalence relation iff
it is reflexive, symmetric and transitive. < is not symmetric.

(e) partial order. Answer: No. A relation is a partial order iff it is reflexive,
transitive, and anti-symmetric, i.e., if A is related to B and B is related
to A then A = B. If we consider the case of A = {1,2} and B = {3,4},
then A < B and B < A, but A # B.



6.044J/18.423J Handout 3: Solutions to Diagnostic Quiz

Problem 6. Describe a propositional, i.e., Boolean, connective which is not
commutative. Answer: Implies (D) is a propositional connective which is not
commutative. (8 of the 16 propositional connectives are not commutative).

Problem 7. Two Boolean formulas, Fi(zi,...,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables

Ty,...

(a)

(b)

()

, Tn-

Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables. Example: z; D z3, T{ V22 and T7 V z2 V 22 are true for all
assignments ezcept r; = true and z; = false, in which case all are false.

Explain why “equivalence” is actually an equivalence relation on formulas.
Answer: Because it is reflexive (obviously), symmetric (if F agrees with F}
on all input values, then the opposite must also be the case), and transitive
(if Fy agrees with F, on-all inputs values, and F, agrees with F3 on all
input values, then F; agrees with F3 on all input values), by definition the
relation “equivalence” is an equivalence relation on formulas.

Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z;,...,z,. How many? Answer: For n
variables there are exactly 2" different 0-1 assignments to the variables.
For each assignment to the variables there are two possible truth values
to yield. Consequently there can be at most only 22" different equivalence
classes. Why? By the pigeonhole principle if there were more than this 22"
equivalence classes then at least two of them would have to have the same
input/output behavior, in which case they would be the same equivalence
classes, so there can be at most 22" distinct equivalence classes.
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6.044 Diagnostic Quiz

Author: Ken Duda
Date: 9/11 4:30 pm

Problem 1

f(f(w))Z(w+1)+1:w_'+é

Problem 2

Problem 3

The real numbel, R, are not countable.

Problen 4

Injections are one-to-one (e).
No ¢ets. There exists at least one injection from any set onto itself, namely, Id, or any other permutation.

Al'l>sgits. There is no way to have an injection from a larger set to a smaller set.

Problem 5

a— ré%xive: yes, A < A

b — sym'{netric: no. A={1}AB={2,3} 2 (A<B)A(B #£A4)
c — traJsitive: yes, AXBAB<C— A<C

d — eqvéralence relation: no, not symmetric.

e — partial order: maybe. It does “order” sets according to their cardinality; A < B — g
14l € \B)

Problem 6

< is boolean and doesn’t commute; is it a connective?

‘V\V\M)(J T\b+‘ bbo‘twh ‘ 1



Problem 7

a— F1(CL,

b)
Fa(a,b) b+a
Fy(a,b) :@mz Y e

b — Let = denote functional equivalence. It is clearly reflexive (every F = F). It is symmetric; if
F5, then for every combination of z;:

Hzsy..)) = fa(ms, .. )
folziy. . ) = fi(zsy. . )
f2=fi

o~

\ . - . . .
By the same reasoning, = is transitive and is thus an equivalence relation.

B\J—- There are only as many equivalence classes as non-equivalent functions. Consider a function of n
variables, each of which can take on v values, into a range of r values. There are only v™ distinct input
combinations, each of which can result in only one of » outputs. Therefore, there are

207)
total possible functions; in this case, where v = 2 and r = 2, the number of distinct functions (equivalence

classes) is

27"
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6.044] /18.423]: Computability, Programming, and Logic Handout 2
Massachusetts Institute of Technology September 11, 1989

Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it. Take it sometime after class, and return it to the TA on Friday, September
13. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet. :

Problem 1. Describe the function which is the composition of the integer
suc::7sor function, i.e., successor(z) = z + 1, with itself.

Successor(Suecessor (<)) = &+ )+
=Xt
Problem 2. How many strings of length four are there over the alphabet
{a,b,c}? N
/ 3"&' — 52 l

Problem 3. Give an example of an uncountable set.

/R

Problem 4. Which is a synonym for “injective”?

(b) onto

/ (¢) mono
| (d) isomorphism
(e) one-to-one (’33‘"’” Hoe )

(f) one-to-one and onto /

What sets have the property that/tflere is no injection from the set into itself?

What sets have the property that there is no injection from the set into a proper
subset of itself?



2 6.044J/18.423] Handout 2: Diagnostic Quiz

Problem 5. Define a binary relation, <, between sets A, B as follows:
A<XB iff (3f:A— B)(f is injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a countererxample.

\/a) reflexive Yes

) symmetric Ne . #

"

transitive V€<

H{equwalence relation Ao Y becowr i not akl bR e Faes

artial order

roblem 6. Describe a propositional, i.e., Boolean, connective which is not

commutative.
e Dle V= Problem 7. Two Boolean formulas, Fi(zi,...,z,) for i = 1,2, are equivalent
;, T be= iff they yield the same 0-1 truth value for all 0-1 assignments to the variables
z 2N oy Zy,...,Zn.
PO T . (w)/Exhibit three simple, syntactically distinct, but equivalent formulas with
ho (' ':V,':'r'ﬁ'tb\x@ L l'»’\ ] R 4 two Va'ria‘bles’ X\KI } X ! \(2 * ){ R ; X' i’" SR = =
(b) Explain why “equivalence” is actually an equivalence relation on formulas. Cew

@Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z,,...,z,. How many?
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Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it. Take it sometime after class, and return it to the TA on Friday, September
13. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet.

Problem 1. Describe the function which is the composition of the integer
successor function, i.e., successor(z) = = + 1, with itself.

Problem 2. How many strings of length four are there over the alphabet

{a,b,c}?\/BL{

Problem 3. Give an example of an uncountable set.

Problem 4. Which is a synonym for “injective”?

(a) epi

(b) onto

(¢) mono

(d) isomorphism

one-to-one

(f) one-to-one and onto

What sets have the property that there is no injection Trom the set into itself?

What sets have the property that there is no injection from the set into a proper
subset of itself?



2 6.044J/18.423J Handout 2: Diagnostic Quiz

Problem 5. Define a binary relation, <, between sets A, B as follows:
A< B iff (3f:A— B)(f is injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide ‘a countererxample.

reﬁexive

@symmetric

(c) transitive
@ equivalence relation

(e) partial order

Problem 6. Describe a propositional, t.e., Boolean, connective which is not

commutative.

Problem 7. Two Boolean formulas, Fi(zy,...,2,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables
Z1,...4Zn.

(a) Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables.

(b) Explain why “equivalence” is actually an equivalence relation on formulas.

(c) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z,,...,z,. How many?

@ K, NKs
1 ('—‘?(: \/-—17('})

(/)(./\’)63)/\%\



Toer . e qs
Z‘;ﬂ/wi.f\
cte Fad b /Puiey P

6.0441/18.423]: Computability, Programming, and Logic Handout 2 /%, o
Massachusetts Institute of Technology September 11, 1989 £33 oetes,

@ il u)'ﬁj O aedglee, ait e do
Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it. Take it sometime after class, and return it to the TA on Friday, September
13. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet.

Problem 1. Describe the function which is the composition of the integer
successor function, i.e., successor(z) = z + 1, with itself.

Problem 2. How many strings of length four are there over the alphabet
{a,b,¢}? i

o

Problem 3. Give an example of an uncountable set.

n

Ay I . g
A /\;\LJ‘\\ Pl e s Lo

Problem 4. Which is a synonym for “injective”?

(a) epi

(b) onto

(¢) mono

(d) is?{gprphism

(o) one-to-onie,

(f) one-to-one and onto

i

What sets have the property that there is no injection from the set into itself? o~/ Tea

What sets have the property that there is no injection from the set into a proper
subset of itself?
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Problem 5. Define a binary relation, <, between sets A, B as follows:
A=< B iff (3f:A— B)(f is injective).

Which of the following properties does the relation < have? For those properties

it fails, describe some simple sets A, B, ... which provide a countererxample.
o -~

{ (a) teflexive

;"ib%symmetric o

j V(:)\/\Itransitive
(\d) equivalence relation 7~ fo = ol T s

(e) partial order

Problem 6. Describe a propositional, i.e., Boolean, connective which is not
commutative.

a

Problem 7. Two Boolean formulas, Fi(z1,...,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables
Tyy,---yTn. —_—

(a) Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables. SV Q(? ‘ /1 AN oy L. E TN

) i
(b) Explain why “equivalence” is actually an equivalence rélation on formulas.

(c) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z;,...,z,. How many?
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Massachusetts Institute of Technology September 11, 1989

Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it. Take it sometime after class, and return it to the TA on Friday, September
13. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet.

Problem A. Describe the function which is the composition of the integer
successor, function, i.e., successor(z) = ¢ + 1, with itself.

{
S

Problelli/i). How many strings of length four are there over the alphabet
{a,b,c}?\/¥
-

e

{)joblem 3. Give an example of an uncountable set.

&

Frew o ar L s i

Problem 4. Which is a synonym for “injective”?

(a) epi
“Ema

(¢) mono

(d) isomorphism

(e) one-to-one

(f) one-to-one and onto

What sets have the property that there is no injection from the set into itself?

What sets have the property that there is no injection from the set into a proper
subset of itself?
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Problem 5. Define a binary relation, <, between sets A, B as follows:
A=< B iff (3f:A— B)(f is injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a countererxample.

(a) reflexive

(b) symmetric

(c) transitive

{d) equivalence relation

(e) partial order

Problem 6, Descrlbe ap oposm al, i.e., Boolean, connective which is not
commutative. 2 ' . 26

Problem 7. TWO Bdolegar%»;formula.s, Fi(zy,...,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables

T1,..., Tn. | o‘w\y 4 V-~ o

(a) Exhibit three simple, syntactically di nct%«it equivalent formulas with
two variables. o ,
{k { 17 ; , iy -’ﬂ £ i ’ o g i £ w?tf’u"}

(b) Explam why ‘equivalence” is actually an equivalence relatlon on formulas.

(c) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z,,...,z,. How many?
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6.0443/18.423): Computability, Programming, and Logic Handout 2
Massachusetts Institute of Technology September 11, 1989

Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it. Take it sometime after class, and return it to the TA on Friday, September
13. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet.

Problem 1. Describe the function which is the composition of the integer
successor function,\i;f successor(z) = = + 1, with itself.

T SUCLEDSOr @ Suelessor 5(44 = ¥+t
Problem 2. How mzy strings of length four are there over the alphabet

{a,b,e}?
31 - g1

Problem 3. Give an example of an uncountable set.

)Qse{ o grime

Problem 4. Which is a synonym for “injective”?
(a) epi

(¢) !32!\0

(d) idquorphism

(e) one-to-one

(f) one-to-one and onto

What sets have the property that there is no injection from the set into itself?

What sets have the property that there is no injection from the set into a proper
subset of itself?

Z A0 Mins
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Problem 5. Define a binary relation, <, between sets A, B as follows:
A=<B iff (3f:A— B)(f is injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a countererxample.

&) reflexive
(c) transitive

@ equivalence relation

% partial order

Problem 6. Describe a propositional, t.e., Boolean, connective which is not

commutative. .
Y4 é%@pé\’t% : @‘(,"‘V"’\S» =

Problem 7. Two Boolean formulas, Fi(z),...,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables
Z1,-..-,Zn. )

(a) Exhibit three simple, syntactically distinct, but equivalent formulas with

" two variables. M@\ qAVB A»—;-’?G RVA=A

(b) Explain why “equivalence” is actually an equivalence relation on formulas.

(c) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z,,...,z,. How many?
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6.044] /18.423J: Computability, Programming, and Logic Handout 2
Massachusetts Institute of Technology September 11, 1989

Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it. Take it sometime after class, and return it to the TA on Friday, September
13. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet. '

\}Problem 1. Describe the function which is the composition of the integer
successor function, i.e., successor(z) = z + 1, with itself.

’F(‘(\\:" i £ oA{/x>= 7 ;f‘»q'ﬁ’ £ ’1 s\, S '?».

roblem 2. How many strings of length four are there over the alphabet
a,b, c}? 3 il

\}Sroblem 3. Give an example of an uncountable set.
real  roamboess

P
(r\o/h'ﬁ»’ ad Buienbew oo B A }

Problem 4. Which is a synonym for “injective”?

Y g
ETTY A (a) epi . Hog (s o mgeresd Su&fm-:\l)ilz'&;’“‘:ﬂ\ Pobs H =~
D ¥ \\)oﬁ A
N ~ (b) onto
I >~
L& / | (c) mono
£ qu:} Yoﬂ’i’f‘ { (d) isomorphism
X . \( (e) one-to-one
A R
\— «a
7 " (f) one-to-one and onto
2l ¢ dl
J e 2 e 4 oY
- \p . hat sets have the property that there is no injection from the set into itself? Thert o€ nore
5
\_\ yoy What sets have the property that there is no injection from the set into a proper
55 MAapg X subset of itself? VR

poly \Cmg\t e s
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Problem 5. Define a binary relation, <, between sets A, B as follows:

A<B iff (3f: A— B)(f is injective).

Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a countererxample.

\

\(A) reflexive (AL -K
d’) symmetric ' %¢ 'i‘*'l; 3,40z A ok c1=8 BLA| et Al B

\(A) transitive +art- L
'(li) equivalence relation Lol =y
M partial order AW

;Y
¢ ; -, i,
P ro 4 pgaac s, To & )

W/roblem 6. Describe a propositional, i.e., Boolean, connective which is not

commutative. (’f\ A >_<—7.\ vV (yi/\‘m_) ~ F(”yl X\

Problem 7. Two Boolean formulas, Fi(z,,...,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables
Zl,...4&n.

(a) Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables.
(b) Explain why “equivalence” is actually an equivalence relation on formulas.

(c) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z1,...,z,. How many?
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