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Notes on Programming (Part I)

The following notes will serve as the main text for the remainder of the course.
The goal of this final unit will be to work with a language that in some sense
“captures” the essential features of the programming language Scheme and other
applicative functional languages. Our language, called FKS, we claim is the
functional kernel of Scheme. The syntax FKS will be basically that of the
simply-typed A-calculus, with a single base type ¢ which we will take to be the
natural numbers. One of the most important properties of FKS that makes it
possible for us to analyze in this class is that it has NO SIDE EFFECTS.

We will present definitions of the language at several levels. Our first level will
be that of rewrite rules. Rewrite rules, via an immediate reduction relation be-
tween pieces of code, specify how, at a high level, programs can be evaluated. It
will take a program M and in one step reduce it to another program that in some
sense will be closer to what we would like to call the answer. Although rewrite
rules provide a wonderful way of defining a language, the way in which they
work is very far from a reasonable implementation strategy. We will present
an automaton, called a SECD machine, which will reduce the task of interpret-
ing our language to that of basic, well-understood pointer manipulations. This
SECD machine will be very close in spirit to the way in which functional lan-
guages are actually implemented. Bridging the gap between the SECD machine
and the rewrite rules we will present eval a recursive characterization of the
rewrite rules. All of these definitions with respect to a language £ are referred
to as the operational semantics of £. In this case our language will be “FKS”,
and we will provide a definition of the semantics operationally, via rewrite rules.

We will also present a denotational semantics for FKS. The motivation behind
this sort of semantics is the desire to say that the meaning of a piece of code
that computes a certain function is the function which it computes. The goal of
denotational semantics is to develop an interpretation (which we will from now
on call a model) of all of the terms (fragments of code) in the language. Unlike
first order logic, where an interpretation can be any first order structure, we will
limit our consideration of semantic interpretations for FKS to a single model. In
the field of denotational semantics, a model is specified by two entities: a domain
(just like in logic), and a meaning function which maps syntactic elements of
the language into the domain. This meaning function does a job analogous to
that of the interpretation function operating on terms. In logic Z(t) (referred
to as the meaning or denotation of term ¢ in interpretation 7) was an object in

Dz that was implicitly defined by giving the denotations of the constant and
function symbols of the language for which 7 is a model. In devising a model
for FKS, however, we need to explicitly define this meaning function which
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when given a term yields that term’s denotation. The most logical question
to ask at this point is “what good is this model?” The answer is a lot. For
example we will show that if a program M evaluates to a constant ¢ then the
model will assign the same object to both M and to ¢ we will also see that
the converse is true, namely that if M and ¢ have the same denotation then
M will evaluate to ¢. We will then show as a corollary to this that if M and
N have the same denotation, then (not considering time or space issues) these
two pieces of code are completely interchangeable—a very nice property to be
able to state. Wouldn’t it be nice if after you optimize a piece of code in an
already working system you could then prove rigorously that the new code was
functionally equivalent to the old code? This is what denotational semantics
can do for you...

Given this cultural background it is now time to consider the task immediately
at hand. In order to define FKS, we will first define its syntax. We will then
define its semantics operationally by a set of rewrite rules. This combination of
syntax and semantics will fully define the language FKS. We will then present
alternate operational definitions for the semantics of a language with the same
syntax (but not necessarily the same semantics) as FKS. We will then sketch
a proof that the semantics of these alternate definitions coincide with that of
the rewrite rules—thus they define the same language. Finally, we will provide
a denotational definition of a language over that same syntax. We will then
argue that the semantics defined denotationally coincides in a nice way with the
operational semantics.

1 Syntax of FKS

What is a term. The basis of the syntax for FKS is what is called the simply
typed A-calculus. Fragments of code in this framework are referred to as terms.
A term in this framework is analogous to the code that appears between a
balances set of parenthesis in unsugared Scheme, or a constant symbol, or a
non-binding occurrence of a variable.

Example 1. The following is a short fragment of Scheme code:
((lambda (z) (* = z)) 5)

The terms in this program are: 5,z,(x z z),(lambda (z) (* = z)), and
((lambda (z) (* z z)) 5). Note: the z immediately after the lambda is not
really a term. Scheme’s notation is not optimal. Scheme should have been
defined so that code would have been written something like:

((lambda z.(x z z)) 5)
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Types. Unlike Scheme every term in our language will all have an associated
type. The set of types is called Types; we define it inductively as follows:

e ¢ is a type. It will correspond to our notion of the natural numbers.

o If o is a type and T is a type then ¢ —  is a type. It will correspond
to functions which take a single argument of type ¢ and return a single
result of type 7.

Example 2. When writing a type we will let — associate right. Thus o; —
(69 — 03) is the same type as 0; — 03 — 03, which is distinctly different from
(CT] hnd 02) — 03.

The following are some basic functions, and their types.

1. SQUAREY (lambda (z) (* =z z)). SQUARE is of type ¢ — ¢, as it is

a function that takes a natural number as an argument and returns a
natural number as a result.

2.5.5 ié of type :.

3. APP5%f (lambda (foo) (foo 5)). APP5 is of type (¢ — ¢) — ¢. It takes a

a function from natural numbers to natural numbers, and then returns a
natural number. For example (APP5 SQUARE) is 25.

4. PLUSIYE (lambda (foo) (lambda (z) (+1 (foo z)))). PLUSI is of type

(¢ = ¢) = (¢ — ¢). It takes a function from natural numbers to natural
numbers and returns a function from natural numbers to natural numbers.
For example (PLUS1 SQUARE) is a function that returns its argument
squared, plus 1.

Note that this language does not contain any booleans, characters, reals, strings,
lists or other such structures. We claim that this simple type hierarchy with
only the base type ¢ is the core of Scheme.

Notice that our set of types does not include “pair” types. For example the
binary plus operator which we are familiar with from arithmetic takes two ar-
guments, both of type ¢ and returns one value, also of type ¢. So we would
write 2 plus 3 as (+ 2 3), and + has type (¢ x ¢ —)¢. In our framework we will
not have pair types. But, via a process called “currying”, we will show that
there is no loss of generality in not having pair types. Before giving the formal
definition of currying, we will provide as an example a definition of a curried
version of plus (+.) defined in terms of the standard plus:

+. ¥ Ozy((+ 2 )w)))
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So consider the two ways we would now write the expression for 2 plus 3:
curried: ((+. 2) 3)
uncurried: (+ 2 3)

Note that the type of +, is ¢ — ¢ — ¢. Thus (4. 2) is of type « — ¢ and
represents the “plus 2 function”. In general, given an arbitrary function foo of
type ¢ = (061 X ... X 05) — ¢’ we can easily curry it to foo. which works right.
The function foo, will have type 61 — ... — 0, — o'. It is defined from foo
as follows:

foo, def (Az] ... Azl (foo 27t ... z]))

The last comment to be made is that every type o is of the foorm oy — ... —
o, — o' this type will occasionally be abbreviated as ¢ = (a4, ...,0,,0").

Terms. Now that we know what types are, we are ready to define what terms
are. Terms and their types are defined inductively as follows:

e z7 is a term of type sigma. (representing a variable of type o)
e ¢7 is a term of type sigma. (representing a constant of type o)

e (MN) is a term of type 7 if M is a term of type & — 7 and N is a term
of type o.

(cond M N, N») is a term of type ¢« and M, Ni, and N are all terms of
type ¢.

(Az?. M) is a term of type o — 7 if M is a term of type 7.

Note that we are very informal with parenthesis and as with arithmetic we will
define certain conventions that allows most parenthesis to be eliminated. The
conventions are as follows:

o Application associates left. Thus (M N P) is the same as ((M N)P), which
is very different from (M (N P)).

e )s bind out as far as they can (e.g.until the end of the expression or
overridden by a parenthesis). So (A £. M N) is the same as (A z. (M N))
which is distinctly different from ((A z. M)N).

e Never drop the parenthesis that surrounds “cond M Ny Np ”
Thus (cond M N; N,) is correct, and cond M N, N, will only lead to
confusion.
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We will call any term which a constant, variable or A-abstraction a value. A
term of the form (M N) is can be called either a combination or an application.
A term of the form (cond...) is called a conditional.

Aside from presenting the set of constants, and their affiliated types, this com-
pletely defines the syntax of FKS.

Unsugaring Scheme. So terms are either variables, constants, applications
(something of the form (M N)), conditional expressions (something of the form
(cond M N; Nj)), or A-abstractions (something of the from (Az?. M). Applica-
tions can be viewed as function calls, conditional expressions can be viewed as
our only special form, and A-abstraction can be viewed as procedure construc-
tion. Remember from 6.001 that most of the friendly structures in Scheme are
syntactic sugar for other forms.

Example 3. The most prominent case of syntactic sugar is “let”. For example:
(let ((varl ezpl)) ezp)

is syntactic sugar for
((lambda (varl) ezp) expl)

Example 4. Another example of syntactic sugar is “define” (when used to
define a function that is not recursive). For example:

(define (foo arg) body)
is syntactic sugar for:

(define foo (lambda (arg) body))

Considering that FKS does not allow side-effects, and it does not have lists (or
streams or other fancy stuff) this syntax really is almost as expressive as full
fledged Scheme. Two missing elements of the syntax require further justification.
These two problems are as follows: conditionals can only return objects of type
¢, and the lack of “define”. We will argue later on in Example 5 that there is a
straightforward way to program a “higher-type” conditional from the one given
here. On the surface we can argue away “define” by saying that since we have
no side effects then the following:

(define Py B;)
(deﬁne Pz Bz)

(define P, By)
body
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is equivalent to
(let ((P1 Bl) (P2 Bz) . (Pn Bn)) body

Since “let” is only sugar, “define” is only sugar.

We have, however, slipped something very important under the rug. In Example
4, the unsugaring of (define (foo arg) body) assumed that foo was not recursive.
We will introduce a special constant Y that will allow for the unsugaring of
recursive procedures, and in Sections 2 and 2 we will show how Y can be used
to generate recursive and mutually recursive functions.

Constants. The constants of FKS and their types are as follows:

e 0,1,2,... all of type ¢
e succ,pred both of type + — ¢

e Y, of type (6 — ) — o) (for all types o # ¢)

Free and Bound variables. In this section we will write the variable z°
simply as z. When we do not need to discuss the type of a bound variable, it
is sometimes convenient to drop the superscript. We must be careful, however,
for example if we use z* and z(*—*) as distinct variables, we need to be careful
when we abbreviate one by & so as to prevent confusion.

We will define the function FV : Terms — {Variables} So, if M is a term, it
has a set FV(M) of free variables. It is defined inductively on the structure of
the term M by:

o FV(z) = {z}

e FV(c) ={}

o FV((MN)) = FV(M)UFV(N)

o FV(cond M Ny N, ) = FV(M)U FV(N,) U FV(Ny)
o FV((Az M)) = FV(M)\{z}

A term is closed iff FV(M) = 0, otherwise it is open.

A function BV : Terms — {Variables} can be defined analogously to give the
bound variables of a term.

The free variables of a term are simply those variables that are not under the
scope of a A-abstraction over that variable. For example y is free in (Az. z y)
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since there is no A binding it. The bound variables of a term are those variables
that are bound by A’s. For example y is bound in both (Ay. y) and (Ay. 5). Note
that it is possible for a variable to occur both free and bound in the same term.
For example y is both free and bound in (y(Ay. (z y))). The free occurrences
of y in a term M are those occurrences of y in M that are not bound. The
bound occurrences of y in a term M are partitioned (divided into disjoint sets
that cover everything) into occurrences bound by an individual A-abstraction.

A program is a closed term of ground type. Since our only ground type is ¢, a
program is a closed term of type ¢.

Given an infinite list 1, ... of distinct variables (which we will assign types when
we use them), the substitution prefix is defined inductively in the structure of
terms as follows:

e zfz:=M=M ye:=Ml=y(ifz#y)

ealz:=M]=a

e (NN)[z:= M] = (N[z := M]) (N'[z := M))

e (cond N Ny N3)[z := M) = (cond N[z := M] Ni[z := M] Nz[z := M])

e (AzN)[z := M] = (AzN); (AyN)[z := N] = AzN[y :=z][z := M], if z #
y, where z is the variable defined by:

1.Ife g FV(N)ory¢ FV(M) then z = y.

2. Otherwise, z is the first variable in the list =y, z3,... such that z ¢
FV(N)U FV(M)—and z is made to have the same type as y.

We now introduce a relation =4in order to capture the notion that two terms
are equivalent up to the renaming of bound variables. It is defined inductively
in the structure of terms as follows: The relation =,o0f alpha equivalence, is
defined inductively by:

1. z=42

2. a=,a.

3. If M=4M’ and N=,N’ then (M N)=,(M'N").
4. If M=,M' and Ni=,N{ and No=yN;

then (cond M Ny Nj)=,(cond M’ N{ N3)

5. If M=, M'[y := z], where either z = y or z ¢ FV(M’)
then (AzM)=,(AyM").
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Contexts. A conteztis a term with one or more “holes” in it. It is normally
written in the from C[]. The term that results from filling the term M into
all of the holes in the context C[] is written as C[M]. C[] is called a program
context (implicitly with respect to the term M iff C[M] is a program.

This concludes the definition of the syntax of FKS.

2 Operational Semantics: Rewrite Rules

One way of providing an operational semantics for a language is via a set
of rewrite rules. From the rewrite rules we will arrive at a partial function
Eval from Programs (closed terms of type ¢) to constants. Eval is defined by
means of an immediate reduction relation, — between terms by:

Eval(M) = k iff M—» k,for any program M and constant k.

Where — is the reflexive transitive closure of — (sometimes written as —).

It will be the case that M—k and M —&' implies that £ and k' are identical.
Notice that for constants ¢, Eval(c) = c.

The following rules together are called rewrite rules and together they define
the desired immediate reduction relation —.

1. (a) (succn) — (n+1)

(b) (pred 0) — 0

(c) (pred (n+1)) —>n

(d) (YoV) — (V(Az7(Y,V)z7)) (where z & FV (V)
2. (a) (AzV) — Mz := V] (for V a value)

(b) (cond 0 Ny N3) — Ny

(¢) (cond (n+1) N} N3) — N,

3. (a) if M — M then (MN) — (M'N)
(b) if N — N’ then (VN) — (VN') (for V a value)
(¢) if M — M’ then (cond M Ny N3) — (cond M' N1 N)

That is all. We have just defined a language completely. We have given a
definition of the syntax, and we have given an operational definition of what it
means for a program P to evaluate to a constant ¢. This is operational in the
sense that it is sort of how a compiler works, and it made no appeal to semantic
domains or models.
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Some Useful Definitions. A term M is said to diverge iff (Eval(M) is
undefined. This is equivalent to saying that for all N if M—»N then their is a
term N’ such that N — N',

We now introduce a notion of equality between terms that is generated by the
rewrite rules. This notion is called observational equality (Eoba)l and it captures
the idea of the interchangeability of code. Two pieces of code are observationally
equivalent if they can be exchanged freely in FKS programs with out changing
the value to which the program evaluates. This is defined formally as follows:

NEobsM
iff for all program contexts
Eval(C[M]) ~ Eval(C[N])

Two objects are ~ iff either they are both undefined, or they are both defined
and equal. There is a “Context Lemma” for FKS that says that:

if M—N then Eval(C[M] ~ Eval(C[N}))

Thus M —»N implies M=,,, N. This “Context Lemma” will be a Corollary of
the Adequacy Theorem which we will prove later. 2

Now, in order to fully appreciate the richness of this language we provide some
examples of coding tasks.

Example 5. Before we can do much of anything, we really need a “macro”
which will enable us to do a higher order conditional. Something we can ab-
breviate into the form (cond, M Ni N3 ) where Ny and N, both have type o.
In this side-effect free, typed world of ours, we have no need for a conditional
where N; and N, have different types.

Supposing o = (0y,...,0,,0') cond, is:

(cond; M N1 N2) Lef (Az{ .- AzZ. (cond M(Nizy---25)(Nazy - - 2p)))

It is a rather grungy, but manageable task to show that (cond, 0 N1 Na)
behaves just like (cond, 0 Ny N3) would if it were in the language (except that
if (cond, 0-N; N3) is computed, but never used, then if N; diverges a program
using the cond, would also diverge, but a program using the cond, might still
evaluate to a value).3

17t is important to note that =,,,is an equivalence relation.

20ne way of stating the Adequacy Theorem is: “If M and N have the same denotation,
then M=,,,N.”

3If you did not understand that parenthetic remark it is ok, this is a watered down version
of a concept called observational approrimation which we will might cover later. For your
information, a term M observationally approximates a term N iff for all program contexts C{:],
C[M]-»c implies C[N]—#c. In this setting we can say that M is observationally congruent to
N iff M observationally approximates N and N observationally approximates M.
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Example 6. FKS does not include constants or special forms which allow the
pairing of objects (we do not have cons). This lack is easily overcome, since
using A-terms we can define combinators that act like typed pairing operators.
‘We will define “macros” which will provide typed pairing operators for us. Thus
pair, pairs together two objects of type o. The macros left, and right, will
unpair the result of pairing together two objects of type o. These three macros
are defined as follows:

e pairs(M,N) def

oc—0)—0).

(,\z("""""). M N). Where this object is of type: (¢ —

o left,(P) % (P(A2? Ay° .x))
o right,(P) € (P(Az? My .y))

1t is a straightforward task to check the correctness of these definitions and that
left(pair(M, N)) = M and that right(pair(M,N)) = N.

It is fairly simple to generalize this technique to allow the pairing of terms which
do not have the same type. This can be done many ways. One such way is to
coerce the arguments to be of the same type. If M has type o = (o1,...,0,¢)
and N has type 1 = (7m,..., Tm,¢) then we can coerce M into M’ and N into
N’, M’ and N’ of the type ¢/ = (01,...,00,T1,...,Tm, ¢t} So

M E A2 ATy AT (M 2T)

and
def

N = deft o Az Myl dype (M Ly
It should be clear how to recover terms equivalent to the original M and N from
M’ and N’ through appropriate abstraction and application to dummy terms.

From here on we will assume that we have a “smart” macro system which will do
the appropriate coercions and such and we will assume we have a single macro
for each of pair, left, and right that does what we would like it to do (pair will
coerce its args to the right type, but left and right will not “uncoerce” their
results).

Finally it should be clear how to make n-tuples. Call the operation tuplel which
makes an n-tuple out of objects of type sigma. It should be equally clear how
to define the projection on the #*» component—projé’n'i). These can be defined
either directly (introducing new expressions using A’s for each) or they can be
defined from pair, le ft and right.
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Debunking Recursion: Fixed Points. An important element of any func-
tional language is the ability to define a function recursively. Consider, for
example the standard definition of the factorial function in Scheme:

(define fact (A n) (cond (= n 0) 1 (x n (fact (-1 n)))))

Unfortunately the syntax of Scheme does not make it immediately obvious that
fact is a recursive function (actually a “simply recursive”® ). The syntax of
Common Lisp, however, does make this fact evident. Consequently, we will
draw the examples of defining recursion from Common Lisp instead of Scheme
(it should be immediately obvious how to convert from one definition to the
other). So fact would be defined in Common Lisp as follows:

(letrec fact = (lambda (n) (cond (= n 0) 1 (* n (fact (=1 n))))))

This syntax for defining a recursive function makes it immediately clear that
fact is a simply recursive function. Now consider the form of a mutually re-
cursive definition of functions fi,..., f, by bodies by,...,b, where each body
b; has n “holes”. We write b;[fy, ..., fn] to denote b; with its hole #1 filled by
fi,...,#n filled by f,. So the definitions of f,..., f, would be as follows:

(letrec
(.fl= bl[fl»"‘).fﬂ]) '
(fn = bn[fl’-'-’fn])
)

Now that we have a syntax that makes it clear what is being defined recursively,
we can go ahead and explain how recursive functions can be defined in FKS.
Let us consider the following function:

F % (lambda (f) (Jambda (n) (cond (= n 0) 1 (x n (f (=1 n))))))

F has a very interesting property, namely F(fact) = fact. For no other argu-
ment z is F(z) = z. There is a special name for this property, namely, fact is
a fized point of F. In mathematics, if you have any function G and object =z,
z is called a fixed point of G iff G(z) = z. Let fix be a “fixed point operator”,
namely a function which returns a fixed point of its argument. Then fact could

be defined as fact @f (fiz F). Thus any recursive definition of the form:

(letrec foo = body[foo])

4 A function foo is called simply recursive iff it is recursive and its definition does not use
another function whose definition depends (either directly or indirectly) on itself. This is to
be contrasted with a mutually recursive function (or set of functions) where the definition of
f1 uses f, and f, either directly or indirectly uses f;.
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can be thought of as:

(let foo = (fix (A (f) body[f]))

Where now foo is no longer defined in terms of itself.

Luckily, FKS has a fixed point operator, namely Y (actually Y is a “least” fixed
point operator, but it is beyond the scope of this section to explain that here).

Let us now look at how to define fact in FKS. First we need to translate F into
FKS. So:

F¥ (AFC=9ant. (cond (= n) 0 1) ((* n) (f (pred n))))
Finally we can now define fact:
fact & (Y F)
So, this is how to define a simply recursive function. Using tupling we can define
mutually recursive functions. This is a slight modification of the preceding

example of what mutually recursive definitions should look like. The difference
is that we will use 4 where:

b def (AR.(Og1 ... Agn. .(b,-[yl, v oy gn]) Projn 1 (B) - - projn o (h)))
and the final letrec is:

(letrec

(fl = (bll tuPlen(fl)“')fn))

(fn = (b; tuplen(fl, cor fn))
)

So we have simplified the definitions of each of the functions to be of the form
fi = bifoo where foo is tuple,(f1,..., fa)). So if we can define an expression
which generates foo then we are done (because f; = projn ;(fo0)). So we want
to define a function F that has foo as its least fixed point. Here is is:

E(AH. tuple (b, H),..., (8, H)))

So in conclusion, we have:

fi W P"Ojn,i(y F)
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Debunking Y: The Fixed Point Operator. Up until now we have taken
the tack that Y is a fixed point operator. We have not, however justified this
statemnent. Using our rewrite rules we can check that Y is a fixed point operator.
Our goal would to prove a statement analogous to F(fiz F) = F). For FKS
this statement takes the form (V (Y V))=,,(Y V), where V can be any value
that is not of type ¢ (thus probably, a A-abstraction). But look:

(Y,V) = (V(AzL~9) (Y, V)z)) (

for
g § FV(V))

You can check yourself the following is a general rule:

If M is of type ¢ # ¢, M does not diverge, and 7 ¢ FV (M), then M=, (Az?.Mz)

Since (Y, V') and £ meet the antecedent of this rule, then
(Yo V)=0ps (A2 (Y V) 2)

Since we can interchange terms which are =,5,to0 each other with impunity, we
have:

(V (Yo V))=os(V (A2°.(Y5 V) 2))
and, given that =,;,is an equivalence relation:
(V (Y, V))=0ps(Ys V)

this is the desired result.

CONTINUED ON THE NEXT PAGE
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Example 7. To really see how Y works in defining recursion, consider the
computation of (fact 2), where:

F
fact
bodyl
body2

foo

(,\f("")./\n‘.(cond (=n0)1(n(f(-1n)))))
(Yium)F)

(An‘.(cond (= n 0) 1 (x n (f (=1 n)))))

(cond (= n.0) 1 (s n (f (=1 m))))

(A4 (¥ F) 2)

Here is the evaluation, in hideously gory detail (we will use = to mean syntactic

equality):
(fact 2)

O O O A e A A A A A L A A A A AR

(Y F)2)
(FQz.(Y F)e)2)

(bodyl[f := foo]2)

body2[f := foo][n := 2] ‘

(cond (= 20) 1 (* 2(foo(pred2))))
(cond (=3 0) 1 (* 2(foo(pred2))))
(cond 11 (* 2(foo(pred2))))

(* 2(foo(pred2)))

(#2 (foolpred2)))

(*2 ((lambdaz . (Y F) z) (pred 2)))
(*2 ((lambdaz™. (Y F) z) 1))

(x2 (Y F) 1)

(#2 (F (Az. (Y F) 2) 1))

(*2 (bodyl[f := foo] 1))

(*2 body2[f := foo][n := 1]

(*2 (cond (= 10) 1 (* 1(foo (pred 1)))))
(%2 (cond (=1 0) 1 (* 1(foo (pred 1)))))
(*2 (cond 1 1 (* 1(foo (pred 1)))))

(*2 (x 1 (foo (pred 1))))

(*2 (%1 (foo (pred 1))))

(*2 (*+1 ((lambdaz (Y F) z) (pred 1))))
(*2 (*1 ((lambdaz ™ .(Y F) z) 0)))

(*2 (x1 (Y F) 0)

(*2 (1 (F (Az. (Y F) ) 0))
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— (%2 (#1 (bodyl[f := foo] 0))

— (%9 (%] body?2[f := foo][n := 0]

= (*2 (*1 (cond (= 00) 1 (* 0(foo (pred 0))))))
— (%2 (*1 (cond (=¢ 0) 1 (* 0(foo (pred 0))))))
— (%2 (*1 (cond 0 1 (x O(foo (pred 0)))))

- (*2 (%1 1))

— (%2 1) e

— 2

Example 8. Definability of the basic operation “+” (in curried form). The
curried form of “4” has type ¢ — ¢ — ¢.

+ & (Y= (AfE== 2zt Ayt (condzy(suce((f(predz))y))))

i

A good exercise to enhance your understanding of how the rewrite rules and
recursion works would be to hand evaluate ((+3)10). Another good exercise
would be to define * and exp in this manner.

Example 9. Definability of a Primitive Recursion operator PR.

Recall the definition of primitive recursion. An n + l-ary function h can be
defined by primitive recursion from an n-ary function f and an n+2-ary function
g as follows:

e h(zy,...,2n,0)= f(z)1,...,2,)

o h(zy,..., x5, (sucey)) = g(x1,..., 20,9, h(21,..., 2, )

I am going to provide a definition of a primitive recursion operator PR, for the
case of n = 1. Tt is straightforward to then define PRy, for all n. PR, has type:
0f >0, —0op, Whereoy =t — 1,0, =1t = 1= 1> ,and oy =1 =L —
So, here is the definition:

L AforAgs.

' Y,, (AR Azt Ayt.
(condy (f z) :
(((g =) (predy)) (h z(predy)))))

PR,

Example 10. At this point it should be clear how to program all of the prim-
itive recursive functions in FKS (at least their curried versions). To check this,
we simply need to verify that we have all of the basic functions and operations
needed to define them. Let’s go through a check:
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We have the successor fianction built in.

The zero function i {Az*.0)

The identity functioms ¢an be defined analogous to the pairing operators
defined earlier. In general ID? = (Az§ ... Az}, ny).

¢ Composition of m n-ary fimctions. Again the set of combinators CN,, ,
is easily A-definable. It is beft as an exercise.

Primitive recursion has just been given.

So we can code any primitive recursive function of n-arguments by a function
in FKS of type:

L= .. .=l =1

n times

This ability to code all of the fumctions of a class like this in our language is
called numeralwise representability. We say that the all of the primitive recursive
functions are numeralwise representable FKS.

- Example 11. Now that we kmow that all of the primitive. recursive functions
are numeralwise representable in FKS, we would like to show that all of the
partial recursive functions are nmmeralwise representable in FKS.

This simply involves demonstrating that we can code the set of minimization
operations Mn,. We will define Mn,. It is of type: ¢y — ¢« — i, where
o7 = ¢ — . In the definition we will use: o4 = ¢ —.¢; So, here it is:

Mn, ¥ (foraz,
(Yo, (ART* Ayt
(cond ((f2)y) v
(b {succ v)))))
0))

And, we are done.

Thus FMS can define all of the partial recursive functions, so it is just as powerful
as any of the other models of computation which we have s¢en. In addition, it is
not too powerful. Although it may not be immediately clear how you could write
an interpreter for FKS, the SECD machine, which will begin the next section
of notes, operates by very simple pointer manipulations and will obviously be
implementable via a turing machine or p-recursive functions.
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Notes on Programming (Part III)
by Arthur Lent

This handout assumes that you are familiar with the material contained in hand-
out #29 (Part I of these notes). In particular you need to know the definition
of terms, F'V, BV, the substitution operation, =, , and the rewrite rules.

1 The SECD Machine

Introduction. The SECD machine was first introduced by Landin in 1963[1].
The importance of the machine’s introduction was that it was the first time that
a language was described abstracted away from a particular implementation—in
the past, a language was defined by the first compiler written for it. The SECD
machine takes a role between the further abstraction of rewrite rules and the
concreteness of an actual implementation—making explicit the control structure
of evaluation, yet still leaving unspecified arbitrary details.

The treatment here is taken largely from a work by Plotkin in 1975[2].

What is a SECD Machine. SECD stands for Stack—Environment-Control-
string—-Dump. The precise technical definition of each of these terms will be
given in the next section. First, we wish to cultivate some intuitions about the
SECD machine. The SECD machine is an automaton whose basic actions are
pointer manipulations. In fact, its basic actions involve a constant number of
pointer manipulations. Once you see the full definitions it should be immediately
clear how to built an interpreter for FKS. You should be able to do it in about an
afternoon. You could not say the same thing about the rewrite rules presented
in the first section of the notes. Not only does this description lend itself much
more to being implemented, an implementation based directly on the SECD
machine is far more efficient than one based upon the rewrite rules. Yet this
does not mean that the rewrite rules are without value—they probably make a
more understandable operational definition of FKS, and they will be essential
for our work on denotational semantics.

Before we give technical definitions of the four components of the SECD machine
we will tell what each piece will be used for:

Stack The stack will be used to store intermediate results in the evaluation of
a function.
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Environment The environment is the environment in which the function is
being evaluated.

Controlstring The controlstring contains whatever operations still need to be
performed in order to complete the current function call.

Dump The dump stores the state of the machine that existed immediately
prior to the current function call. (It can be viewed as a stack of the
preceding activation records).

Definitions. The first new concepts to be defined are the sets Environments
and Closures. These correspond very closely to the notions defined in 6.001. In
fact, they are the same notions, but, in a language without side effects, they have
some additional nice properties. But first we should back up a step and address
why the SECD machine needs environments and closures. It uses them in order
to implement substitution. The process of turning an arbitrary term M into the
term M [z := N] is nontrivial. The traditional way of doing substitution is to
say that the term M[z := N] can represented by M paired with an environment
an object that states that z really is N. M paired with this environment is
called a closure, and it “represents” the term M[z := N]. Now what if we want
to substitute (M[z := N]) for y into P to get the term Py := (M[z := N])].
We want to represent this by the closure [P, E] where E(y) = (M[z := NJ).
Unfortunately, we do not actually have our hands on the term M[z := N]—
we have our hands on a closure representing it. Thus we do not really want
environments to map from variables to terms, but, rather, we want them to
map from variables to closures. This may look like a circular definition, but
then so does defining two functions in a mutually recursive way. Here is a
simultaneous mutual inductive definition of the set Closures of closures, the
set Value Closures of value closures and Environments of environments:

e (0 ,is an abbreviation for the totally undefined function. It is an environ-
ment.

e A partial function with finite domain, that maps variables of type o to
value closures of type & is an environment,

e If E is an environment, and M of type o such that FV(M) C Domain(E)
then [M, E] is a closure of type o. (In other words, E is defined on all of
the free variables of M).

o If M is a value of type o and [M, E] is a closure then [M, E] is a value
closure.

Note that any closed term M can be represented by the closure [M,8].
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We also define E{C!/z} (¢ and C! must have the same type) to be the unique
environment E’ such that E'(y) = E(y) if y # = and E'(z) = Cl (for any
Cl € Closures).

Finally, to drive home the point that a closure can mechanically be “unwound”
into the term it represents we define a function Realterm : Closures — Terms.
It is defined inductively by:

Realterm([M, E]) = M [z, := Realterm(E(z,))]...[z, := Realterm(E(z,))]
where
FV(M) = {z1,...,2a}

Note that this unwinding property is only possible when there are no side-effects
in the terms inside the closures being unwound, so for Scheme it will not work,
but there are many cases where closures are built up from terms without side-
effects, in which case you really can think of those closures in terms of this
unwinding process.

The set of stacks, Stacks, is the set of all finite sequences of closures, formally
written as Stacks = (Closures)*.

The set of controlstrings, Controlstrings = (Terms U ap, cd)* where ap, cd
are special symbols that are not elements of Terms. The function F'V is eas11y
extended to work on controlstrings as follows:

e FV(ap) =
o FV(ed) =
e FV(Cy,...,Ca) =iz, FV(C) (n>0)

Finally, the set of dumps, Dumps, is defined inductively by:

e nil € Dumps

e If S € Stacks, F € Environments, C € Controlstrings and C is such
that FV(C) C Domain(E), and D € Dumps then [S, E,C, D] € Dumps

This concludes the definitions of the primary data structures manipulated by
the SECD machine.

The functions constapply and Constapply. The SECD machine model
which we will present in the next section will be defined in a manner that
abstracts away from the constants that we have chosen to include in FKS. Thus
we could, in principle, add constants to the language (such as a curried plus
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operator) and the main proofs about the SECD machine would carry through
directly. In addition this abstraction separates out the “constant stuff” for
a particular language from the general principles of interpreting a functional
language.

The SECD machine will employ the function Constapply when it hits an
operator that is a constant. Since constant operators (namely Y) in our language
can take values as arguments, and values are general terms which might need
closures to fully define them, Constapply needs to be a partial function of the
type:

Constants x Closures — Value Closures

We will also be presenting a recursive characterization of the rewrite rules which
does not use stacks, closures, environments, or dumps, yet still captures explic-
itly the order of evaluation of the SECD machine. But for this recursive charac-
terization, which we will from now on call eval, we still need a Constapply sort
of function, but it must live wholly in the world of terms (no closures allowed).
We will call it constapply, and it needs to be a partial function of type:

Constants x Closed Values — Closed Terms

In actuality we will not define Constapply directly. Instead we will define
constapply, and then state that Constapply is as determined as it needs to
be by the following restriction:

Realterm(Constapply(a, Cl))=,constapply(a, Realterm(C1))

What this requires is that Constapply gives a result that is independent of
how the closure that is its argument represents the term it is acting upon. So
Constapply cannot distinguish between:

[z, {[z, (MN)]}]

and

(= ), {[z, M], [y, N]}]

Here is the definition of constapply which we will use for FKS:

succ constapply(suce,n)

pred constapply(pred,n + 1)
constapply(pred, o)

Y, constapply(Y,, V)

n+1
n

Ll

o
(V(Az(e=2) (Y, V)z))
(for an z & FV(V)
and for V a value
and for o # 1)
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Order of evaluation. The SECD machine will evaluate the operands of a
combination before the operators. This is to be contrasted with the order of
the rewrite rules which evaluate operators before operands. We apologize for
this confusion, and it should be obvious how to change the rewrite rules or
the SECD machine so that the order is reversed. Qur main theorem, however,
carries through whichever order used in whichever scheme. This is because,
for FKS, the order does not matter (in fact for a particular scheme expression,
where the evaluating the operator or operands does not produce any side effects,
the order does not matter). Note that the definition of Scheme does not even
specify which is the correct order. The following is an exerpt from the Scheme
manual given to 6.001 students in Spring ’89:

“A procedure call is written by enclosing in parenthesis expressions for the
procedure to be called and the arguments to be passed to it. The operator
and operand expressions are evaluated (in an indeterminate order) and the
resulting procedure is passed the resulting arguments... Procedure calls are also
called combinations” (emphasis added).

The function SECD. The state transition function, a partial function from
Dumps to Dumps is defined as follows:

1. [Cl: S, E nil|[S' E',C', D))= [Cl:S' E',C', D]
[S,E,z:C,D]=>[E(z):S,E,C,D]
[S,E,a:C,D]=[[a,0]:S,E,C D]
[S,E,(Mz. M):C,D] = [[(Az. M),E}:S,E,C, D]
[[(Az. M),E":Cl: S,E,ap:C,D] = [nil, E'{Cl/z},M,[S, E,C, D]]

([a,0]: [V,E"): S,E,ap: C,D] = [nil, E',M',[S, E,C, D]]
(where Constapply(a, [V, E"]) = [M, E'])

[S,E,(MN):C,D] = [S,E,N: M :ap:C,D]

8. [S, E,(cond MNyN,) : C,D] = [[Ny,E): [N2,E}: S,E,M :ed : C, D]
9. [[o, Eo) : [N1, Ey) : [N2, E5) : S,E,ed : C,D) = [S,Ey, Ny : C, D]

10. [[[n + 1, Eo] : [Ny, E1] : [N2, E2] : S,E,ed : C, D] = [S, E3, Nz : C, D]

IR S

=

We now need two functions Load and Unload which convert terms into
SECD machine state, and SECD machine state into terms. Specifically they
are defined by:

Load(M) = [nil, 0, M, nil]
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Unload([Cl,0, nil, nil]) = Realterm(CL)

We can now define an evaluation function, which is a partial function from terms
to values as follows:

SECD(M) =V iff Load(M) = D, and V = Unload(D) for some dump D
The punchline of the section on SECD machines is the following theorem:
Theorem 1, SECD(M)=,N iff Eval(M)=,N for all terms M and N.

Remember that M and N are =, iff they differ only in the names of their bound
variables—called a-equivalence or equal up to renaming of bound variables.

In order to prove this theorem we will introduce another scheme for evaluating
programs that is midway between the rewrite rules and the SECD machine. This
will be a simple recursive definition that uses substitution rather than closures.

We would to like to find a (partial) function eval : Closed Terms — Values
such that:

eval(a) = a; eval(AzM) = AzM

eval(M'[z := N']) (if eval(M) = Az M’
and eval(N)=N’)

eval(constapply(a, N’)) (if eval(M) =a
and eval(N) = N')

eval(MN) =

_ | eval(Ny) (if eval(M) = o)

eval(cond M Ny Np) = { eval(N2) (if eval(M) = n + 1)

Now this may look like a good recursive definition of a partial function, and it
turns out that it is good, but the precise sense in which equational recursive
definitions of partial functions work requires avoiding some mathematical pit-
falls, which we must not take for granted. So, to be perfectly precise about how
eval is defined, we define the predicate “M evals to N at stage {” by induction
on t, for closed terms M and closed values N

1. a evals to a at stage 1; (Az M) evals to (AzM) at stage 1.

2. If M evals to (AzM’) at stage t and N evals to N’ at stage t’ and [N'/z]M’
has value L at stage ¢ then (M N) evals to L at staget +¢' +t" + 1.

3. If M evals to o at stage ¢t and N evals to L at stage t’ then (cond M Ny N,)
evals to L at stage t +¢' + 1. If M evals to n + 1 at stage ¢t and N evals
to L at stage t’ then (cond M N; N») evals to L at stage t +¢' + 1.
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4. If M evals to a at stage t and N evals to N’ at stage t’ and if
constapply(a,N') is defined and evals to N’ at stage ¢/, then (M N) evals
to N at staget +t' +t" + 1.

It is a fairly simple induction on ¢ to show that for all M, there is at most
one pair (N,t) such that M evals to NV at stage t. Consequently this is a good
definition of a partial function:

eval(M) = N iff M evals to N at some stage.

There is a better way of defining evalvia an inference relation eval,; however,
time has not permitted working out this better definition.

Proving the equivalence of SECD and eval. In before we prove Theorem
1 we first prove the following, easier Theorem (notice the little “e”):

Theorem 2. SECD(M)=,N iff eval(M)=4N for all terms M and N.

This theorem will be proven using three lemmas. The first says using closures
and environments to model substitution “works right”. The second will prove
direction => of this theorem, and the third will prove direction < of this theorem.

Lemma 1. Suppose [A\y. M, E] and [N, E’] are value closures. Also suppose
that Realterm([Ay. M, E])=4(Az.M') and

Realterm([N, E'})=oN'. Then Realterm([M, E{[N, E'}/y}]))=aM'[x := N'].

Proof Sketch: Observe that if \y. M=, z. M’ then M=,M'[z := y], hence
My := N]=oM'[z := N]. The rest is a simple unwinding of the closures and
simply examining the definition of Realterm. B

The proof of this next Lemma captures how the SECD machine really works.
It is quite long, however, thus we will leave out the details of a few of the cases.

Lemma 2. Suppose E is an environment and [M, E] is a closure. Suppose
Realterm([M, E]) evals to M"”. Suppose C is a controlstring with FV(C) C
Domain(FE). Then there is a ¢ > t, such that for all S, D,

(S,E,M :C,D| % ([M',E"): S,E,C, D]

where [M’, E'] is a value closure and Realterm([M', E'))=,M".
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This Lemma really does entail the right hand direction of Theorem 2, but re-
quires in its statement a rather hefty induction hypothesis.

Proof: This is a proof by induction on ¢. It is quite similar to that presented
by Plotkin [2]. There are 5 main cases:

1. M is a constant. Here Realterm([M,E]) = M = M” and t = 1. As
[S,E,M :C,D)=[M,0]:S,E,C,D]
we can take [M',E'] = [M,0] and t' = 1.
2. M is a A-abstraction. Almost the same as the previous case.
3. M is a variable. Take [M’,E'] = E(M), and t = 1.

4. M = (cond P N; Nj) is a conditional. Apply the inductive hypothesis to
P and then divide by cases according to P’ the value that P evals to at
stage #

5. M = (M, M,) is a combination. Then
Realterm([M, E]) = (Realterm([M1, E]) Realterm([M3, E]))
= (N Nj) say.

This now divides into two subcases, depending on whether or not the value
to which N, evals to is a A-abstraction or a constant.

(a) (Axz. N3) is the value that N, evals to at stage ¢;, Ny is the value
that N, evals to at stage t5, M" is the value that N3z := N, evals
to at stage t3 and t =t +12 + 13+ 1.

Then by the induction hypothesis there are t; > t; (i = 1, 2) such
that:

[S,E,(M; M3):C,D] = [S,E,Ms:M,:ap:C,D]

;’5 (M}, E}) :S,E,M; :ap: C, D]
4 (M}, B3 :[M},E3): S, E,ap: C,D)
where

Realterm([M;, E1])=4(Az. M) and Realterm([M3, E3])=nNa4,

and the [M{, E!] are value closures.
Here M| = (Ay. Mj3) for some M, and

Realterm([M}, E{{[y := [M3, E3]}])=c[Na/z]N3 (by Lemma 1).
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(b)

Now,

(M1, Ef]: [M3,E3):S,E,ap: C, D]
= [nil, E1{[M3, E3)/y}, M3, S, E, C, D))

5 (M, 1, B (M3, E5)/y},nil,[S, E,C, DJ]
= [[M",E']: $,E,C, D]

where, by the induction hypothesis, Realterm([M’, E’]) is to within
a-equivalence the value that Realterm([M3, E{{[M}, E}]/y}]) evals
to at stage ts < t5 and [M', E’] is a value closure. Taking t' =
t) + t5 + t4 + 3 concludes this subcase.

a is the value that N; evals to at stage ¢,, V is the value that N,
evals to at stage t,. Then, by the inductive hypothesis there are
t; > t; (i=1, 2), and a value closure VC such that:

[S;Ey(Ml M2)iC1D] = [S"E"M2 : Ml :ap:C’D]
8 [VC:S$,E,M,:ap:C,D)

4 ([a,0]: VC :S,E,ap: C, D]
where Realterm(VC) = V. Now, finally, suppose that we have
Constapply(a,VC) = [M",E”], and N” is the value to which
Realterm([M", E"]) evals at stage 3 (thus N” is the value to which
constapply(a, Realterm(V C)) evals at stage t3). By the mductlon
hypothesis there are t§ and VC’ such that:

t',+=té+1

[S,E,(My M,),C,D] [¢,0]: VC: S,E,ap: C, D]

=~  [nil,E",M",[S,E,C, D]
8 e, E" nil,[S,E,C,D]
=~ [VC':SE,C, D

where Realterm(VC’) = N”. Then taking t' =t} + ¢, +t5 + 3 and
[M’, E'] = VC’ concludes the proof of the lemma.

Before we introduce the next lemma, we need a definition. If D & , where
D’ does not have the form [Cl, 0, nil,nil] and D’ # D" for any D” then D is
said to Ait an error state (viz. D’).
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Lemma 3. Suppose E is a value environment and [M, E] is a closure. If
Realterm([M, E]) does not eval to a value at any ¢’ < ¢, then either for all
S, C, D, with FV(C) C Domain(E), (S, E, M : C, D] hits an error state or else
[S,E,M :C, D] = D' for some D'.

Proof Sketch: This is proved by induction on t—the number of steps used by
the SECD machine to evaluate M. It is just a horrible counting exercise that
can just be grunged through. W

Proof: (Theorem 2). Suppose eval(M) = M". Then at some stage t, M" is
the value that M evals to at stage t. By lemma 2,

[nil, 0, M, nil) 2 [[M’, E'), 0, nil, nil],
where Realterm([M', E'])=o,M". So Eval(M)=,M".

Suppose, on the other hand, that M does not eval to a value at any stage. Then
by Lemma 3 either [nil, 8, M] hits an error state or else for every ¢t there is a D

such that [nil, 0, M, nil] 3 D. In either case SECD(M) is also not defined. W

Proving the equivalence of eval and Eval.

Theorem 3. For all well-typed, closed terms M with constants in Constants
then M—M’ (M’ a value) iff M evals to M’ at some stage t (eval(M) = M’).

But first we need several facts:

Fact 1. — is deterministic. That is: if M — M’ then AM' # M' such that
M — M". Thus if MSM"” MZ M’ and m < n then M""Z"M",

Fact 2. If M; 2 M| then (M; M) (M| M>) and (aM,)>(aM})

Fact 3. If M is a closed value, then (¢cM) — constapply(c, M) which is
to say that if constapply(c,M) is defined then (cM) reduces to it, and if
constapply(c,M) is not defined then AM': (cM) — M'.

Proof: (M—=M' = eval(M) = M'). By induction on n.

Basis. n = 0. M is a constant ¢, or M is an abstraction (AzN). In either case
M = M’ and M evals to M’ at stage 1.

Inductive Step. M is a combination, say (M;M3). For (M My)—+»M', a
value, then it must be the case that Mlﬂ»M{, and MzE’Mé, where M; and
M}, are values. By Fact 2, (M), M)=3(M{ M3)"3(M{M}). The proof now breaks
down into two cases depending on what kind of value M is.
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1. M} = AzN. Then

(My M) 02 (As NYMY) — (N i= M) ket
By the inductive hypothesis then eval(M;) = Az N, eval(M3) = M}, and
eval(N[z := M3]) = M’. Thus:
eval(My M;) = eval(N(z := M) = M.
2. Mj=c.

(My M)V (c M) 3(cM}) — constapply(c, M1)"~™Er2+0 ppr
By the inductive hypothesis:
eval(M)) = ¢, eval(M2) = M3, and eval(constapply(c, M3)) = M’.

Thus:
eval(M1 M3) = eval(constapply(c, M})) = M’

The case for when M is a conditional is left as an exercise. M

Proof: (M evals to M’ at stage t = M—+M’). By induction on ¢.

Basis. t = 1. M = M’, and is either a constant or an abstraction. In either
case M > N and we are done.

Inductive Step. ¢t > 1. M is neither a constant nor an abstraction so it must
be an application or conditional. We consider the case of an application, that
of the conditional is left as an exercise. So M = (M, M,).

M must eval to a value at stage some #; < t—2. So say M; evals to M] at stage
t;. Then by the induction hypothesis M;—M{, and then (M; M2)—-»(M]M3).
In addition M, must eval to a value at some stage t, < ¢ — (¢, + 1). So say
M, evals to M} at stage t3. Then by the induction hypothesis Ma— M}, thus
(M1 Ma)—» (M M3).

The analysis now breaks down into 2 cases based upon Mj.

1. M{ = AzN. In this case N[z := M,] evals to M’ at stage t — (21 + t2).
But then
M= (MM;) —-» (AzN)M;
— N[:E = M2]
and by the inductive hypothesis N'[z := M3]-»M’ and so M—»M’.

2. Mj is a constant. Let N = constapply(M{, M;). By fact 3 we know that
(M{M3}) — N. Finally, N must eval to value M’ at stage t — (¢; +12+ 1),
thus by the induction hypothesis N—»M’ and more importantly, M-—»M’.
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6.0447/18.423]: Computability, Programming, and Logic Handout 1
Massachusetts Institute of Technology 13 September 1989

Course Information

Staff,

Lecturer: Prof. Albert R. Meyer NE43-315 x3-6024
meyer@thesory.lcs.mit.edu

Teaching Assistant: Jon G. Riecke NE43-328 x3-1365
TieckeQtheory.lcs.mit.edu

Grader: Arthur F. Lent Baker House 225-7178
aflentOtheory.lcs.mit.edu

Secretary: David Jones NE43-316 x3-5936

8044-secretaryQ@theory.lcs.mit.edu

Lectures and Tutorials. Class meets MWF from 1:00-2:00PM in 24-115.
There will be no recitation sections, bat tutorial/review sessions may be orga-
nized in response to requests. The TA-will have one regularly scheduled office
hour to be announced the first day of class. Further meetings with the TA or
instructor can be scheduled by appointment.

Prerequisites. The official requirement for the course is either 18.063 Intro-
duction to Algebraic Systems, or 18.310 Principles of Applied Mathematics. If
you know the basic vocabulary of mathematics and how to do elementary proofs,
then you may take this course with the permission of the instructor.

Contrarequisites. There will be up to a 40% overlap in topics (namely, basic
computability theory) betwaen 6.045J /18.400J and this course. For this reason,
Course 6 students are disecuraged from taking both courses. There will be
a smaller overlap with 6.840J/18.404]; students, especially Math majors, may
take both this course and 6.840J/18.404J.

Textbook. The required text for the course is

G. Boolos and R. Jeffrey, Computability and Logic (Second Edition}, Cam-
bridge University Press, 1980.
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Grading. There will be regular problem sets, quizzes, and most likely a regular
three hour final exam. This will be decided the first day of class. The problem
sets, quizzes, and final éach count about equully toward the final grade.

Problem Sets. There will be four to s‘i.x problem sets. Homework will usually
be assigned on a Friday and due 7-10 days later.

Handouts and Notebook. You may find it usclul to get a loose-leaf notebook
for use with the course, since all handouts and homework will be on standard
three-hole punched paper. If you fail to obtain a handout in lecture, you can get
a copy from the file cabinet outside David’s office (NE43- 316) If you take the
last copy of a handout, please inform David so that more copies can be made.

Handouts will also be available from the machine theory.lcs.mit.eduthrough
the use of the program ftp. To use access and transfer these files on a UNIX
machine, run £tp, and open theory.lcs.mit sedu, supplying “anonymous” as
the name (account) and “guest” as the password. Files may then be trans-
ferred. All handouts will be placed in the directory “/pub/6044” and are
written in IATEX. The macro file “/pub/6044/6044-macros.tex” and the file
“/pub/6044/handouts-6044-fall-89” (wh1ch seryes as an index to the handouts)
must also be transferred t6*fun IATEX on the handout files.

Electronic mail. To facilitate commupication: in «the class, there are three
electronic mail addresses:

6044-secretary@theory.lcs.mit.edu
6044-forum@theory.lcs.mit.edu
6044-staff@theory.lcs.mit.edu

The 6044-forum mailing list is for general communication by students, the
instructor, and the TA to the class; a message sent here will automatically be
distributed to those on the mailing list. Students are strongly encouraged to use
6044-forum to arrange study sessions, discuss ambiguities and problems with
homework, and send comments to the whole class. The TA and instructor may
also post bugs and corrections to homeworks and handouts to 6044-forum.
Send email to 6044-secretary to subscribe to the list; other administrative
requests should also be directed to this address. Messages to the instructor,
TA, or grader should be sent to 6044-staff.

w it

Pictures. You can help us learn who you are | by, giving us your photograph with
your narhe on it.' This'is especially helpful if you later need a recommendation.
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"’Diagnostic Quiz

You will not be graded on this quiz. Do not discuss it with anyone before taking
it, Take it sometime after class, and return it to the TA on Friday, September
15. Be sure to indicate your name, the date, “6.044 Diagnostic Quiz”, and the
time it took you, on your answer sheet.

Problem 1. Describe the function which is the composition of the integer
successor function, 1.e., successor(z) = z + 1, with itself.

Problem 2. How many strings of length four are there over the alphabet
{a,b,c}?

Problem 3. Give an example of an uncountable set.

Problem 4. Which is.a synonym for “injective”?

{a) epi
{b) onto
(¢) mono
(d) isomorphismll .
(e) one-to-one |

(f) one-to-one and onto

What sets have the property that there is no injection from the set into itself?

What sets have the property that there is 2o injection from the set into a proper
subset of itself? o
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Problem 5. Define a binary relation, <, between sets A4, B as follows:
AxXB it (3f:A— B)(fis injective).

Which of the following properties does the relation =< have? For those properties
it fails, describe some simple sets A4, B, ... which provide a countererxample.

(a) reflexive

(b) symmetric

(c) transitive

(d) equivalence relation

(e) partial order

Problem 6. Describe a propositional, i.e., Boolean, connective which is not
commutative.

Problem 7. Two Boolean formulas, Fi(z,....,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables
Liyooy Ty,

(a) Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables.
(b) Explain why “equivalence” is actually an equivalence relation on formulas.

(c) Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables r,,...,r,. How many?
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Solutions to Diagnostic Quiz

Problem 1. Describe the function which is the composition of the integer
successor function, i.e., successor(z) = z + 1, with itself. Answer: z + 2.

Problem 2. How many strings of length four are there over the alphabet
{a,b,c}? Answer: 3 %3 x3 x3 = 81; for each position there are three possi-
ble letters, and there are 4 possible positions.

Problem 3. Give an example of an uncountable set. Examples: the real num-
bers, and the real numbers between 0 and 1.

Problem 4. Which is a synonym for “injective”? Answer: (e) one-to-one.

What sets have the property that there is no injection from the set into itself?
Answer: NONE. The identify function from a set onto itself is always well-
defined, and always an injection.

What sets have the property that there is no injection from the set into a proper
subset of itself? Answer: Precisely the finite sets.

Problem 5. Define a binary relation, <, between sets A, B as follows:
A<XB iff (3f:A— B)(f isinjective).
Which of the following properties does the relation < have? For those properties
it fails, describe some simple sets A, B, ... which provide a counterexample.
(a) reflexive. Answer: YES. The identity from A to A always exists and is
always injective.

{(b) symmetric. Answer: NO. Consider A = {1} and B = {1,2}. A < B but
B £ A.

(c) transitive. Answer: YES. If f; is an injection from A to B and f, is an
injection from B to C then f; o f; is an injection from A to C.

(d) equivalence relation. Answer: NO. A relation is an equivalence relation iff
it is reflexive, symmetric and transitive. < is not symmetric.
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partial order. Answer: Depends on how we define equality. A relation is a
partial order iff it is reflexive, transitive, and anti-symmetric, i.e., if A is
related to B and B is related to A then A = B. If we define equality to be
“set equality,” < is not anti-symmetric, since for A = {1} and B = {2},
A < Band B < A, but A # B. If we define equality as “same cardinality,”
then < is anti-symmetric.

Problem 6. Describe a propositional, i.e., Boolean, connective which is not
commutative. Answer: Implies (D) is a propositional connective which is not
commutative. (8 of the 16 propositional connectives are not commutative).

Problem 7. Two Boolean formulas, Fi(z,,...,z,) for i = 1,2, are equivalent
iff they yield the same 0-1 truth value for all 0-1 assignments to the variables

T1y.--

(a)

(b)

(c)

, Tn.

Exhibit three simple, syntactically distinct, but equivalent formulas with
two variables. Example: £; D 29, TT1 V22 and T7 V z; V x5 are true for all
assignments ezcept z; = true and z, = false, in which case all are false.

Explain why “equivalence” is actually an equivalence relation on formulas.
Answer: Because it is reflexive (obviously), symmetric (if F agrees with F
on all input values, then the opposite must also be the case), and transitive
(if F1 agrees with F; on all inputs values, and F, agrees with F3 on all
input values, then F; agrees with F3 on all input values), by definition the
relation “equivalence” is an equivalence relation on formulas.

Explain why there are only a finite number of equivalence classes of for-
mulas with (at most) variables z1,...,2,. How many? Answer: For n
variables there are exactly 2" different 0-1 assignments to the variables.
For each assignment to the variables there are two possible truth values
to yield. Consequently there can be at most only 22" different equivalence
classes. Why? By the pigeonhole principle if there were more than this 92"
equivalence classes then at least two of them would have to have the same
input/output behavior, in which case they would be the same equivalence
classes, so there can be at most 22" distinct equivalence classes.
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Instructions for Problem Sets

Form of Solutions. Each problem is to be done on a separaie sheet of three-
hole punched paper. If a problem requires more than one sheet, staple these
sheets together, but keep each problem separate. Do not use red ink. Mark the
top of the paper with:

e Your name,

“6.044J/18.423J7,

the assignment number,

the problem number, and

the date.

Try to be as clear and precise as possible in your presentations. Problem grades
are based not only on getting the right answer or otherwise demonstrating that
you understand how a solution goes, but also on your ability to explain the
solution or proof in a way helpful to a reader.

If you have doubts about the way your homework has been graded, first see the

TA. Other questions and suggestions will be welcomed by both the instructor
and the TA.

Problem sets will be collected at the beginning of class; graded problem sets
will be returned at the end of class. Solutions will generally be available with
the graded problem sets, one week after their submission.

Collaboration and References. You must write your own problem solutions
and other assigned course work in your own words and entirely alone. On
the other hand, you are encouraged to discuss the problems with one or two
classmates before you write your solutions. If you do so, please be sure to

indicate the members of your discussion group

on your solution.

Similarly, you are welcome to use other texts and references in doing homework,
but if you find that a solution to an assigned problem has been given in such a
reference, you should nevertheless rewrite the solution in your own words and
cite your source.
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Late Policy. Late homeworks should be submitted to the TA. If they can
be graded without inconvenience, they will be. Late homeworks that are not
graded will be kept for reference until after the final. No homework will be
accepted after the solutions have been given out.
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Problem Set 1

Due: 22 September 1989.

Remark. Before beginning the assignment, please be sure to read Handout 4,
“Instructions for Problem Sets.”

Problem 1. Let z be any string, and let £® denote the reversal of z. For
example, if  is a string over the alphabet {a,b} and z =babb, then = =bbab.

1(a). Give an inductive definition of z® based on the definition of strings.

1(b). Prove, by induction on the string z, that
(z-y)t =y"- 2"

Problem 2. Consider the following inductive definition of a subset M of the
natural numbers N = {0,1,2,3,.. .}:

() 2€M,
(ii) if n € M, then n? € M,
(iii) if n,m € M, then (n-m) e M.

2(a). Prove by induction on the definition of M that

M={2*k>1}.

Let f : M — N be any (possibly partial) function. Then f is said to be a
counter function if
@ Q=1
(ii)y f(n*)=2- f(n),
(iii)  f(n-m)= f(n)+ f(m).
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2(b). Define f; : M — N to be
f1(2k) =k

Prove that f) is a counter function. (Hint: Induction on the definition of M)

2(c). Prove that f; is the unique counter function, i.e., if fo is any counter
function, then fi(2) = fa(z) for all z € M.

2(d). Consider the function g : M — N defined inductively by:

(i) 9(@)=1,
(i) g(n?) =5,
(iii) g(n-m) = 10.

Carefully prove that 1 = 0! Explain why this contradiction occurs here, but not
for counter functions.

Problem 3. Recall that *, where X is an alphabet (a set of symbols), is the
set of strings created from symbols in X. Pick any string o € X*, and also pick
any total function g : ¥ x ¥* x L* — L*. We say that f: X* — X" is defined
by siring recursion on notation (from z, and g) if

(@) f(e) = zo,
(i) f(oz) = g(0,z, f(2)).
Prove that there exists a unique total function f defined by recursion on notation

from zo and g. (Hint: Prove that f(z) exists and is uniquely determined by
induction on z.)
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Problem Set 2

Due: 29 September 1989

Problem 1. (Enumerability and Diagonalization, Boolos & Jeffrey, Chapters
1 and 2)

1(a). Let A be any set, and P(A) be the set of all subsets of A. Prove that
there is no onto function from f : A — P(A). (Hint: Use a diagonalization
argument with the “diagonal” set {a € A : a & f(a)}. If the case A = 0 bothers
you, ignore it.)

1(b). Let A be a denumerably infinite set, and let Pﬁn(A) be the set of all
finite subsets of A. Prove that Pﬁn(A) is enumerable.

Problem 2. (Diagonalization) A function u : N2 — N is called a universal
function for the primitive recursive functions of one argument iff, for every
n € N, Az.u(n,z) is primitive recursive, and moreover, for every primitive
recursive function g : N — N, there is an ny € N such that ¢ = Az.u(n,, 2).

2(a). Show that no such universal function can be primitive recursive.

2(b). Explain informally why there is such a universal function which is com-
putable (programmable) in say, SCHEME. .

Problem 3. (Partial Orders, Handout 6) Let A, B be partially-ordered sets,
1.e., sets with partial order relations <4, <p respectively. Suppose that f :
A — B is a total function. Then f is said to be monotone if forall z,y € A,

z <ay implies f(z) <p f(y).
Monotone functions are sometimes called order-preserving functions.

Suppose A is a finite partially-ordered set (with ordering <4) having a unique
least element ag. Suppose f : A — A is a total monotone function. Prove that
f has a least fized point fiz(f) € A. That is, if ¢ = fiz(f), then

&)=z
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and moreover, z <4 y for any y with f(y) = y. (Hint: Consider the sequence
ao, f(ao), f(f(@o)),- ... Show that if f(y) <a y, then every element in the se-
quence is <4 y. Then show that because A is finite, the sequence has an lub
(least upper bound) and this lub must be fiz(f).)

Problem 4. (Primitive Recursion, Boolos & Jeffrey, Chapter 7) Suppose the
functions f : N®"t! — N and g : N* — N are primitive recursive. Let the
function GenSumy[f,g] : N® — N be defined by

GenSumy,[f, 9}(21,...,2n) =
fz1, .. 20,0+ fzr, ... 20, D)+ -+ f(21,.. ., 20, 9(21, ..., 25))
Give a formal primitive recursive definition of GenSum,{f, g]. You may use the
constants f, g, and sum (defined on page 84 of the text) in your definition, in

addition to the usual functions idi, s, and z, and functionals Pr; and Cng .
(Hint: First carefully translate the inductive definition

1O h(z1,...,2n,0) = f(z1,...,24,0),
(i) Ah(z1,...,2n,n+1)=h(z1,...,25,0)+ f(z1,..., 20,0+ 1)

into a primitive recursive definition, and then use composition to obtain the
function GenSumy[f,g].)

S
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Problem Set 1 Solutions

General Information. This handout includes some of the best solutions sub-
mitted by students for Problem Set 1. These solutions are a good representation

of the level of detail expected.

The grades went as follows:

| number submitted min max mean median

1 14 10 25 214 24
2 14 10 25 214 23
3 13 5 25 18.3 15
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Problem Set 3

Due: 6 October 1989

Instructions. Do Problem 1 and either Problem 2 or Problem 3.

Problem 1. (Turing Machines, Boolos & Jeffrey, Chapter 3) Construct the flow
graph of a Turing machine that converts unary numbers to binary numbers. The
converter should start with a number n in standard format (i.e., reading the
leftmost 1 of a block of n + 1 1’s, with blanks everywhere else on the tape.)
The machine should halt reading the leftmost digit of the binary representation
of n, a string of a’s and b’s, with a representing the binary digit 0 and b
representing the binary digit 1. Show each configuration of your machine on
the input 1111 (i.e., the number 3, so in the final configuration, the tape would
look like - - -00bb00 - - -.)

Problem 2. (Abacus Machines, Boolos & Jeffrey, Chapter 6) For parts (a),
(b), and (c), use only registers 1, 2, and 3.

2(a). Write an abacus program (a flow chart) using only registers 2 and 3
that multiplies the contents of register 2 by 5 and sets register 3 to zero as a
side effect. That is, show how an abacus machine can simulates the following
instructions given in the notation of the text:

5.[2) — 2
0—3

2(b). Write an abacus program for

501 9
0—-1
0—3

(Hint: Use part (a))
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2(c). Write an abacus program that simulates the following branch instruction:

if 5 divides [2]
then 0 — 3

{ code )
else 0 — 3

{ code )

(Hint: Divide [2] by 5, using register 3 as a temp. Check remainder to branch,
then reverse procedure to restore [2].)

2(d). We can uniquely code the contents of four registers into a single number:
if the registers contain np,ns, n3, n4, use the number 2™t - 373 . 573 . 774 a3 the
code. Suppose this encoding is placed in register 1. Show how, using a three-
register abacus machine, to simulate the increment instruction on any of the
four registers. That is, write an abacus program that updates register 1 so that
register 1 contains an encoding of the contents of the four registers after the
increment. Likewise, show how to simulate the test-and-decrement instruction
on any of the four registers.

2(e). Conclude from the above that a three-register abacus machine can com-
pute exactly the same partial functions from N — N as an arbitrary abacus
machine.

Problem 3. (Computability and Church’s Thesis, Boolos & Jeffrey, Chapter
6) Consider the following two instructions which add indirect addressing to the
abacus machine model:

e Copy the contents of register ¢ to the register whose address is stored in
register j:
(5] — (]

For example, if j holds 56, “{i] — [j]” stores the contents of register i in
register 56 (destroying the old contents of register 56.)

e Copy the contents of the register whose address is stored in register i to
register j:
(] —

For example, if ¢ holds 32, “[[{]] — j” copies the contents of register 32
into register j (again, destroying the old contents of register j.)

(For simplicity, assume the registers of the abacus are labelled 0,1,2,...) Give
an informal but convincing explanation of why the class of abacus-computable
functions does not change when these instructions are added to the model.
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Notes on Computability Theory

The following notes outline the main definitions and results about computability
theory indicated in the course lectures and homework which go beyond Boolos
& Jeffrey’s text.

1 Simulation

The “simulation thesis” says that all general computation models are capable of
simulating one another given sufficient resources and ignoring issues of efficiency.
That is, we insist only that the simulations eveniually get the right answer, no
matter how slowly they proceed or how much more memory or energy they
require than the machine being simulated. Thus, an apparently very weak
machine model such as a Turing machine computes exactly the same set of
partial functions on, say, numbers as are computable by Scheme programs,
random-access register machines (RAM’S), or enhanced Turing machines with
multidimensional, multihead, multitapes.

Not just machine models, but certain inductively defined classes of functions
such as the y-recursive functions also characterize the same class of computable
partial functions. This is proved, for example, by showing for any Turing ma-
chine, how to devise a u-recursive function that simulates the step-by-step com-
putation of the Turing machine (see Boolos & Jeffrey, Chapter 8), and by show-
ing how to write a Turing machine interpreter for the p-recursive programming
language (not described in Boolos & Jeffrey, but one could construct such an
interpreter just as one constructs interpreters for Scheme.)

The significance of all these simulations is that we can take a robust, machine
and programming language independent view of the computable functions. The
Turing computable partial functions from tuples of natural numbers to nat-
ural numbers are the same as the enhanced-Turing computable partial func-
tions are the same as the abacus coumputable functions are the same as the
p-recursive partial computable functions are the same as the functions com-
putable by Scheme procedures. ... This class of functions is called the partial
computable functions; a synonym is the partial recursive functions.

These notes will follow the mathematical literature in regularly referring to Tur-
ing machines when we need a concrete machine/programming language model,
but the reader can safely think of “Turing Machine” as replaced by, say, “Scheme
procedure text” if that seems more familiar.

What we have just called the “simulation thesis” is called “Church’s thesis” by
Boolos & Jeffrey. In the wider literature, Church’s thesis is often described as
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equating any intuitively “effective procedure” with a Turing machine program.
This leaves open misinterpretations of Church’s thesis: for example, a cookbook
recipe might in ordinary discourse be regarded as describing an effective proce-
dure, but no one claims a Turing machine can bake a cake! A more interesting
example might be the 0-1 valued function f(n) which is equal to one iff there
will be an earthquake with epicenter in Cambridge, Massachusetts during the
n®® minute after noon on October 2, 1989. There is an obvious effective pro-
cedure to compute f(n) with some seismographs and a clock—by waiting up
to n minutes—but again, Church surely did not mean to imply that a Turing
machine could compute f.

2 Binary Codes for Finite Objects

In adopting the Turing machine model over the other models, it will be more
natural to talk about computing on strings over an arbitrary alphabet ¥ instead
of computing on natural numbers. It is important to note, however, that this
feature of Turing machines—the ability to compute string functions—adds no
power. Abacus machines and y-resursive functions can also compute the same
class of string functions—using a suitable encoding function of strings into nat-
ural numbers (say, the ASCII representation that turns a string into a number.)
We say that a string function is partial recursive if there is a Turing machine
computing it.

One can also talk about computing functions over other data objects: integers,
finite graphs, lists, flowcharts, ordered pairs and finite sets of these, and various
other finite or finitely representable mathematical objects. In each case we as-
sume, without going into detail, that there are encodings of these objects into
finite strings over some standard alphabet. We will use the alphabet {a,b} as
our standard alphabet; one could think of strings in this alphabet as “binary”
numerals.! A function on, say, graphs, is “partial recursive” iff the correspond-
ing function on strings which code graphs is partial recursive.

In a basic argument below, we will speak of the Turing Machine (Self-)Halting
Problem, K;. The “problem” is represented by the set of Turing machines that
halt “when given themselves as input.” More precisely, we must define a coding
function

d : {Turing machines} — {a,b}"

under which every Turing machine is coded as a “binary” string. It is straight-
forward enough, though a little tedious, to do this; one encoding would change
the flow graph of a Turing machine into a string. It is technically convenient
if every string in {a,b}* is the code of some Turing machine. We can always

1To avoid the ambiguous representation of the “blank” symbol in Boolos & Jeffrey, we will
use the symbol “#" to represent blanks.
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make this hold by invoking the convention that every string not in the range of
d is to be interpreted as the code of a particular fixed Turing machine which,
say, halts with output a on any input. We use the notation M, for the Turing
machine denoted by z € {a,b}*.

We now define

K, = {z € {a,b}* : M, is a Turing machine that halts on input z} .

(Note that, by convention, a string z € {a,b}* is in K; only if {a,b} C Zpr_,
where Xz, is the tape alphabet (the alphabet used plus the blank symbol) of
M)

Similarly, we can straightforwardly code strings over an arbitrary enumerably
infinite alphabet into binary strings, and of course we can code a pair of binary
strings into a single string. Thus, when we say the (General) Turing Machine
Halting Problem, Ky, is

Ko = {(M, z) : Turing machine M halts on input z}
we really mean

Ky ={z€{a,b}* : z=pair(yn,y2), y2 codes z € E;,u,
and My, halts on input z}.

The precise set of binary words equal to Ky or K; depends of course on how
we choose the coding function d, but the salient properties we establish about
these sets are independent of the details of the coding (see the Appendix, §A of
these notes).

3 Terminology

Definition 1. A language is a subset of X*.

In other words, a language is an arbitrary set of strings over some alphabet.
For example, the set of strings with equal numbers of a’s and b’s is a language
over the alphabet {a,b}. Given a language A over the alphabet X, we denote
its complement by

A={zeT" :z ¢A)

Definition 2. A partial recursive function that happens to be totally defined
on (X*)" is called total recursive.



4 6.044J/18.423J Handout 10: Notes on Computability Theory

A language D C £* is decidable iff its characteristic function ¢p : &* — {0, 1}
is total recursive, where

_ |1 ifzeD,
cp(z) = 0 otherwise.

For any Turing machine M, let
domain(M) = {z € T}, : M halts on input z}.

A language R C E* is recursively enumerable (r.e.) iff R = domain(M) for some
Turing machine M.

Like the notion of “partial recursive,” the above definitions can be extended
to other datatypes. For example, a set of finite graphs is r.e. iff the language
consisting of binary codes of elements of the set is r.e.

Synonyms:

e recursive set = decidable set = Turing-decidable set.
e r.e. set = recursively enumerable set = Turing-acceptable set.

¢ total recursive function = recursive function = [Turing] computable total
function= general recursive function.

If P is a property of sets, then “A is co-P” means P(A) holds.

4 Basic Properties of R.E. and Recursive Sets

Lemma 1. Recursive sets are closed under complement. (That is, if A is re-
cursive, then A is recursive.)

Theorem 1. A is recursive iff both A and A are r.e. Another way to say this
is, A is recursive iff A is both r.e. and co-r.e.

Theorem 2. The recursive sets are closed under union, intersection, and com-
plementation.

Theorem 3. The r.c. sets are closed under union and intersection.

Theorem 4. The following are equivalent for a language A:

(a) Aisre.
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(b) A is the domain of a partial recursive function of one argument.

{¢) A is the range of a partial recursive function.

(d) A =0 or A is the range of a total recursive function.

(e) A is finite or A is the range of a one-to-one total recursive function.
Proof: To show, for example, that (b) implies (c), suppose A is the domain of

a partial recursive function of one argument computed by a Turing machine M.
Define a new Turing machine M’ that works as follows:

“On input z, run M on z until it halts; then output z (that is,
write = on the tape and erase the rest of the tape.)”

The language A is then the range of a partial recursive function computed by
M’. The other implications may be proved along similar lines. B

Definition 3. The canonical order <can of strings in £* (where T is ordered)
is defined for all w,u € I* as follows: w <can u iff jw| < {u] or |w| = |u| and w
precedes u alphabetically.

Note that canonical order is different from alphabetical (dictionary) order. For
example, b <.an ab even though ab precedes b alphabetically. The canonical
ordering of {a,b}*, where a precedes b in the alphabet, is

e,a,b,aa,ab,ba,bb,aaa,aab,aba,. .., bbb, aaaa,....

Some authors use the term “lexicographic order” for canonical order.

Definition 4. A function f : £f — X7 is an increasing function iff, for all
strings z,y € domain(f), if £ <can ¥, then f(z) <can f(¥)-

Theorem 5. A language A is recursive iff it is finite or the range of an increas-
ing total recursive function.

5 Undecidability of the Halting Problem

Let Ko and K, be respectively the Turing machine Halting and the Self-halting
Problems defined in §2 above.

Theorem 6. K; is not r.e.
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Proof: By the definition of K, we have for any z € {a, b}" that
ze€ K, iff M, does not halt on input z.

Assume that K is r.e. Then there is string zo such that M, halts on precisely
the strings in K. By the definition of M,,, we have for every string z that

zeK, iff M,, haltson z.
Hence, for all z,
M., haltsonz iff M, does not halt on z.

Now, let = 2y and we obtain an immediate contradiction. M
Corollary 1. K, is not recursive.

Proof: If it were, then K, would be recursive too by Lemma 1, and so would be
r.e. by Theorem 1, contradicting what we just proved. B

Corollary 2. K is not recursive.

Proof: A simple modification of any program which decided membership in Ky
would yield a program which decided membership in K, contradicting Corol-
lary 1. W

Theorem 7. Ky and K, are r.e.

Proof: This follows easily from the fact that we can write a Turing machine pro-
gram which is a universal function: on input strings z,y € {a,b}", it simulates
the computation of M, on the input string over Xps_ coded by y. Constructing
the universal machine or “interpreter” itself is a long but nowadays familiar
programming project. H

Corollary 3. Ky is not co-r.e., and hence the r.e. sets are not closed under
complement.

Proof: Theorem 1, Corollary 2, and Theorem 7. B
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6 Many-one Reducibility

Besides diagonalization, the technique of reducing one language to another is
often used to show that certain languages are not recursive or r.e.

Definition 5. Given two languages A C X%, B C X}, we say A is many-one
reducible to B, in symbols A <, B, iff there is a total computable function
%% — X} such that

zeA iff f(z)eB

forallz € X%. Wesay A=, B iff [A<m Band B <y 4].
The following properties are easily verified:

Transitivity. A <, B and B <, C implies A <, C.

Recursiveness Inherits Down. A <\, B and B recursive implies A recur-
sive.

Non-recursiveness Inherits Up. A <, B and A not recursive implies B not
recursive.

R.E. Inherits Down. A <, B and B r.e. implies A r.e.
Non-R.E. Inherits Up. A <, B and A not r.e. implies B not r.e.

Symmetry w.r.t. Complement. A <., Biff 4 <, B.
Lemma 2. If A is r.e. but not recursive, then A and A are <p-incomparable.

Proof: Say Aisre. If A <n A, then since r.e. inherits down, 4 is also r.e.
Therefore, A is recursive by Theorem 1. If A <, A, then by symmetry w.r.t.
complement, A <., A, which is the previous case. So if A is r.e. and not
recursive, neither A <, A nor A <, 4 holds. B

Note that the ability to decide membership in a set obviously implies the ability
to decide membership in the complement of the set. But the last property
above reveals that a set and its complement may be <y -incomparable! This
highlights the point that <, is a precise restricted version of the intuitive notion
of “reducing” one problem to another.

Corollary 4. Ky <, A implies A is not co-r.e.

Proof: Ko <m A implies Ky <m A. By Corollary 3, Kp is not r.e., and non-r.e.
inherits up <. W
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Corollary 5. Ky % K, is neither r.e. nor co-r.e.

Proof: Obviously, Ko <m Ko x Ko, so is not co-r.e. by Corollary 4. Likewise
Ko <m Ko x Ko, and so it’s not r.e. either. W

Lemma 3. If A isr.e., then A <, K.

Proof: Suppose M accepts A. Let f(z) = (M, z). Clearly, f is recursive, and
alsoze Aiff f(z) € Ko. B

Theorem 7 and Lemma 3 show that Kj is, in some sense, the hardest r.e. set—
any r.e. set can be reduced to it. The following definition formalizes this notion:

Definition 6. If R is a class of sets and < is a relation on sets, then a set K
is <-hard for Riff C < K for all C € R. A set K is <-complete for R iff K is
both <-hard for R and K € R.

Lemma 4. Every language other than the empty set and X* is <p-hard for
recursive languages over X.

Proof: An exercise. H

7 Undecidability of Blank-Tape Halting Problem

Theorem 8. Let K3 = {M : M halts on blank tape}, that is, the set of en-
codings of Turing machines that halt on blank tape. Then K3 is a <j,-complete
r.e. set.

Proof: Clearly K3 ist.e. (¢f. Theorem 7), so we need only show that it is <;,-hard
for r.e. sets.

Let R C X* be any r.e. set, and say R = domain(MRg) for some Turing machine
Mpg. We show that R <;, K> as follows.

For any string z € £*, we can define a new Turing machine My, (that is, f(z)
is the code of this Turing machine) that operates as follows:

“On input w, erase w, print z on the tape as input, and then act
exactly like Mg.”
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By definition, the behavior of My(;) does not depend on its input—it always
halts or it never halts. In fact,
zeR iff Mpghaltsoncz

iff My, halts on some input

iff Mj(;) halts on input e

iff f (:c) € Ko.
But it is not hard to see that the function f is total recursive. (Think of writing
a Scheme procedure that, when applied to character string x, prints out a Turing

machine flow-chart for M;(;). The Scheme program has a flowchart for Mg as
a “built-in” constant.) Hence, R <p, K9. W

Theorem 9. K; is a <y-complete r.e. set.

Proof: Replace “2” by “1” in the preceding proof. W

8 Rice’s Theorem

Definition 7. A property of languages is nontrivial on the r.e. languages, “non-
trivial” for short, iff there is some r.e. language that has the property and some
r.e. language that does not.

For example, the property of being an r.e. language is trivial (since all r.e.
languages have it). The properties of

e containing the empty word,

e being empty, or

e Dbeing infinite

are each nontrivial.

Theorem 10. (Rice) The set Kp = {M : P(domain(M))} is not decidable
for any nontrivial property P of r.e. sets. In fact, if P(®) is false, then Kp is
<m-hard for r.e. sets.

Proof: Suppose that P(0) is false. Since P is nontrivial, there exists a machine
M, with domain(M;) # @ such that P(domain(M,)).

Let R C X* be any r.e. set and say R = domain(Mg) for some Turing machine
Mp. We show that R <, Kp as follows.

For any string r € £*, we can define a new Turing machine M) (that is, f(z)
is the code of this Turing machine) that operates as follows
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“On input w, save w temporarily, and simulate Mg on input z.
If this simulation halts, then act exactly like M; on input w.”

Now, by definition of M),

Mg halts on =

implies M/ ;) acts like M; on every input
implies domain(M/(;)) = domain(M,)
implies f(z) € Kp,

and conversely,

Mg does not halt on z
implies domain(M, (=) = 0
implies f(z) & Kp.

Soze R if Mghaltsonx iff f(z) € Kp. Moreover, as in the proof
of Theorem 8, the function f is total recursive. Hence, R <, Kp. B

Theorem 11. The set Kioc = {M : domain(M) = X3},} is neither r.e. nor
co-r.e.

Proof: By Rice’s theorem, Ko is <py-hard for r.e. sets, and so is not co-r.e. To
show that Ko is not r.e., it is enough to show that K3 <m Kiot. To do this, for
any string = € {a,b}*, we can define a new Turing machine M) that operates
as follows

“On input w, simulate M, running on blank tape for |w] steps.
If M, does not halt in this number of steps, then halt, otherwise go
into an infinite loop.”

Then M. € K3 iff M;(;) halts on all inputs w iff My(;) € Kiot. B

9 Turing Reducibility and Relativization

Many-one reducibility is a good technical tool, but as we noted in §6, it does not
completely capture the idea of reducing one problem to another. We introduce
Turing reducibility, <T, as a better formulation of this general notion.

Informally, A is recursive in B iff there is some program which decides mem-
bership in A, where the program is allowed to repeatedly “call a subroutine” to
answer questions about membership in B. It may use the answers about B how-
ever it likes. (In contrast, many-one reducibility allows only a single question
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about membership in B, viz., “f(z) € B”, and must return the same answer as
that question.)

We formalize “calling a subroutine” for B by defining Turing machines with
language inputs as well as string inputs. These are Turing machines with an
extra tape, called the language tape. The head on the ordinary tape operates
as usual. The head on the language tape is two-way read-only.

Although we can define a Turing machine tape as containing an infinite number
of squares all but a finite number of which are blank, we can equally well think of
the tape as finite but able to grow further at any point in a computation. In fact,
we formalized Turing machine computations in just this way using configurations
which contained only the finite, nonblank portion of the tape at any step of the
computation. Now likewise thinking of the language tape as finite but growing,
we can’ define configurations and computations involving the language tape as
was done for the regular worktape, except that when the language tape needs
to be extended by an additional tape square, the new square, instead of always
being marked with a blank, is sometimes marked with a 1 and sometimes with
a 0. In particular, as the language-tape head moves into new squares, the nth
tape square added to the language tape contains 1 iff the n*" word in £} in
canonical order is in B.

Of course if B is not decidable, there is no effective way to extend the lan-
guage tape with properly marked squares as computations proceed. For this
reason, machines with language inputs are sometimes called oracle machines,
and the language input B is called “the oracle” since the language tape for B
miraculously gives correct answers about a language which may be undecidable.
But the binary values of the language-tape cells, and hence the computational
behavior of oracle machines, are perfectly well-defined mathematically.

To run an oracle Turing machine on string input £ and oracle B, we start with
#z# on the work tape in the normal way. We start the language-tape head on
the leftmost square of the language tape, and have this square contain a blank.
Switching back to describing the language tape as a completed infinite tape,
we see that it contains the values of the characteristic function, c¢g, of B on
the successive words over the alphabet of B in canonical order. For example, if
the alphabet of B consists of the symbols a and b, in that order, the complete,
infinite language tape looks like:

(F Tes(@ [c5(@) [5(®) [cp(@a) [ cp(ab) [ cp(ba) [ca @) | - ]

When we run an oracle machine M on inputs z and B, we are essentially doing
a computation as if we had a subroutine for deciding membership in B.
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Definition 8. A is Turing-reducible to B, in symbols A <t B, iff there is an
oracle Turing machine M which, given fixed oracle B, halts on all string inputs
z € I% with output cs(z).

A is r.e. in B if there is an oracle Turing machine M which, given fixed oracle
B, halts on input z € &%, iff € A.

Synonyms: A <t B iff A is recursive in B iff A is decidable in B.

Theorem 12. Basic Facts about Turing Reducibility:

e A <, B implies that A <t B.

e If Ris a recursive set, then A is recursive iff A is recursive in R, and A is
r.e iff Aisr.e. in R.

e A<t BandB<rCimply A<t C.
e A<rBif A<y Biff A<t B.

o It isnot the case that A <t B implies A <, B. (For example, Ko <t Ko,
but by Lemma 2 it is false that K¢ <m Ko.)

We define the Halting Problem relative to B to be

B'={(M,z) : M is an oracle Turing machine which halts on
input z and oracle B} .

So Ko amounts to ¢'. B’ is also called the jump of B.
Theorem 13. (Relativized Halting Problem) B’ is r.e. but not recursive in B.

Proof: Same as the corresponding proofs (Corollary 2 and Theorem 7) for the
ordinary halting problem Kqo(= @), with all the ordinary Turing machines in
the original proofs replaced by oracle Turing machines with fixed oracle B. B

We say A <t Biff A <t B and B £1 A. Thus, we have
Corollary 6. B <t B'.

Define

BO® =9,
B(n+1) — (B(n))l'
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By the preceding theorems, B(*) < B(*+1) for all n. So the sequence of sets
0<r ¥ <7 1) <T--

has strictly more difficult successive membership problems. This sequence, or
more precisely the sequence of families {L : L <, 8™} forn =0,1,..., is called
the Arithmetic Hierarchy.

Thus, there is a rich classification possible among undecidable problems. Various
natural decision lie along the arithmetic hierarchy. For example, Kot turns out
to be =, 8(2).

Theorems and proofs about machines that carry over without change to oracle
machines are said to relativize. Most of our theorems relativize. For example,
the remark that a set A is r.e. iff A <, Ko (which follows immediately from
the facts that Ky is a <j-complete r.e. set and that r.e. inherits down <p)
relativizes to:

Theorem 14. Aisr.e.in B iff A <, B'.

Likewise Theorem 1 relativizes to:

Theorem 15. A <t B iff A is both r.e. and co-r.e. in B.
Some further relativizations:

Theorem 16. The following are equivalent:

e Aisre. in B.
¢ A = domain(yp), where  is a partial recursive function in B.

o A =range(f), where f is a total recursive function in B, or A = 0.

Theorem 17. Define the blank-tape halting problem relative to B, KgB), to be

{M : oracle machine M with oracle B halts on blank input}.

Then KgB) =m B'.

Putting these relativized facts together, we can conclude as a final result in
these notes:

Theorem 18. A" is neither r.e. nor co-r.e. in A.
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Proof: To show a language B is not r.e. in A4, it suffices to show that A’ <n B.
This follows because A’ is not r.e. in A and non-r.e.-ness inherits up <m.

But A’ <1 A’ trivially, so by Theorem 15, A’ is r.e. in A’. Therefore, by
Theorem 14, A’ <, A” so A’ <, A”, and we conclude that A” is not co-r.e. in
A. But also A’ <t A’, so similarly 4’ <, A”, and we conclude that A” is not
re.inA. B

Corollary 7. K| is neither r.e. nor co-r.e.

A Axioms for Coding Computable Functions (Optional)

There is a simple set of axioms which characterize the properties of the set
of codewords abstractly without having to mention d or Turing machines at
all; only the general notion of partial recursive function need be known. For
simplicity we’ll state the axioms for recursive functions on strings over the al-
phabet {a,b}. First, saying that d is a coding certainly implies that d(M) and
z uniquely determine the behavior of M on z. The important part of d is this
mapping from d(M) and z to the output of M on z. This is captured the idea
of a coder function.

Definition 9. A partiel-recursive-function coder is a partial function
v:{a,b}" x {a,b}* — {a,b}"

such that for every partial recursive function ¢ : {a,b}* — {a,b}*, there is a
string 2z, € {a,b}* with the property that for all z € {a, b}*,

W(zp,2) = p(2).
Such a z, is called a code or Godel number for p. Coders are also called universal

Sfunctions for the partial recursive functions.

Having chosen a partial-recursive-function coder v, the axiomatic definition of
K1 becomes

Definition 10.

K; = {z € {a,b}" : (2, z) € domain(v)}.

The intuitive requirement that d be recursive serves to guarantee that the coding
is effectively decipherable—there is some recursive way to recover information
about M from d(M). This is abstractly captured by the universal machine
theorem:
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Theorem 19. There is a partial-recursive-function coder v which is itself a
partial recursive function.

One other property of the coder will be needed. In addition to determining the
input/output behavior of M, the code z = d(M) can be modified to obtain the
code for simple variants of M. For example, from z and y € {a,b}*, one can
easily construct a machine M; , which replaces every input z given to it by the
word pair(y,z) € {a,b}* which codes the pair (y,z), and then acts like M on
the new input pair(y, z). This is abstractly captured by thinking of the function
s(z,y) = d(M,y) and saying it is total and recursive. For historical reasons,
this is known as the s0'- Theorem:

Theorem 20. There is a total recursive function s : {a,b}* x {a,b}* — {a,b}*
such that for all 2,y, z € {a, b}*,

v(z, pair(y, z)) = v(s(z,9), z).

In these notes we gave explanations in terms of a function d coding Turing
machines into binary strings. One can give the details of how such an encoding
can be accomplished, but we can confidently gloss over these details because a
careful reading of all the arguments above will reveal that Theorems 19 and 20
are the only facts we needed about the coding to obtain all the results given in
these notes. In fact, there is an elegant “recursive isomorphism” theorem due to
Hartley Rogers which explains why all reasonable codings—namely those that
satisfy the universal machine and s7*-theorems—have the same properties with
respect to computability.

Theorem 21. Let v; and vz be two coders satisfying the universal machine
Theorem 19 and the sI*-Theorem 20. Then there is a total recursive one-one
and onto function ¢ : {a,b}* — {a,b}* such that

vi(z, z) = va(t(2), z)

for all z,z € {a,b}"*.

The proof is not very hard but a bit long, and to save time we’ll skip it.

Theorem 21 can be understood as saying that there is a one-one onto recursive
function t translating, say, Scheme programs into equivalent CLU programs. So
Scheme and CLU (and Turing machines, RAM’s, efc.) are indistinguishable
from the point of view of general computability theory. This is a clear warn-
ing that the conclusions of the theory will not bear on some central Computer
Science issues—such as which language features which make Scheme more de-
sirable then CLU for certain problems, and vice-versa. On the other hand, the
conclusions of the theory, especially negative conclusions about the !imitations
of computability, will hold with great generality and can’t be gotten around by
changing programming languages.
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Problem Set 2 Solutions

General Information. This handout includes some of the best solutions sub-
mitted by students for Problem Set 2.

The grades went as follows:

| number submitted min max mean median

1 13 15 25 19.5 21
2 12 3 25 18.3 20
3 13 3 25 17.2 19
4 12 10 25 19.7 22
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Problem 2a: Suppose there is a universal function u : N2 — N for the prim-
itive recursive functions that is primitive recursive. Then in particular, the
function f = u(z,z)+ 1 is primitive recursive. Now let ny be the “encoding”
of the primitive recursive function f. We then have f(n;) = u(ny,n;)+ 1. But
since u is universal,

u(ny,ny) = f(ny) = u(ng,ny) +1

hence 0 = 1, a contradiction. Thus, u cannot be primitive recursive.

Problem 2b: One should invoke “Church’s Thesis” here instead of giving a
complete program. It’s not hard to see that all of the basic functions, plus
composition and primitive recursion, can be simulated in Scheme. Using these
subroutines, one can write an interpreter for the primitive recursive notation.
Since a “universal function” is basically an interpreter that takes the encoding
of a program and a number and simulates the program on the number, the
universal function is programmable in Scheme (and hence computable.)
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Problem Set 4

Due: 13 October 1989
Problem 1. (Recursive and Recursively Enumerable Sets)

1(a). Show that the recursive sets are closed under union and intersection.
That is, given any two recursive sets S; C N and S; € N, prove that S; U S,
and S; N S, are recursive.

1(b). Show that the r.e. sets are closed under union and intersection.

Problem 2. Show that a set S C N is re. iff $ = @ or S is the range of
a primitive recursive function p : N — N. (Hint: Suppose M is any Turing
machine. Using the primitive recursive functions defined in class for proving
that u-recursive functions simulate Turing machines, show that the predicate of
n and m:

“M halts on input n in exactly m steps”

is primitive recursive.)

Problem 3. Show that a set S C N is recursive iff S is finite or S is the range
of an increasing total recursive function. (A function f is increasingif n < m

implies f(n) < f(m).)
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Massachusetts Institute of Technology

Problem Set 3 Solutions

General Information. This handout includes some of the best solutions sub-

mitted by students for Problem Set 3.

The grades went as follows:

max mean median

| number submitted min
1 14 20 25 24.5 25
2 10 10 25 22.2 25
3 5 10 25 20.0 25
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Problem 3: No one provided the answer we had in mind, though many did
solve the problem correctly. Each correct solution depended on the ideas stated
in Problem 2; an example of such a solution follows.

One can solve the problem without depending on Problem 2, and the argument
is important enough to merit discussion. We must show that the set of functions
computed by the extended abacus machines are the same as the set computed by
the ordinary abacus machines. The idea is to prove, using simulation arguments,
that

“extended abacus computable implies Turing computable”

and vice versa. Since the Turing computable functions are the same as the
abacus computable functions, this will suffice to prove the theorem.

To show that “extended abacus” computable functions are Turing computable,
we need to show how to construct a Turing machine to simulate any extended
abacus. Use the method given in class to encode abacus registers on the tape.
Then to simulate the instruction “{i] — [j]”, for example, we move to the [j]
block and copy [i] over it. This requires some care—for example, using special
symbols to mark block j since we cannot store [] in the finite state—but the
idea is easy enough to see. Thus, Turing machines can simulate extended abacus
machines. Since we proved in class that ordinary abacus machines can simulate
Turing machines, the argument is finished.
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Quiz 1

Instructions. Do all problems in the provided blue book, carefully labeling
solutions with their corresponding numbers. All problems count equally.

Problem 1. Suppose f : N — N and g : N — N. We say that f and ¢
are defined by simultaneous primitive recursion from functions A : N3 — N,
A’ : N® — N and natural numbers ng, n, iff

: f(0) = no
9(0) = mn
flz+1) = h(z, f(z),9(z))

g(z+1) = H(z, f(z) 9(z))
Show that if A and A’ are primitive recursive, so are f and g. (Hint: Consider

the function p(z) = pair(f(z), g(z)).)

Problem 2. Explain why the set of multi-variable, Diophantine polynomials
with an integer root vector is r.e.

Problem 3. Suppose S C N. Prove that S is an infinite r.e. set iff S is the
range of a one-to-one (i.¢., injective) total recursive function f: N — N,
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Quiz 1 Solutions

Remark. The solutions below contain roughly what we’d expect to see in a
“perfect” answer. Quiz solutions, like the ones below, may be somewhat sketchy
but should convey the right ideas.

First, here are the relevant statistics from the quiz.

Score Students

100 - 91: **
90 - 81; **
80-71: **
70 - 61: *
60-51: **
50 - 41: **
40 - 31:
30-21. *
20 - 11 **

10-0: *

The median score was 61; the mean was 55.1.

Problem 1. Suppose f : N — N and ¢ : N — N. We say that f and ¢
are defined by simultaneous primitive recursion from functions h : N3 — N,
k' : N® — N and natural numbers ng, n; iff

f(0) = no

9(0) n
fz+1) = h(z, f(z),9(z))
g(z+1) = h'(z, f(z),9(z))

Show that if A and A’ are primitive recursive, so are f and g. (Hint: Consider
the function p(z) = pair(f(z), 9(z)).)

Solution. Define the function p : N — N as follows:

p(0) = pair(ng,ny)
p(z+1) pair(h(z, left(p(z)), right(p(z))), h'(z, lefl(p(z)), right(p(z))))
= h'(z,p(z))

l
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where pair : N2 — N is some primitive recursive pairing function like
pair(n,m) = 2" . 3™
or perhaps
. 1
pair(n,m) = §(n +m)n+m+1)+m

(¢f. Boolos & Jeffrey, page 161), and left, right extract the left and right compo-
nents of a coded pair. Since pair, left, right, h, and A’ are primitive recursive,
so is h''(z,y) and hence so is p. Then let

f(z) lefi(p(z))
9(=) right(p(z))

Then f and g are also primitive recursive.

Problem 2. Explain why the set of multi-variable, Diophantine polynomials
with an integer root vector is r.e.

Solution. We must give a program that halts on precisely the Diophantine equa-
tions with an integer root vector:

“Given a multi-variable Diophantine polynomial as input, deter-
mine the number m of variables in the polynomial. Then for k =

0,1,2,..., evaluate the polynomial on all m-tuples of integers where
each integer has absolute value < k. Halt if the polynomial ever
equals 0.” .

This algorithm halts at each stage k, because there are only a finite number of
m-tuples with each integer having absolute value < k. The algorithm thus gets
to try each possible integer root vector, and so meets the requirements. Thus,
the specified set of polynomials is r.e.

Problem 3. Suppose S C N. Prove that S is an infinite r.e. set iff S is the
range of a one-to-one (i.e., injective) total recursive function f : N — N.

Solution. (=) Suppose S is an infinite r.e. set. Let P be the program whose
domain is S. Define a new program as follows:

“On input k, dovetail P on all inputs. Stop when the machine has
seen k + 1 inputs for which P halts, and output the (k¥ + 1)st input
on which P halted.”
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This program computes a partial recursive function f : N — N. Since S is
infinite, and since the program uses dovetailing, f is total and range(f) = S.
Since f never outputs the same answer for distinct inputs, f is one-to-one.

(<=) Suppose S is the range of a one-to-one total recursive function f. Then S
is r.e. since it is the range of a partial recursive function, and S is infinite since
it is the range of a total one-to-one function on N.
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Problem Set 5

Due: 27 October 1989

Problem 1. Let S be the set of Turing machines (TM’s) that halt on input 3
and run forever on input 4. Show that S is neither r.e. nor co-r.e.

Problem 2. Classify the following r.e. sets according to whether they are re-
cursive or nonrecursive. If the set is not recursive, state whether its nonrecur-
siveness follows from Rice’s theorem. If the set is not recursive and this fact
does not follow from Rice’s theorem, prove that the set is not recursive.

2(a). The set of TM’s that halt on input 3 and halt on input 4.
2(b). The set of TM’s that halt on input 5 in exactly 10° steps.
2(c). The set of TM’s each of whose domain is not a set of prime numbers.

2(d). The set of TM’ which, on input 0, run for exactly 2° steps for some
i>0.

2(e). The set of SCHEME! S-expressions which either halt when applied to
an infinite number of different integers, or there is a number &k such that the
expression does not halt when applied to any integer > k.

2(f). The set of SCHEME S-expressions P which compute a partial recursive
function f : N — N, such that range(f) contains an integer k¥ > number of
atoms in P.

11dealized language with an unbounded heap (memory).
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Problem Set 4 Solutions

General Information. This handout includes some of the best solutions sub-
mitted by students for Problem Set 4.

The grades went as follows:

lnumber submitted min max mean median

1 11 17 25 21.9 24
2 10 5 25 15.5 15
3 11 14 25 20.0 23
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Review for Quiz 2

MANY-ONE REDUCTIONS

Everyone seems to have their own way of thinking about many-one reductions,
and unfortunately most of these ways are misleading or wrong. Let’s look once
more at the definition:

A <,, B means there exists some total recursive function f such that x € A iff
f(z) € B.

This is really all there is to it. Now we also have the following theorem:

MANY-ONE THEOREM: If A < B then

e if B is recursive then A is recursive

e if B is r.e. then A 1s r.e.

Many people seem to think about A <, B as: If I could decide B then I could
decide A. Now this is good intuitively, maybe, but it can easily lead you astray.
Remember, many-one reductions and our many-one theorem are two different
things! If A <,, B then we can use the theorem to say that if B is decidable
then A is decidable, but this doesn’t always hold in the other direction.

What is a good way to think of many-one reductions then? Think of a many-one
reduction as “disguising” one problem as another. The question we really want
to know the answer to is: Is £ € A? But we ask this question: Is f(z) € B?
Since z € A iff f(z) € B, the answer to this question will be the same answer
that we wanted! Whoever is telling us the answer to “Is f(z) € B?” is really
telling us the answer to “Is £ € A?” but we have disguised our question in such
a way that we fool the answerer into telling us what we want to know. Now
sometimes the answerer will always tell us yes or no (which corresponds to the
“recursive” part of the many-one theorem), sometimes the answerer will say yes
but refuse to answer if the answer was really no (which is the “r.e.” part) and
sometimes the answerer will do something different. The many-one reduction
doesn’t say anything about what kind of answer we will get to our question; all
it tells us is how an answer to the question we pose relates to the answer of the
question we really wanted to ask.

This is still pretty abstract, but we’ll use the idea as the basis of giving hopefully
intuitive explanations of how one goes about thinking up many-one reductions
in the solutions that follow.
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Problem 1. For each of the following languages, indicate whether it is decid-
able, r.e. but not decidable, co-r.e. but not decidable, or none of these.

1(a). L, = {M | there exist at least 100 Turing Machines with domain(M)}.

DEC. This one is easy. You can add to any TM dummy states that are un-
reachable or whatever...and easily get 100, no 1000, oh, maybe even more TM’s
accepting the same language as M without having to do any real thinking at
all. You can thus rephrase Li: Ly = {M | M is a TM }. You know this is easy
to check for.

1(b). Ly = {M | domain(M) contains only even numbers}.

CO-RE. L is clearly at least co-r.e. Ly = {M : there exists some odd number
n € domain(M)}. Just run M on all odd numbers in the standard dovetail
fashion—if it halts on any of them, then M € L,. L is not decidable, though,
by Rice’s Theorem. “Only even numbers” is a nontrivial language property.

1(c). Lz = {M | M halts on 2,4,6 and diverges on 27,28,31 }.
NONE. The details are left to you.

1(d). L4 = {(M,k) | M accepts some w € N in k or fewer steps }.

DEC. At first glance this might seem undecidable, but the trick is that you only
have to consider inputs of length k or less. You can’t even read more than k of
the input, so it doesn’t really matter if there’s more lying around. Finiteness
is easy. Just try all encodings of numerals w, where the length of the encoding
(w+1) is < k, one after another, running each for k steps. If M(w) ever halts
within that time, accept; otherwise, reject.

Problem 2. Let Lpyrry = {(M, M') | domain(M) = domain(M') and M’ has
the fewest number of states of any TM accepting domain(M)}. Prove that
Lprn is undecidable. This demonstrates that there is no algorithm for state
minimization for Turing Machines.

At first glance it seems that you can’t use Rice’s Theorem since “fewest number
of states” is clearly a machine property and not a language property. So the next
best thing is your favorite: many-one reductions! But what problem should you
reduce to Larn? Well, if you remember earlier problems involving two Turing
Machines, the idea was always to fix one machine and then show that if the
other machine had such-and-such relation to the first machine it was the same
as having some property. In this case it seems best to fix M’ into a nice simple
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form. What is one possible form? Well, we want M’ to have the fewest number
of states of any machine accepting domain(M’). The fewest number of states
any TM can have in the model given is one: a start state. One simple behavior is
to just immediately halt. Then domain(M’) = N and M’ has the fewest number
of states possible. So now maybe it’s obvious: Testing an arbitrary M to see if
(M, M’) € Lygn is really testing whether M € K4 = {M | domain(M) =N}.
Thus you see how you are “disguising” your question “M € K4?” as the question
“(M,M') € Lyin?” and fooling Lysrn into answering this question for you. To
make this formal, so you can really be sure you're right, you use this standard
form. First you want to show

K4 <m LmIn

You write out what this means: There exists some total recursive function f
such that
€ Kyiff f(z) € Lymin

This is pretty abstract so the next step is to keep rephrasing this statement
until it makes sense:

M, € K, iff (Mg, M3) € Lyin

where f(M;) = (M2, M3). This is just stating what z and f(z) are. Now you
say what it means to be in the language:

domain(M,) = N iff domain(M3) = domain(M3)

and also remembering the condition that M3 must have the fewest number of
states of any machine accepting M;’s language.

Now you’ve got the statement of what you’re trying to prove into an easily
understood form, so you want to say what f does—how does it transform M;
into M, and M37 Well, you want M3 to be the one-state machine that halts
immediately on all inputs, so you can build that into f (which is just a TM that
always halts, remember). You want to test if M; halts everywhere, so you just
let My = M;. This is all easily computable. Now finally you need to make sure
the “iff” holds:

If domain(M,) = N then domain(M;) = domain(Ms) and M3 has the smallest
number of states of any machine with domain(M,;). Since domain(Ms) = N
and My = M, certainly if domain(M;) = N this holds.

It is best to state the other direction as the contrapositive: If domain(M;) # N
then domain(M;) # domain(M3s) or Ms doesn’t have the smallest number of
states of any machine halting on domain(M,). Clearly this is true as well, since
domain(M3) = N. So you have proven that K4 <m Larn. You now use the
many-one theorem and since K4 is not decidable, it follows that Lasry is also
undecidable.
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Problem 3. Let B = {M | domain(M) = @ or domain(M) = N}. Recall that
K, = {M | M halts on input 0}.

3(a). Show that K; <, B.

You proceed to keep rewriting this until it makes sense: K3 <,, B means there
exists some total recursive function f such that

z € K, iff f(z) € B

M, eK,if MeB

where f(M;) = M.
M; halts on 0 iff domain(M;) = 0 or domain(M;) =N

So the problem is to design a TM M, based on M; so that M>’s language is @
or N exactly when M; halts on input 0. Thus you are disguising your question
by hiding the “M; halts on input 0” inside M,. Perhaps you recall a common
trick is to have M, throw out its input and run M; on 0. This is the “fooling”
part—the answerer thinks it’s answering questions about M, on some input,
but you’re ignoring the input entirely and running M; on 0, all inside M,. So
you specify M, as follows: M, on any input erases it and runs M; on 0, halting
iff M, halts. The function f to build M3 out of M; is easily computable. Now
you have to make sure this works—just stating things, even if they are true, is
not enough. You do each part separately for clarity:

If My halts on 0, then domain(Mz) = @ or domain(M,) = N. Clearly if M,
halts on 0, then domain(M3) = N since M, then halts on every input (since it
ignores all inputs). So this is true.

If My doesn’t halt on input 0, then domain(M;) # @ and domain(M;) # N.
Oh no! Trouble. If M; doesn’t halt on 0, then L(M;) = @, so this doesn’t work.
You’ve found a bug!

What you need is a way to make sure this second part is true. Here’s one easy
fix: Have M, always halt on 0, and on any other input erase it and run M; on
input 0. Now if M; halts on 0, domain(M3y) = N and the first part still works,
but if M; doesn’t halt on 0, then domain(Mz) = {0} and thus domain(Ms) is
neither @ nor N.

Many other ideas also work for M,. The basic idea for this problem is to make
sure that M, halts on at least one input when M; on 0 doesn’t halt. You’ve got
to make sure not to run M; on 0 in that case, for obvious reasons!
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3(b). Show that K3 <,, B.

This one is nearly identical, but now what you want is:
M doesn’t halt iff on input 0, domain(M2) = 0 or domain(Mz) = N

Here is an M, that works: M, diverges on 0, and erases the input and runs M,
on 0 otherwise. You should go through the “iff” yourself to see how this works.

3(c). Conclude that B is neither r.e. nor co-r.e.

Both non-r.e.ness and non-co-re.ness inherit up <,,. Since K3 is not r.e. and
K2 <m B, B is not r.e.. Similarly, since Ky is not co-r.e. and K2 <m B,
B is not co-r.e. Remember that what you’re really doing here is applying the
many-one theorem.

Problem 4. Let Kiyfinite = {M | domain(M) is infinite}, the set of programs
with infinite domain. Show that Kinfinite =m Ktot, i-€., Kinfinite <m Ktot and
Ktot Sm Kinﬁnite-

This is an exercise for you.
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Problem Set 5 Solutions

Grades. The grades went as follows:

| number submitted min max mean median
1 12 5 25 19.6 25
2 12 25 50 40.9 43

Problem 1. Let S be the set of Turing machines (TM’s) that halt on input 3
and run forever on input 4. Show that S is neither r.e. nor co-r.e.

Solution. To see that S is not co-r.e., we use Rice’s theorem. The property
P = Contains the number 3 and doesn’t contain 47

is a nontrivial property of r.e. sets, and P does not hold on the empty set.
Thus, S is many-one hard for the r.e. sets; in particular, Ky <, S. Since
non-co-r.e.-ness inherits up, S is not co-r.e.

We cannot use Rice’s theorem, however, to show that S, the set of TM’s that
halt on input 4 or run forever on input 3, is not r.e., since the property

P’ = Does not contain the number 3 or contains 47

does hold on the empty set. We need to use a direct reduction instead. Consider
the set
A = {M | M halts on 4}

which is not co-r.e. by Rice’s theorem. To see that 4 <, S, we use the reduction
function f : N — N, where f(M) is a TM that behaves as follows:

~_“On input n, check the input. If n = 3, halt; otherwise, run machine
M on input 4, halting iff M halts.”

It’s not hard to see that f is total recursive. To see that it’s a legal reduction,
suppose M € A. Then M halts on input 4, so f(M) halts on input 4. Thus,
f(M) € S. Conversely, suppose M ¢ A. Then M does not halt on input 4, so
F(M) does not halt on input 4 and halts on input 3, and thus f(M) € S—in
other words, f(M) ¢ 5. Thus, A <m S, so S is not co-r.e. This just says that
S 1s not r.e., which is what we wanted to show.

Note the form of the “converse” used in this argument. This idea was pointed
out in Handout 18.
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Problem 2. Classify the following r.e. sets according to whether they are re-
cursive or nonrecursive. If the set is not recursive, state whether its nonrecur-
siveness follows from Rice’s theorem. If the set is not recursive and this fact
does not follow from Rice’s theorem, prove that the set is not recursive.

2(a). The set of TM’s that halt on input 3 and halt on input 4.

Solution. Not recursive by Rice’s theorem.

2(b). The set of TM’s that halt on input 5 in exactly 10° steps.

Solution. Recursive; to decide whether a machine M is in the set, run the
machine for 10° steps on input 5. If M halts in exactly this number of steps,
halt and output 1, otherwise halt and output 0.

2(c). The set of TM’s each of whose domain is not a set of prime numbers.

Solution. Not recursive by Rice’s theorem.

2(d). The set of TM’s which, on input 0, run for exactly 2' steps for some
it > 0.

Solution. Not recursive; does not follow from Rice’s theorem, since there are
two TM’s whose domains are the set {0}, but one of which is in the set and
one of which isn’t. This problem was harder than I anticipated; the grader was
consequently lenient. To show that this set—call it B—is not co-r.e., we reduce
K5 to it. The reduction function f : N — N, when given a TM M, returns a
machine which works as follows:

“On input n, simulate machine M on input 0. If the simulated TM
halts, finish on an even power of 2 steps and halt.”

The problem here is making sure that the simulation halts in a power of 2 steps.
Some tricky programming is needed; one needs to simulate each step of M in
some constant number of steps, and keep track of just how many simulated steps
are taken. Using this information, the machine then performs some number of
“dummy” moves to get it up to a power of 2. A rigorous argument here might
take pages of programming.

At any rate, the reduction function can be shown to be total recursive. If M
halts on input 0, then f(M) halts in an even number of steps. Conversely, if M
does not halt on 0, then f(M) does not halt either. Thus, Ky <m B, so B is

not co-r.e.
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2(e). The set of SCHEME S-expressions which either halt when applied to an
infinite number of different integers, or there is a number & such that the ex-
pression does not halt when applied to any integer > k.

Solution. Recursive; it’s a trivial property, though stated unclearly.

2(f). The set of SCHEME S-expressions P which compute a partial recursive
function f : N — N, such that range(f) contains an integer £ > number of
atoms in P.

Solution. Not recursive; does not follow from Rice’s theorem, since it talks about
the ranges of programs. To show that this set, call it C, is not r.e., we show that
K3 <m C. The reduction function f : N — N, when given a TM M, returns a
SCHEME expression that works as follows:

“On input n, run machine M on input 0. If M halts, output an
integer k larger than the number of atoms of this program.”

This last step looks a bit fishy; but since k can be determined by looking at the
size of the encoding for M, this function f is total recursive. Also, M halts on
input 0 iff f(M) outputs an integer > the number of atoms in f(M). Thus,
Ky <y C, s0 C is not co-r.e.
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Quiz 2

Instructions. This exam is closed book. Do all problems in the provided white
book, carefully labeling solutions with their corresponding numbers. Points are
listed for each problem. You have one and a half hours. Good luck.

Problem 1. [25 points] A total function f : N — N is said to be nondecreasing
if n < m implies f(n) < f(m). Show that the range of any nondecreasing total
recursive function f is recursive. (Hint: Divide the problem into two cases—
either range(f) is finite or range(f) is infinite.)

Problem 2. [25 points] Let S = {(M, M’) | dom(M) = dom(M’')}. Prove that
S is neither r.e. nor co-r.e.

Problem 3. [25 points] Prove Rice’s Theorem. Specifically, let P be a property
of sets such that the empty set does not have property P, and there is an r.e.
set R that has property P. Define Kp = {M | dom(M) has property P}. Show
that for any r.e. set A,

A<y Kp.

Problem 4. [25 points] Classify the following sets into one of four categories:
decidable (D), r.e. but not co-r.e. (RE), co-r.e. but not r.e. (CO), or neither r.e.
nor co-r.e. (NONE). No explanation or proof is necessary.

4(a). The set of arabic digits 0,1,...,9 that occur infinitely often among the
base ten representations of elements of K. :

4(b). The set of TM’s that halt on input 9 and enter at least 637 different
states during the computation.

4(c). The set of SCHEME S-expressions computing functions from N — N such
that the domain of the function has a prime number of elements.

4(d). 'The set of TM’s which, on input 4, run for more than some prime number
of steps.

4(e). The set of TM’s which, on every input n, run for at least n? steps.
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Quiz 2 Solutions
Statistics. A histogram of the scores:

Score Students

100 - 91: ***
90 - 81: *
80-71: *
70-61: *
60 - 51; HE*x
50-41: *
40-31: *
30-21: *
20-11:

10 - 1:

The median score was 57; the mean was 63.8.

Problem 1. [25 points] A total function f : N — N is said to be nondecreasing
if n < m implies f(n) < f(m). Show that the range of any nondecreasing total
recursive function f is recursive. (Hint: Divide the problem into two cases—
either range(f) is finite or range(f) is infinite.)

Solution. If range(f) is finite, then it is trivially recursive (any finite set is
recursive.) Now suppose range(f) is infinite; here’s a program that decides
whether a number is in range(f):

“On input n, compute f(0), f(1), f(2),...until f(i) > n. If f(i) = n,
output 1, else output 0.”

A useful method for proving that a program meets some specification is to show
that (1) if it terminates, it gets the correct answer, and (2) it always terminates.
If the above procedure halts, we know it gets the right answer—if it answers 1
it is obviously correct, and if it answers 0 we know that the input n cannot be
in the range since f is nondecreasing. To see that the program always halts,
each computation f(0), f(1), f(2), ... halts since f is total recursive. Also, since
the range is infinite and the function is nondecreasing, we can never “get stuck”
at an element in the range. Thus, the procedure will always find an i with
f(?) 2 n, so the program always halts.
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Problem 2. [25 points] Let S = {(M,M') | dom(M) = dom(M')}. Prove that
S is neither r.e. nor co-r.e.

Solution. There are a number of correct ways to tackle this problem. The most
straightforward method is to pick two sets, one that is not r.e. and one that is
not co-r.e. and reduce these sets to S. A slightly easier method is to reduce a
single set that is neither r.e. nor co-r.e. to S.

We’ll take the latter approach. Recall that K. is the set of TM’s that halt on
all inputs, and that K. is neither r.e. nor co-r.e. Fix TM M; to be the one-
state TM that simply halts. Define the reduction function f such that, given
a TM M, f(M) = (M, M;). Clearly, f is total recursive. Also, if M halts on
all inputs, then domain(M) = domain(M;); if M does not halt on all inputs,
domain(M) # domain(M;). Thus, M € K. iff f(M) € S, so Kot <m S.
Since Kot is neither r.e. nor co-r.e., S is neither r.e. nor co-r.e.

Problem 3. (25 points] Prove Rice’s Theorem. Specifically, let P be a property
of sets such that the empty set does not have property P, and there is an r.e.
set R that has property P. Define Kp = {M | dom(M) has property P}. Show
that for any r.e. set A,

A<m Kp.

Solution. See the computability notes (Handout 10) for the solution.

Problem 4. [25 points] Classify the following sets into one of four categories:
decidable (D), r.e. but not co-r.e. (RE), co-r.e. but not r.e. (CO), or neither r.e.
nor co-r.e. (NONE). No explanation or proof is necessary.

4(a). The set of arabic digits 0,1,...,9 that occur infinitely often among the
base ten representations of elements of K.

Solution. (D), decidable. The set is finite; even though we may not know how
to write the program, there exists a TM that decides membership in the set.

4(b). The set of TM’s that halt on input 9 and enter at least 637 different
states during the computation.

Solution. (RE), r.e. but not co-r.e. Call this set D;; a Turing machine with
domain D; works as follows:
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“Given any TM as input simulate the TM on input 9 and count the
number of states used. If it halts and uses at least 637 states, halt.”

The set is thus r.e. To see that the set is not co-r.e., consider the set
K5 = {M | M halts on input 9}

By Rice’s Theorem, K3 is not co-r.e. We want to show that K5 <, D;. Here,
we use the reduction function f : N — N, where f(M) is M with 637 “dummy”
states at the beginning; transitions out of a dummy state lead to the next dummy
state without changing the tape contents or head position. Thus, M halts on 9
iff f(M) halts on 9 and enters at least 637 different states, so Ks <m D;. Since
non-co-r.e.-ness inherits up, D is not co-r.e.

4(c). The set of SCHEME S-expressions computing functions from N — N such
that the domain of the function has a prime number of elements.

Solution. (NONE), neither r.e. nor co-r.e. Call this set Dj; by Rice’s theorem
(where P is a SCHEME S-expression)

Dy = {P | domain(P) has a prime number of elements}
is not co-r.e. To see that D, is not r.e., we need to use a reduction. Let
A= {P|0¢domain(P)};

A is not r.e., since 4 is not co-r.e. by Rice’s Theorem. We claim that 4 <, Ds.
The reduction is f : N — N, where f(P) behaves as follows:

“On input n, halt if n is 0, 1, or 2. If n = 3, run P on input 0 and
halt if P halts. If n > 3, diverge.”

If P € A, then domain(f(P)) has 3 elements and hence f(P) € D;. If P & A,
then domain(f(P)) has 4 elements and so f(P) & D3. Thus, A <, D3, so D;

is not r.e.

4(d). The set of TM’s which, on input 4, run for more than some prime number
of steps.

Solution. (D), decidable. A TM deciding this set just checks to see whether its
input halts in not more than 2 steps on input 4. If it does, output 0, else output
1.
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4(e). The set of TM’s which, on every input n, run for at least n? steps.

Solution. (CO), co-r.e. but not r.e. Call this set D3. A program with domain
D3 works as follows:

“Given any TM as input, dovetail the TM over all inputs. If it ever
halts in less than n? steps on a particular input, halt.”

To see that Ds is not r.e., we reduce K, to it. The reduction function f returns
f(M) which behaves as follows:

“On input n, ignore n and run M on input 0. If M halts, halt.”

If M does not halt on 0, then f(M) never halts on any input and so is in Dj.
If M halts on input 0 in, say, k steps, then f(A) will halt in, say, g(k) steps.
Thus, we can pick an n large enough so that f(M) runs in fewer than n? steps,
so f(M) ¢ Ds. Thus, K7 <m Da, so Ds is not r.e.
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Problem Set 6

Due: 13 November 1989

Problem 1. Prove Rice’s Theorem for the partial recursive functions. Specifi-
cally, suppose P is a property of partial recursive functions N — N. Define

Fp = {M | M computes f : N — N and f has property P}

Suppose the totally undefined function does not have property P, and assume
there is a partial recursive function g : N — N with property P. Prove that for
any r.e. set A,

A<y Fp.

Problem 2. Consider any formulas F) and Fy, where z,, 23, ...z, are the free
variables appearing in either Fy or F,. Show that Fy ~ F, iff
F V2 V.. Ve (Fy & Fy)

Problem 3. Determine whether each of the following sentences is valid. For
those that are not valid, give an interpretation in which the sentence is not true.

3(a). Vzz+0=1z

3(b). (3zVy Pz y) — (Vy3z Pz y)

3(c). (Vz3y Pz y)— (Gyvz Pz y)

3(d). [Vz(F1 — F2) AVzF] — (V2 F3)

3(e). [Bz(Fy — F3) A3zF] — (3zF3)

3(f). (MinArith A Commutativity) — Cancellation,

where the sentence MinArith is the conjunction of the seven axioms for the
theory @ given in Boolos & Jeffrey, page 107,

Commutativity = (VeVyz+y=y+z)), and
Cancellation = (VzVyVz(z+y=2+y)—z=12)

(Hint: Consider N U {c0}.)
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Problem Set 7

Due: 17 November 1989

Problem 1. [25 points] Explain how to write a SCHEME program which, given
any first-order sentence S and an interpretation over a finite domain for the
constants, functions, and predicate symbols appearing in S, prints the truth
value of S in the interpretation. Describe the input conventions for the inter-
pretation. (Don’t actually write the whole SCHEME program, just give enough
explanation to make it clear you could.)

Problem 2. [25 points] Convert the following sentences into prenex normal
form. Try to minimize the number of alternations of quantifiers in the resultant
sentence.

2(a). 3z (Az)A3z (Bz)) — 3z (Cz)
2(b). Vy Iz (z < y) = (mIzVy (2 < y))

Problem 3. [50 points] This problem will prove that the validity problem is
undecidable for first-order sentences restricted to have a single ternary predicate
symbol as their only nonlogical symbol. The proof follows from a series of
sentence “simplifications” which you are to exhibit in subproblems below. You
must define each simplification so that it preserves validity (i.e., the old sentence
is valid iff the simplified sentence is valid).

3(a). Let F be any atomic formula of the form P;(t1,t;) or t; = t3, where ¢
and ¢ are terms containing only the function symbol ’ (successor) and constant
0, and P; is a binary predicate symbol for ¢ = 1,...,m. Explain how to write a
formula F’ equivalent to F so that F’ is of the form

3z, ... 32 (Fl/\Fg/\...Fn)

where each F; has the form 2 = 0, z = ¥/, or Pi(z,y), with z, y variables.
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3(b). Let S be a sentence whose atomic formulas have the form z =0, z = ¢/,
or P(z,y). Explain how to “simplify” S into a sentence S’ with only binary
predicate symbols and no function symbols. (Hint: Write a sentence that states
that a binary predicate G(z,y) is the graph of a total function of z. Let S’ be
the conjunction of this sentence and a simplified form of S in which subformulas
z =y are replaced by G(z,y). Note that S’ is not equivalent to S, but it is the
case that either both are valid or neither is valid.)

3(c). One can simplify any sentence S into a sentence S’ with the same non-
logical predicate and function symbols but no names; the trick is to replace
distinct names by fresh variables and then existentially quantifying over the
new variables. For instance, the sentence

Vz(z=aVz=1b)

becomes
JyIzVz (z=yVz=2).

Explain how to obtain a model of S’ from any model of any sentence S, and
vice-versa. Conclude that S is valid iff S’ is, and also that S is satisfiable iff S’
is.

3(d). Let S be any sentence whose only nonlogical symbols are binary predicate
symbols P;. Show how to simplify S into a sentence S’ whose only nonlogical
symbols are names and a single ternary predicate symbol 7.

3(e). Conclude that the validity of sentences whose only nonlogical symbol is
a single ternary predicate symbol is undecidable. (Hint: In Boolos & Jeffrey,
Chapter 10, only binary predicate symbols and the unary function symbol ’ and
the name 0 appear in the formulas corresponding to a Turing machine.)
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Problem Set 6 Solutions

Problem 1. Prove Rice’s Theorem for the partial recursive functions. Specifi-
cally, suppose P is a property of partial recursive functions N — N. Define

Fp ={M | M computes f: N — N and f has property P}

Suppose the totally undefined function does not have property P, and assume
there is a partial recursive function ¢ : N — N with property P. Prove that for

any r.e. set A,
A<y Fp.

Solution. There is very little difference between the proof of this theorem and
the proof of Rice’s theorem for sets. This may be somewhat surprising, since
the theorems seem to say quite different things.

Here’s the whole proof, written out once again. Let Turing machine M, compute
the partial recursive function g which, by hypothesis, has property P. Let A be
any r.e. set, with A = domain(M,) for some Turing machine M,.

For any n € N, we can define a new Turing machine Mj(,) (that is, f(n) is the
code of this Turing machine) that operates as follows:

“On input k, save k and simulate M4 on input n. If this simu-
lation halts, then act exactly like M, on input k.”

Let h : N — N be the partial recursive function computed by M;(,). By
definition of M),

M, haltsonn

= My(n) acts like M, on every input

>h=g = Miyn€Fp

and conversely,

M4 does not halt on n
=> h is the totally undefined function
=> M) € Kp.

Son€A if Mj,haltsonn iff M;,y € Kp. Moreover, the function f
is total recursive. Hence, A <\, Fp.
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Problem 2. Consider any formulas F), and F», where z,, 22, ...z, are the free
variables appearing in either F; or F3. Show that F} ~ Fy iff

F V& Ve, .. Ve, (F — F7)

Solution. We were trying to get you to work through some of the basic definitions
(e.g., of when two formulas are ~) in this problem. It’s important to see that the
statement is not obvious—given the way we’ve defined things——although if the
statement weren’t true, there would be something wrong with our definitions.

Here’s a proof using a chain of iff’s, something like what we’ve seen in class.
Let ay,...an be fresh, distinct names, and let F} be F) with free occurrences
of z; replaced by a;; define F3 in the same manner. Furthermore, let Z be any
interpretation for the nonlogical symbols occurring in F; and F2. Then

FVz Vz2.. Ve, (F & F))
iff I(Vaz,VYzz...Ve,(F) — F2)) =1 (by definition of validity)
iff I3i-g»(Fy < F3))=1 (by the definition of satisfaction)
iff Z3r 2n(Fy)=1I31::3»(F3) (by the definition of satisfaction)
Since T was arbitrary, Zj}7'» is in fact an arbitrary interpretation giving mean-

ing to the constants in F} and F3. Thus, the last line holds iff Fy ~ Fj,
completng the proof.

Problem 3. Determine whether each of the following sentences is valid. For
those that are not valid, give an interpretation in which the sentence is not true.

3(a). Vzz+0=12z

Solution. Not valid. For example, let Z be the interpretation with domain N
which assigns + the usual addition function, but assigns O the element 1. Then
the sentence above is not true in Z, so the sentence cannot be valid.

3(b). BzVy Pz y)— (Vydz Pz y)

Solution. Valid.
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3(c). (Vzdy Pz y)— (3yvz Pz y)

Solution. Not valid. For instance, let 7 be the interpretation with domain the
integers (both positive and negative), where P is given the meaning “less than”
in this domain. Then the hypothesis of the implication says, “For any z, there
is a y less than z.” This is true in the interpretation. However, the conclusion
says, “There is a y such that for any z, y is less than z.” The conclusion is
false, since there is no “minimal element” in the domain. Thus, the sentence is
not valid.

3(d) [Vz(F]_ — Fz) /\VzF]_] — (Vze)

Solution. Valid.

3(e). [Fz(Fy — F3) AJzFy) — (32 F7)

Solution. Not valid. Suppose, for example, F; is the sentence letter A and F}
is the atomic formula (P z). Let T be an interpretation with domain {d1,d2};
further set Z so that it assigns false to A and makes P true only on d;. Then 7
satisfies

Jz((P z) — A) AJz(P z)
but does not satisfy 3z A.

3(f). (MinArith A Commutativity) — Cancellation,

where the sentence MinArith is the conjunction of the seven axioms for the
theory @ given in Boolos & Jeffrey, page 107,

Commutativity = (VzVy.z+y=y+z)), and
Cancellation = (VzVyVz(z+y=z+y) —z=2)

(Hint: Consider N U {o0}.)

Solution. Not valid. Some people did not understand the hint; “o0” is meant to
represent a single element. Let Z be the interpretation with domain N U {o0}.
In this interpretation, Z(0) = 0, and the addition and successor constants are
given the usual meaning when the arguments are elements of N. To define their
behavior elsewhere, we use the following equations (being slightly pedantic but
careful): :

Z(°)(o0)
I(+)(n,00)
I(+)(c0,n)

o
8 8 8
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One can check that 7 is a model of (MinArith A Commutativity); it is not a
model of Cancellation, though, since

Z(+)(3, 00) = I(+)(4, )

but 3 is not equal to 4 in 7.
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Problem Set 7 Solutions

Problem 1. [25 points] Explain how to write a SCHEME program which, given
any first-order sentence S and an interpretation over a finite domain for the
constants, functions, and predicate symbols appearing in S, prints the truth
value of S in the interpretation. Describe the input conventions for the inter-
pretation. (Don’t actually write the whole SCHEME program, just give enough
explanation to make it clear as you could.)

Solution. One first needs to pick some suitable representation of a finite domain
and the assignments it makes to names, function symbols, and predicate sym-
bols. Suppose S contains the names a,, ..., ai, the function symbols fy,..., fi,
and predicate symbols Py, ..., Py, all written in ASCII. To represent an n ele-
ment domain, we’ll use the numbers 1, ..., n (these are just symbols representing
arbitrary elements of the domain.) To represent the assignments of the names
to elements of the domain, create a list of pairs

((a1 01) (62 02) . .(ak Ok))

where each o; is an number in the range 1,...,n. To represent the assignments
of function symbols (say, of arity j), create a list of the form

((11...11)01) (11...12) 03)...((n n...nn)oj»))
where each j-tuple using integers 1, ..., n appears in this list as an “input”, and

where each o; is again an integer in the range 1,...,n (the “output.”) Finally,
assign to each predicate symbol (say, of arity j) a list consisting of lists

(01 02...95)

An interpretation will thus be given by a list containing 4 elements:

1. The size of the domain, say n;
2. The list for the interpreting the names;
3. The list for interpreting the function symbols;

4. The list for interpreting the predicate symbols.
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To determine whether a sentence is true in one of these interpretations, one
proceeds by calling a procedure is~true?, passing the sentence and an inter-
pretation in the above form. The procedure is-true? works recursively. For
example, if the sentence is Yz F', the procedure calls itself recursively substitut-
ing each element of the domain into the sentence for the variable z (maybe by
substituting each number 1, ..., n into the sentence. This would avoid the prob-
lems of obtaining new fresh names, but we’d have to make sure the procedure
can tell the difference between elements in the domain and names.) If all are
true, the procedure returns true. For atomic formulas P(¢;,...,%;) (the base
case of the recursion), the procedure will calculate the value of each term by
using the tabled values of the names and function symbols, and then looking
up this value in the table of P. If the value is there, we return true. Finally,
for atomic formulas of the form ¢, = t3, we calculate the value of each term and
see if they are equivalent.

There are, of course, many ways to write the actual code, but this gives the
flavor of such a program.

Problem 2. [25 points] Convert the following sentences into prenex normal
form. Try to minimize the number of alternations of quantifiers in the resultant
sentence.

2(a). 3z (Az)AJz (Bz))—3z(C2z)

Solution. Here’s a possible answer (one of many):

VaVy3dz (Az)A(By)) — (C 2)

2(b). Vydz (z<y) = (-3 Vy (2 <y))

Solution. Again, here’s one possible answer:

YWVzVzIw ~((z < y) A (z < w))

Problem 3. [50 points] This problem will prove that the validity problem is
undecidable for first-order sentences restricted to have a single ternary predicate
symbol as their only nonlogical symbol. The proof follows from a series of
sentence “simplifications” which you are to exhibit in subproblems below. You
must define each simplification so that it preserves validity (i.e., the old sentence
is valid iff the simplified sentence is valid).
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3(a). Let F be any atomic formula of the form P;(t,,t2) or t; = tz, where ¢,
and t; are terms containing only the function symbol ’ (successor) and constant
0, and F; is a binary predicate symbol for { = 1,...,m. Explain how to write a
formula F’ equivalent to F' so that F’ is of the form

Jz,...3z; (F] AFy A Fn)

where each F; has the foorm 2 = 0, z = ¢/, or Pi(z,y), with =, y variables.

Solution. The basic idea here is to unwind a number of applications of the
function symbol ’ into single applications. By the way we have described the
problem, ¢; and ¢{; must be ' applied to 0 some number of times. Suppose,
without loss of generality, ¢, has [ applications of ’ to 0, ¢, has m applications
of ' to 0, and | > m. Let F; be the formula z; = 0, F2 be z2 = 2/, F3 be
z3 = z%, and so forth up to Fi4;1 which we set to be z;41 = z]. Also, let let
Fiya be Ti42 = Tm41- Finally, let Fi43 be either P.‘(ZH.1,.’B{+2) Of Ti4+1 = Ti42
depending on the form of F. Then existentially quantifying over all the variables
gives the sentence above.

Note that this can easily be modified to work if ¢; or {2 contain free variables,
although you weren’t asked to do this.

3(b). Let S be a sentence whose atomic formulas have the foormz =0,z = ¢/,
or P(z,y). Explain how to “simplify” S into a sentence S’ with only binary
predicate symbols and no function symbols. (Hint: Write a sentence that states
that a binary predicate G(z, y) is the graph of a total function of z. Let S’ be
the conjunction of this sentence and a simplified form of S in which subformulas
z = y are replaced by G(z,y). Note that S’ is not equivalent to S, but it is the
case that either both are valid or neither is valid.)

Solution. Define the sentence S} to be
Vz3yvz G(z,y) A (2 # y) = ~G(z,2))

Informally, S; says that every z is related to some y (in other words, for every
input there is an output), and that everything other than y is not an output.
In other words, S; says that the relation G(z,y) is a function. (Recall that
functions are just special kinds of relations.)

Now we use the hint: replace all atomic formulas z = ¥’ in S with G(z, y); the
result is still a sentence. Call the result S; then S’ is S; A Sa.
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3(c). One can simplify any sentence S into a sentence S’ with the same non-
logical predicate and function symbols but no names; the trick is to replace
distinct names by fresh variables and then existentially quantifying over the
new variables. For instance, the sentence

Ve(z=aVz=0)

becomes
yIzVz(z=yvVe=2z2).

Explain how to obtain a model of §’ from any model of any sentence S, and
vice-versa. Conclude that S is valid iff $' is, and also that S is satisfiable iff S’
is.

Solution. The idea here is fairly simple—any model of S will automatically be a
model of S’! More precisely, suppose Z is a model of S, where S has constants
ai,...,a,. Let §' be defined as above, i.e., S’ has the form

3z, ...3z,5t

where St is S with a; replaced by ;. Now let by, ..., b, be fresh, distinct names,
and let o; be the value in the domain of Z whose meaning is assigned to a;. Then
Tb1-bn(5*) = 1, where S* is St with z; replaced by b;, since T is a model of S.

01...0n

Thus, any model of S is a model of §’, and so S is valid (or satisfiable) iff S’ is.

3(d). Let S be any sentence whose only nonlogical symbols are binary predicate
symbols P;. Show how to simplify S into a sentence S’ whose only nonlogical
symbols are names and a single ternary predicate symbol T'.

Solution. Suppose the sentence S contains binary predicate symbols Py,..., P,.
Let a),...,an be fresh distinct names. Let S’ be S with every occurrence of
P;(t1,13) replaced by T'(t1,t2,a;). Then S is valid iff & is.

3(e). Conclude that the validity of sentences whose only nonlogical symbol is
a single ternary predicate symbol is undecidable. (Hint: In Boolos & Jeffrey,
Chapter 10, only binary predicate symbols and the unary function symbol ’ and
the name 0 appear in the formulas corresponding to a Turing machine.)

Solution. We merely put the parts together. Take any sentence S gotten from
the <;-reduction of K3 into the set of valid sentences. Note that S contains
only binary predicate symbols, the unary function symbol /, and the name 0.
By part (a), we can eliminate all nested applications of / to obtain a formula S’
with atomic formulas of the form z = 0, z = ¢/, or P;(z,y). By part (b), we can
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replace each atomic formula z = ¥ of §’ by G(=z, y), and taking the conjunction
of this sentence with S;. Call the result S”. By part (d), we can eliminate
turn all occurrences of binary predicates in S” into one ternary predicate; call
the resultant sentence S'”’. Finally, by part (c), we can eliminate all constants.
Thus, we obtain a sentence S’ which is valid iff S is; note that the translation
is effective, too.

Therefore, K5 many-one reduces to the problem of determining whether a sen-
tence with a single ternary predicate symbol is valid. Since K3 is undecidable,
so is this problem.



6.044J/18.423J: Computability, Programming, and Logic Handout 26
Massachusetts Institute of Technology 20 November 1989

Quiz 3

Instructions. This exam is closed book. Do all problems in the provided white
book, carefully labeling solutions with their corresponding numbers. Points are
listed for each problem. You have one and a half hours. Good luck.

Problem 1. [40 points] Write first-order sentences for each part below.

1(a). A prenex normal form of

(BxVz(Pz A Q 2)) — (Vz2(f(2) = 2))

1(b). A sentence with no nonlogical symbols whose models are precisely those
interpretations whose domains have at most three elements. (Remember that
“=" is allowed since it is considered to be a logical symbol.)

1(c). A sentence, whose only nonlogical symbol is a binary predicate, R, which
is true in exactly those interpretations in which R is an equivalence relation.

1(d). A satisifiable sentence, whose only nonlogical symbol is a binary predi-
cate, R, which is not true in any finite model. (Hint: Try saying that R is the
graph of the successor function on N; alternatively, try saying R is a strict order
with no least element.)

Problem 2. [30 points] For each of the sentences below, state whether the
sentence is valid or not valid. If the sentence is not valid, give an interpretation
in which the sentence is not true. (You do not need to prove that a sentence is
valid if you think it is.)

2(a). (Vz3y(P z y)) — (Vz(P z f(z)))
2(b). (Yz(P z f(z))) — (Vz3y(P z y))

2(c). (VaVz3y(P z y z)) — (VudvwWw (P u w v))
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Problem 3. [30 points] (Refutation proofs)

3(a). Prove that the following sentence is valid using a refutation proof:
(Vz(Pz A Q z)) A(3z ~(P z)) — (32(Q z))
3(b). Give a canonical derivation using the two sentences IyVz(P z y) and

Vz(P z z) as your “A set.” Conclude from the form of your derivation that the
conjunction of the two sentences must be satisfiable.
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Problem Set 8

Due: 4 December 1989

Problem 1. Let I" be a set of quantifier-free sentences which contain no func-
tion symbols and do not contain “=". Give a simplified proof from scratch that
if every finite subset of I is satisfiable, i.e., T is 0.k., then T is satisfiable. (Hint:
Rework and simplify the proof of Lemma 3 from the proof of the Completeness
Theorem; the proof here should be easier, since the only terms to consider are
names and there are no equality constraints.)

Problem 2. We say that a first-order sentence S is a V-sentence if it has the

form
VII e VInF

where F is a quantifier-free formula (note that F' may contain function symbols
in addition to predicates and names.) Show that the set

{S | S is a valid V-sentence}
is decidable. (Hint: Show that a canonical refutation from the negation of any

V-sentence is finite.)

Problem 3. Let S be a sentence. Prove that if ' F S, then there is a finite
subset I¥ C T such that I'' + S. (Hint: Compactness.)
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Quiz 3 Solutions

Statistics. A histogram of the scores:

Score Students

100 - 91:  ***
90 - 81: ¥**
80 - 71: **
70 - 61:
60-51: *

50 - 41:
40 - 31:
30 - 21:
20-11:

10 - 1:

The median score was 87; the mean was 83.7.

Problem 1. [40 points] Write first-order sentences for each part below.

1(a). A prenex normal form of

(F2vz(Pz A Q2)) = (V2(f(2) = 2))

Solution. Here is one possible solution, where the number of alternations of
quantifiers has been minimized:

VeVydz(Pz A Q2) = (f(y) =)

1(b). A sentence with no nonlogical symbols whose models are precisely those
interpretations whose domains have at most three elements. (Remember that
“=” is allowed since it is considered to be a logical symbol.)

Solution. One possible answer is the sentence

IyIVw (w=2z)V(w =y) V(w = 2)
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1(c). A sentence, whose only nonlogical symbol is a binary predicate, R, which
is true in exactly those interpretations in which R is an equivalence relation.

Solution. Recall that R is an equivalence relation if it is reflexive, symmetric,
and transitive. The first-order formalization of these properties is

Vz(Rz z)] A[V2Vy(Rz y) — (Ry )] A[VaVyVz(Rz y) A(Ry z) — (R z 2)]

1(d). A satisifiable sentence, whose only nonlogical symbol is a binary predi-
cate, R, which is not true in any finite model. (Hint: Try saying that R is the
graph of the successor function on IN; alternatively, try saying R is a strict order
with no least element.)

Solution. Let’s try working with the first hint. Recall (from lecture) that we
get a copy of the natural numbers if the successor function is required to be
one-to-one and have an element (namely 0) which is not the successor of any
element. We therefore want the conjunction of the sentences

e R is a functional relation: VaVyVz(Rz y) A(R z z) — (y = 2)

e Ris total: Vz3y(R z y)

e R is one-to-one: VzVyVz(Rz 2)A(Ry 2) — (2 = ¥)

e There is an element d such that for any e, R does not relate (e,d):

FzVy—~(Ry z)

In point of fact, the first sentence above is not necessary.

Using the other hint can work just as well. To say that R is a strict order with
no least element is to say that

e R is transitive: VzVyVz(Rz y) A(Ry 2) = (R z 2)
e R is strict: VeVy(R z y) —» (R y z)

e Every element has an element R-below it: Vz3y(R y z)

Transitivity is essential here—without it, there are models with three elements!

Problem 2. {30 points] For each of the sentences below, state whether the
sentence is valid or not valid. If the sentence is not valid, give an interpretation
in which the sentence is not true. (You do not need to prove that a sentence is
valid if you think it is.)
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2(a). (Yz3Y(P z y)) — (V2(P z f(2)))

Solution. Not valid. Consider the interpretation Z whose domain has elements
{d, e}, where P is true precisely on (d, ) and (e, €), and where f always returns
d as its output. Then the hypothesis is true in this interpretation, but the
consequent is false. Thus, the sentence is not valid.

2(b). (Vz(P z f(2))) — (Yz3y(F z y))

Solution. Valid.

2(¢). (YzV23y(P z y z)) — (VuIoVw(P u w v))

Solution. Not valid. There are many ways to pick an interpretation in which
the above sentence is not true. For example, consider the interpretation J with
domain N, and where P is true of (k, m, n) iff k+n = m. Then the antecedent is
true in the interpretation—the sum of two natural numbers is always a natural
number. However, the consequent is not true; for example, there is no natural
number m with 6 + m = 2.

Problem 3. [30 points] (Refutation proofs)

3(a). Prove that the following sentence is valid using a refutation proof:
(Vz(Px A Qz))A(Fz ~(P2x)) —(F2(Q z))
Solution. Consider the set A = {(Vz(P 2z A Q z)),(3z =(P z)), (Vz-(Q z))}.

This set is unsatisfiable iff the original sentence is valid. A refutation from this
set:

1. 3z-(Px) A
2. =(Pa) 1
3. Y2(Pz A Q=z) A
4. Pa A Qa 3

Lines 2 and 4 are unsatisfiable, so the set A is unsatisfiable.

Note that we didn’t need the third element in the set A in the refutation. If
the first part of the sentence had read (Vz(P z V @ z)), though, we would
have needed it. Note also that one can negate the whole sentence above, put
the result into prenex form, and carry out a refutation from there.
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3(b). Give a canonical derivation using the two sentences FyVz(P z= y) and
Vz(P z z) as your “A set.” Conclude from the form of your derivation that the
conjunction of the two sentences must be satisfiable,

Solution. Here is a canonical derivation, using the procedure developed in class:

1. IWe(Pzy A
2. Vz(Pza) 1
3. (Paa) 2
4. Vz(Pzzx) A
5. (Paa) 4

and that’s it! Since there are no function symbols, one can only use terms that
are names. By starting off with the first sentence, we get precisely one name,
and hence only one term, to use for universal instantiation.

Note that the derivation does not yield a contradictory set of quantifier-free sen-
tences. Thus, A must be satisfiable—if it weren’t, we’d have hit a contradictory
set of quantifier-free sentences in the canonical derivation.
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Notes on Programming (Part I)

The following notes will serve as the main text for the remainder of the course.
The goal of this final unit will be to work with a language that in some sense
“captures” the essential features of the programming language Scheme and other
applicative functional languages. Our language, called FKS, we claim is the
functional kernel of Scheme. The syntax FKS will be basically that of the
simply-typed A-calculus, with a single base type ¢ which we will take to be the
natural numbers. One of the most important properties of FKS that makes it
possible for us to analyze in this class is that it has NO SIDE EFFECTS.

We will present definitions of the language at several levels. Qur first level will
be that of rewrite rules. Rewrite rules, via an immediate reduction relation be-
tween pieces of code, specify how, at a high level, programs can be evaluated. It
will take a program M and in one step reduce it to another program that in some
sense will be closer to what we would like to call the enswer. Although rewrite
rules provide a wonderful way of defining a language, the way in which they
work is very far from a reasonable implementation strategy. We will present
an automaton, called a SECD machine, which will reduce the task of interpret-
ing our language to that of basic, well-understood pointer manipulations. This
SECD machine will be very close in spirit to the way in which functional lan-
guages are actually implemented. Bridging the gap between the SECD machine
and the rewrite rules we will present eval a recursive characterization of the
rewrite rules. All of these definitions with respect to a language £ are referred
to as the operational semantics of £. In this case our language will be “FKS”,
and we will provide a definition of the semantics operationally, via rewrite rules.

We will also present a denotational semantics for FKS. The motivation behind
this sort of semantics is the desire to say that the meaning of a piece of code
that computes a certain function s the function which it computes. The goal of
denotational semantics is to develop an interpretation (which we will from now
on call a model) of all of the terms (fragments of code) in the language. Unlike
first order logic, where an interpretation can be any first order structure, we will
limit our consideration of semantic interpretations for FKS to a single model. In
the field of denotational semantics, a model is specified by two entities: a domain
(just like in logic), and a meaning function which maps syntactic elements of
the language into the domain. This meaning function does a job analogous to
that of the interpretation function operating on terms. In logic Z(t) (referred
to as the meaning or denotation of term t in interpretation Z) was an object in
Dy that was implicitly defined by giving the denotations of the constant and
function symbols of the language for which Z is a model. In devising a model
for FKS, however, we need to explicitly define this meaning function which
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when given a term yields that term’s denotation. The most logical question
to ask at this point is “what good is this model?” The answer is a lot. For
example we will show that if a program M evaluates to a constant ¢ then the
model will assign the same object to both M and to ¢ we will also see that
the converse is true, namely that if M and ¢ have the same denotation then
M will evaluate to ¢c. We will then show as a corollary to this that if M and
N have the same denotation, then (not considering time or space issues) these
two pieces of code are completely interchangeable—a very nice property to be
able to state. Wouldn’t it be nice if after you optimize a piece of code in an
already working system you could then prove rigorously that the new code was
functionally equivalent to the old code? This is what denotational semantics
can do for you...

Given this cultural background it is now time to consider the task immediately
at hand. In order to define FKS, we will first define its syntax. We will then
define its semantics operationally by a set of rewrite rules. This combination of
syntax and semantics will fully define the language FKS. We will then present
alternate operational definitions for the semantics of a language with the same
syntax (but not necessarily the same semantics) as FKS. We will then sketch
a proof that the semantics of these alternate definitions coincide with that of
the rewrite rules—thus they define the same language. Finally, we will provide
a denotational definition of a language over that same syntax. We will then
argue that the semantics defined denotationally coincides in a nice way with the
operational semantics.

1 Syntax of FKS

What is a term. The basis of the syntax for FKS is what is called the simply
typed A-calculus. Fragments of code in this framework are referred to as terms.
A term in this framework is analogous to the code that appears between a
balances set of parenthesis in unsugared Scheme, or a constant symbol, or a
non-binding occurrence of a variable.

Example 1. The following is a short fragrhent of Scheme code:
((lambda (z) (* = z)) 5)

The terms in this program are: 5,z,(x z z),(lambda (z) (» z z)), and
((lambda (z) (* £ z)) 5). Note: the z immediately after the lambda is not
really a term. Scheme’s notation is not optimal. Scheme should have been
defined so that code would have been written something like:

((lambda z.(* z z)) 5)
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Types. Unlike Scheme every term in our language will all have an associated
type. The set of types is called Types; we define it inductively as follows:

e ¢ is a type. It will correspond to our notion of the natural numbers.

e If 0 is a type and 7 is a type then ¢ — 7 is a type. It will correspond
to functions which take a single argument of type ¢ and return a single
result of type 7.

Example 2. When writing a type we will let — associate right. Thus o7 —
(02 — 03) is the same type as 0; — 02 — 03, which is distinctly different from
(61 — 02) — 03.

The following are some basic functions, and their types.

1. SQUAREY (lambda (z) (+ = z)). SQUARE is of type ¢« — ¢, as it is

a function that takes a natural number as an argument and returns a
natural number as a result.

2. 5. 51is of type ¢.

3. APP5Y (lambda (foo) (foo 5)). APP5 is of type (¢ — ¢) — ¢. It takes a
a function from natural numbers to natural numbers, and then returns a
natural number. For example (APP5 SQUARE) is 25.

4. PLUS1%E (lambda (foo) (lambda (z) (+1 (foo z)))). PLUSL is of type

(¢ = ¢) = (¢ — ¢). It takes a function from natural numbers to natural
numbers and returns a function from natural numbers to natural numbers.
For example (PLUS1 SQUARE) is a function that returns its argument
squared, plus 1.

Note that this language does not contain any booleans, characters, reals, strings,
lists or other such structures. We claim that this simple type hierarchy with
only the base type ¢ is the core of Scheme.

Notice that our set of types does not include “pair” types. For example the
binary plus operator which we are familiar with from arithmetic takes two ar-
guments, both of type ¢ and returns one value, also of type ¢. So we would
write 2 plus 3 as (+ 2 3), and + has type (¢ x ¢ —)¢. In our framework we will
not have pair types. But, via a process called “currying”, we will show that
there is no loss of generality in not having pair types. Before giving the formal
definition of currying, we will provide as an example a definition of a curried
version of plus (+.) defined in terms of the standard plus:

e = z(Ay((+ = )y)))
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So consider the two ways we would now write the expression for 2 plus 3:
curried: ((+. 2) 3)
uncurried: (+23)

Note that the type of +, is ¢ — ¢ — ¢. Thus (4. 2) is of type ¢« — ¢ and
represents the “plus 2 function”. In general, given an arbitrary function foo of
type o = (01 X ... X o) — o’ we can easily curry it to foo. which works right.
The function foo. will have type oy — ... = 0, — ¢’. It is defined from foo
as follows:

foo. 4ef (Azyt ... Azi(foo 7t ... zo™))

The last comment to be made is that every type o is of the form oy — ... —
o, — o this type will occasionally be abbreviated as ¢ = (04,...,0,,07).

Terms. Now that we know what types are, we are ready to define what terms
are. Terms and their types are defined inductively as follows:

e z% is a term of type sigma. (representing a variable of type o)

¢ ¢? is a term of type sigma. (representing a constant of type o)

e (MN) is a term of type 7 if M is a term of type ¢ — 7 and N is a term
of type 0.

e (cond M N; Nj) is a term of type « and M, Ny, and N, are all terms of
type ¢.

o (Az?. M) is a term of type ¢ — 7 if M is a term of type T.

Note that we are very informal with parenthesis and as with arithmetic we will
define certain conventions that allows most parenthesis to be eliminated. The
conventions are as follows:

¢ Application associates left. Thus (M N P) is the same as ((M N)P), which
is very different from (M (N P)).

é Xs bind out as far as they can (e.g.until the end of the expression or
overridden by a parenthesis). So (A z. M N) is the same as (A z. (M N))
which is distinctly different from ((A z. M)N).

o Never drop the parenthesis that surrounds “cond M Ny N, .”
Thus (cond M N; N,) is correct, and cond M N; N; will only lead to
confusion.
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We will call any term which a constant, variable or A-abstraction a value. A
term of the form (M N) is can be called either a combination or an application.
A term of the form (cond...) is called a conditional.

Aside from presenting the set of constants, and their affiliated types, this com-
pletely defines the syntax of FKS.

Unsugaring Scheme. So terms are either variables, constants, applications
(something of the form (M N)), conditional expressions (something of the form
(cond M N N,)), or A-abstractions (something of the from (Az?. M). Applica-
tions can be viewed as function calls, conditional expressions can be viewed as
our only special form, and A-abstraction can be viewed as procedure construc-
tion. Remember from 6.001 that most of the friendly structures in Scheme are
syntactic sugar for other forms.

Example 3. The most prominent case of syntactic sugar is “let”. For example:
(let ((varl expl)) exp)

is syntactic sugar for
((lambda (varl) exp) expl)

Example 4. Another example of syntactic sugar is “define” (when used to
define a function that is not recursive). For example:

(define (foo arg) body)
is syntactic sugar for:

(define foo (lambda (arg) body))

Considering that FKS does not allow side-effects, and it does not have lists (or
streams or other fancy stuff) this syntax really is almost as expressive as full
fledged Scheme. Two missing elements of the syntax require further justification.
These two problems are as follows: conditionals can only return objects of type
¢, and the lack of “define”. We will argue later on in Example 5 that there is a
straightforward way to program a “higher-type” conditional from the one given
here. On the surface we can argue away “define” by saying that since we have
no side effects then the following:

(define Py By)
(define P, B5)

(define P, By)
body
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is equivalent to
(let ((P1 By) (Py By)...(Pn By)) body

Since “let” is only sugar, “define” is only sugar.

We have, however, slipped something very important under the rug. In Example
4, the unsugaring of (define (foo arg) body) assumed that foo was not recursive.
We will introduce a special constant Y that will allow for the unsugaring of
recursive procedures, and in Sections 2 and 2 we will show how Y can be used
to generate recursive and mutually recursive functions.

Constants. The constants of FKS and their types are as follows:

e 0,1,2,...all of type ¢
e suce,pred both of type ¢ — ¢

o Y, of type (¢ — &) — &) (for all types o # )

Free and Bound variables. In this section we will write the variable z°
simply as . When we do not need to discuss the type of a bound variable, it
is sometimes convenient to drop the superscript. We must be careful, however,
for example if we use z* and z(*~**) as distinct variables, we need to be careful
when we abbreviate one by z so as to prevent confusion.

We will define the function FV : Terms — {Variables} So, if M is a term, it
has a set FV(M) of free variables. It is defined inductively on the structure of
the term M by:

FV(z) = {z}

Fv(e)={}

FV((MN)) = FV(M)UFV(N)

FV(cond M Ny Ny ) = FV(M) U FV(Ny)U FV(N,)
FV((Az M)) = FV(M)\{=}

A term is closed iff FV (M) = 0, otherwise it is open.

A function BV : Terms — {Variables} can be defined analogously to give the
bound variables of a term.

The free variables of a term are simply those variables that are not under the
scope of a A-abstraction over that variable. For example y is free in (Az. z y)
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since there is no A binding it. The bound variables of a term are those variables
that are bound by A’s. For example y is bound in both (Ay. ) and (Ay. 5). Note
that it is possible for a variable to occur both free and bound in the same term.
For example y is both free and bound in (y(My. (z y))). The free occurrences
of y in a term M are those occurrences of y in M that are not bound. The
bound occurrences of y in a term M are partitioned (divided into disjoint sets
that cover everything) into occurrences bound by an individual A-abstraction.

A program is a closed term of ground type. Since our only ground type is ¢, a
program is a closed term of type ¢.

Given an infinite list z,, ... of distinct variables (which we will assign types when
we use them), the substitution prefix is defined inductively in the structure of
terms as follows:

o 2lo:= M= M; ylo = Ml =y (if = # )

o afz:=M]=a

o (NN')[z:= M] = (N[z := M]) (N'[z := M)

e (cond N Nj Np)[z := M] = (cond N[z := M] Ni[z := M] Ny[z := M])

e (AzN)[z := M] = (AzN); (AyN)[z := N] = ANy := 2]z := M), if ¢ #
y, where z is the variable defined by:

1.fzg FV(N)ory ¢ FV(M) then z = y.

2. Otherwise, 2 is the first variable in the list z;,z3,... such that z ¢
FV(N)U FV(M)—and z is made to have the same type as y.

We now introduce a relation =4in order to capture the notion that two terms
are equivalent up to the renaming of bound variables. It is defined inductively
in the structure of terms as follows: The relation =,of alpha equivalence, is
defined inductively by:

l. 2=,z

2. a=.a.

3. f M=,M' and N=,N' then (MN)=,(M'N").

4. If M=,M' and Ny=,N{ and Ny=,N;
then (cond M N, Np)=,(cond M’ N N3})

5. If M=, M'[y := z], where either z =y or z & FV(M’)
then (AzM)=q(AyM’).
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Contexts. A contextis a term with one or more “holes” in it. It is normally
written in the from C[.). The term that results from filling the term M into
all of the holes in the context C[-] is written as C[M]. C[] is called a program
context (implicitly with respect to the term M iff C[M] is a program.

This concludes the definition of the syntax of FKS.

2 Operational Semantics: Rewrite Rules

One way of providing an operational semantics for a language is via a set
of rewrite rules. From the rewrite rules we will arrive at a partial function
Eval from Programs (closed terms of type ¢) to constants. Eval is defined by
means of an immediate reduction relation, — between terms by:

Eval(M) = k iff M — k, for any program M and constant k.

. . ey . . *
Where —» is the reflexive transitive closure of — (sometimes written as —).

It will be the case that M-k and M-k’ implies that k and k’ are identical.
Notice that for constants ¢, Eval(c) =c.

The following rules together are called rewrite rules and together they define
the desired immediate reduction relation —-.

1. (a) (sucen) —(n+1)
(b) (pred 0) —0
(c) (pred(n+1)) —n
(d) (YoV) = (V(A2?(Y,V)z?)) (where z ¢ FV(V))
2. (a) (AzV) — M[z := V] (for V a value)
(b) (cond 0 Ny N3) — N,
(c) (cond (n+1) Ny N;) — N,
3. (a) if M — M’ then (MN) — (M’'N)
(b) if N — N’ then (VN) — (VN’) (for V a value)
(¢) if M — M’ then (cond M Ny N2) — (cond M’ N1 N3)

That is all. We have just defined a language completely. We have given a
definition of the syntax, and we have given an operational definition of what it
means for a program P to evaluate to a constant ¢. This is operational in the
sense that it is sort of how a compiler works, and it made no appeal to semantic
domains or models.
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Some Useful Definitions. A term M is said to diverge iff mEval(M) is
undefined. This is equivalent to saying that for all N if M—=N then their is a
term N’ such that N — N’.

We now introduce a notion of equality between terms that is generated by the
rewrite rules. This notion is called observational equality (=.s,)! and it captures
the idea of the interchangeability of code. Two pieces of code are observationally
equivalent if they can be exchanged freely in FKS programs with out changing
the value to which the program evaluates. This is defined formally as follows:

N=gpps M
iff for all program contexts
FEval(C[M]) ~ Eval(C[N])

Two objects are ~ iff either they are both undefined, or they are both defined
and equal. There is a “Context Lemma” for FKS that says that:

if M— N then Eval(C[M] =~ Eval(C[N]))

Thus M —N implies M=,,N. This “Context Lemma” will be a Corollary of
the Adequacy Theorem which we will prove later. 2

Now, in order to fully appreciate the richness of this language we provide some
examples of coding tasks.

Example 5. Before we can do much of anything, we really need a “macro”
which will enable us to do a higher order conditional. Something we can ab-
breviate into the form (cond, M N; Na ) where N; and N3 both have type o.
In this side-effect free, typed world of ours, we have no need for a conditional
where N, and N, have different types.

Supposing ¢ = (ay,...,0,,0) cond, is:

(cond, M N, N3) o Az{' .- Azg. (cond M(Nyzy---2,)(Nazy---25)))

It is a rather grungy, but manageable task to show that (cond, 0 N Na)
behaves just like (cond, 0 N1 N2) would if it were in the language (except that
if (cond, 0 Ny N;) is computed, but never used, then if N, diverges a program
using the cond, would also diverge, but a program using the cond, might still
evaluate to a value).3

11t is important to note that =,,is an equivalence relation.
20ne way of stating the Adequacy Theorem is: “If M and N have the same denotation,
~ then M-'_'—'obaN~"

3If you did not understand that parenthetic remark it is ok, this is a watered down version
of a concept called observational approrimation which we will might cover later. For your
information, a term M observationally approximates a termn N iff for all program contexts C|.],
C[M]—#c implies C[N]—#*c. In this setting we can say that M is observationally congruent to
N iff M observationally approximates N and N observationally approximates M.
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Example 6. FKS does not include constants or special forms which allow the
pairing of objects (we do not have cons). This lack is easily overcome, since
using A-terms we can define combinators that act like typed pairing operators.
We will define “macros” which will provide typed pairing operators for us. Thus
pair, pairs together two objects of type ¢. The macros left, and right, will
unpair the result of pairing together two objects of type . These three macros
are defined as follows:

e pairy,(M,N) def (A\2{e=7=9)_ M N). Where this object is of type: (¢ —

o —0)— o).
o left,(P) ¥ (P(Az". 2y .z))
o righto(P) ¥ (P(Az? Ay’ y))

It is a straightforward task to check the correctness of these definitions and that
le ft(pair(M, N)) = M and that right(pair(M,N)) = N.

It is fairly simple to generalize this technique to allow the pairing of terms which
do not have the same type. This can be done many ways. One such way is to
coerce the arguments to be of the same type. If M has type o1 = (01,...,00,¢)
and N has type 7 = (m,..., i, ) then we can coerce M into M’ and N into
N’, M’ and N’ of the type ¢/ = (01,...,00,71,...,Tm,t) SO

M azq Az AT AT (M0 2T

and
N E el Azgr gl T (Ma ]yt

It should be clear how to recover terms equivalent to the original M and N from
M’ and N’ through appropriate abstraction and application to dummy terms.

From here on we will assume that we have a “smart” macro system which will do
the appropriate coercions and such and we will assume we have a single macro
for each of pair, left, and right that does what we would like it to do (pair will
coerce its args to the right type, but left and right will not “uncoerce” their
results).

Finally it should be clear how to make n-tuples. Call the operation tuple which
makes an n-tuple out of objects of type sigma. It should be equally clear how
to define the projection on the i*# component——proj(”n'i). These can be defined
either directly (introducing new expressions using A’s for each) or they can be
defined from pair, le ft and right.
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Debunking Recursion: Fixed Points. An important element of any func-
tional language is the ability to define a function recursively. Consider, for
example the standard definition of the factorial function in Scheme:

(define fact (A n) (cond (= n 0) 1 (x n (fact (=1 n)))))

Unfortunately the syntax of Scheme does not make it immediately obvious that
fact is a recursive function (actually a “simply recursive”® ). The syntax of
Common Lisp, however, does make this fact evident. Consequently, we will
draw the examples of defining recursion from Common Lisp instead of Scheme
(it should be immediately obvious how to convert from one definition to the
other). So fact would be defined in Common Lisp as follows:

(letrec fact = (lambda (n) (cond (= n 0) 1 (* n (fact (=1 n))))))

This syntax for defining a recursive function makes it immediately clear that
fact is a simply recursive function. Now consider the form of a mutually re-
cursive definition of functions fi,..., f, by bodies b, ...,b, where each body
b; has n “holes”. We write b;[f1,..., fa] to denote b; with its hole #1 filled by
f1,...,#n filled by f.. So the definitions of fi,..., f, would be as follows:

(letrec

(fr= blfr,..., fa])

(fn = bn[fl,-‘-:fn])
)

Now that we have a syntax that makes it clear what is being defined recursively,
we can go ahead and explain how recursive functions can be defined in FKS.
Let us consider the following function:

F % (lambda (f) (lambda (r) (cond (= n 0) 1 (x n (f (=1 n))))))

F has a very interesting property, namely F(fact) = fact. For no other argu-
ment z is F(z) = z. There is a special name for this property, namely, fact is
a fired point of F. In mathematics, if you have any function G and object z,
z is called a fixed point of G iff G(z) = z. Let fix be a “fixed point operator”,
namely a function which returns a fixed point of its argument. Then fact could

be defined as fact < ( fiz F). Thus any recursive definition of the form:
(letrec foo = body][foo])

4 A function foo is called simply recursive iff it is recursive and its definition does not use
another function whose definition depends (either directly or indirectly) on itself. This is to
be contrasted with a mutually recursive function (or set of functions) where the definition of
f1 uses f; and f; either directly or indirectly uses f;.
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can be thought of as:

(let foo = (fix (A (f) body[f]))

Where now foo is no longer defined in terms of itself.

Luckily, FKS has a fixed point operator, namely Y (actually Y is a “least” fixed
point operator, but it is beyond the scope of this section to explain that here).
Let us now look at how to define fact in FKS. First we need to translate F into
FKS. So:

& (,\f(""‘)/\n‘. (cond (= n) 01) ((* ») (f (pred n))))

Finally we can now define fact:

def

faCt = (},(L—-'L)F)

So, this is how to define a simply recursive function. Using tupling we can define
mutually recursive functions. This is a slight modification of the preceding
example of what mutually recursive definitions should look like. The difference
is that we will use b} where:

¥ AhOgr. . Aga. (Bilgr, - -, a)) Projai(h) -+ Projaa(h)))

and the final letrec is:

(letrec

(fl (bll tuplen(fl,---afn))

(.fn (b; tuplen(fla--';fn))

)

So we have simplified the definitions of each of the functions to be of the form
fi = bifoo where foo is tuple,(f1,..., fa)). So if we can define an expression
which generates foo then we are done (because f; = proj, ;(f00)). So we want
to define a function F that has foo as its least fixed point. Here is is:

FY (O\H. tuplea((6; H),...,(8, H)))
So in conclusion, we have:

fi & projn (Y F)
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Debunking Y: The Fixed Point Operator. Up until now we have taken
the tack that Y is a fixed point operator. We have not, however justified this
statement. Using our rewrite rules we can check that Y is a fixed point operator.
Our goal would to prove a statement analogous to F(fiz F) = F). For FKS
this statement takes the form (V (Y V))=.,(Y V), where V can be any value
that is not of type ¢ (thus probably, a A-abstraction). But look:

(Y,V) = (V(A2\"=9) (Y, V)z)) (

for

27 ¢ FV(V))
You can check yourself the following is a general rule:

If M is of type ¢ # ¢, M does not diverge, and 27 & FV (M), then M=, (Az?. M)

Since (Y, V) and z7 meet the antecedent of this rule, then
(Yo V)=ops(A2°.(Y V) 2)

Since we can interchange terms which are =,;,to each other with impunity, we
have:

(V (Yo V))=abs(V (A27.(Y, V) 2))
and, given that =.,is an equivalence relation:
(V (Yo V))=obs (Yo V)
this is the desired result.

CONTINUED ON THE NEXT PAGE
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Example 7. To really see how Y works in defining recursion, consider the
computation of (fact 2), where:

F ¥
fact Lef
bodyl
body2

def
def

def
foo =

(Af4=An* (cond (= n 0) 1 (x n (f (=1 n)))))
(Y F)

(An'.(cond (= n 0) 1 (» n (f (-1 n)))))

(cond (= n 0) 1 (*n (f (-1 n))))

(A2l (Y F) 2)

Here is the evaluation, in hideously gory detail (we will use = to mean syntactic

equality):

(fact 2)

| 1 O A O O A A O A A | A A A A 1

(YF)2)

(F(Az.(Y F)z)2)

(bodyl[f := foo]2)

body2[f := foo][n := 2]

(cond (= 20} 1 (* 2(foo(pred2))))
(cond (=2 0) 1 (* 2(foo(pred2))))
(cond 11 (% 2(foo(pred2))))

(* 2(foo(pred2)))

(*2 (foo(pred2)))

(*2 ((lambdaz . (Y F) z) (pred 2)))
(*2 ((lambdaz . (Y F) z) 1))

(x2 (Y F) 1)

(%2 (F (Az. (Y F) z) 1))

(*2 (bodyl[f := foo] 1))

(*2 body2[f := foo][n := 1]

(*2 (cond (= 10) 1 (* 1(foo (pred 1)))))
(*2 (cond (=1 0) 1 (* 1(foo (pred 1)))))
(*2 (cond 1 1 (* 1(foo (pred 1)))))

(*2 (* 1 (foo (pred 1))))

(*2 (%1 (foo (pred 1))))

(*2 (*1 ((lambdaz (Y F) z) (pred 1))))
(%2 (*1 ((lambdaz" (Y F) z) 0)))

(*2 (x1 (Y F) 0)

(*2 (*1 (F (Az. (Y F) z) 0))
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—  (*2 (%1 (bodyl[f := foo] 0))

— (%2 (*; body2[f := fool[n := 0]

= (*2 (+1 (cond (= 00) 1 (x 0(foo (pred 0))))))
— (%2 (+1 (cond (=¢ 0) 1 (+ 0(foo (pred 0))))))
— (%2 (%1 (cond 0 1 (+ 0(foo (pred 0)))))

= (%2 (1 1))

= (x21)

- 2

Example 8. Definability of the basic operation “+” (in curried form). The
curried form of “+” has type ¢+ — ¢ — .

+ & (YG=t=)) (Afl—t=agi dyt, (cond:cy(succ(tf(pred:c))y))))

A good exercise to enhance your understanding of how the rewrite rules and
recursion works would be to hand evaluate ((+3)10). Another good exercise
would be to define * and exp in this manner.

Example 9. Definability of a Primitive Recursion operator PR.

Recall the definition of primitive recursion. An n + l-ary function h can be
defined by primitive recursion from an n-ary function f and an n+2-ary function
g as follows:

hd h(xly"‘)znyo) =f(171,...,£n)

i h(:cl,...,:c,,,(succy)) = g(tl,...,tn,y,h(tl,...,tn,y))

I am going to provide a definition of a primitive recursion operator PR; for the
case of n = 1. It is straightforward to then define PR, for all n. PR, has type:
0y = 0y — 0y, Whereoy =1 =, 0=t o1 =1 —and oy =1 — 1>
So, here is the definition:

PRy ¥ aforagos.

Y,, (AR Azt Ayt
(condy (f2)
(((g =) (predy)) (h z(predy)))))

Example 10. At this point it should be clear how to program all of the prim-
itive recursive functions in FKS (at least their curried versions). To check this,
we simply need to verify that we have all of the basic functions and operations
needed to define them. Let’s go through a check:
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o We have the successor function built in.
¢ The zero function is: (Az*.0)

o The identity functions can be defined analogous to the pairing operators
defined earlier. In general ID} = (Azi ... Azh. n;).

¢ Composition of m n-ary functions. Again the set of combinators CN,, ,
is easily A-definable. It is left as an exercise.

o Primitive recursion has just been given.

So we can code any primitive recursive function of n-arguments by a function
in FKS of type:

L= ...—=Ll—

n times

This ability to code all of the functions of a class like this in our language is
called numeralwise representability. We say that the all of the primitive recursive
functions are numeralwise representable FKS.

Example 11. Now that we know that all of the primitive recursive functions
are numeralwise representable in FKS, we would like to show that all of the
partial recursive functions are numeralwise representable in FKS.

This simply involves demonstrating that we can code the set of minimization
operations Mn,,. We will define Mn,. It is of type: oy — ¢ — ¢, where
o; =t — ¢. In the definition we will use: o5 = ¢ — ¢. So, here it is:
Mny € (foraz
(Yo, (AR» Ayt
(cond ((fz)y) v
(h (succ y)))))
0))

And, we are done.

Thus FMS can define all of the partial recursive functions, so it is just as powerful
as any of the other models of computation which we have seen. In addition, it is
not too powerful. Although it may not be immediately clear how you could write
an interpreter for FKS, the SECD machine, which will begin the next section
of notes, operates by very simple pointer manipulations and will obviously be
implementable via a turing machine or u-recursive functions.
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Notes on Programming (Part II)

by Arthur Lent

1 More on Recursion and Y

This section is included in order to help you understand, from a computational
point of view, why Y works in defining recursive functions. We will return to the
example of factorial which occurs in pages 11-13 of the first part of the notes.
Consider how fact is defined in SCHEME:

(define (factn) (cond (= n 0) 1 (* n (fact (-1 n)))))

As users of SCHEME, we know how this factorial function works. But it is
important to see that, from a naive mathematical perspective, this “definition”
of fact is not a definition in the traditional sense—the “defined” value appears
in its own definition! Rather, it states a property that any “facf’ function
must satisfy. So, we are going to have to play some tricks in order to get a true
definition of a factorial function.

Now look at the following code:
(lambda (n) (cond (= n 0) 1 (* n (fact (=1 n)))))

This code can be thought of as a function of one variable, whose definition
uses whatever function is bound to the identifier fact. So let us abstract this
expression over the identifier fact, and rename the thusly bound identifier to f,
‘and call the resulting expression F':

F % (lambda (f) (lambda (n) (cond (= n 0) 1 (* n (f (=1 n))))))

F is now a function which takes two arguments. If you were to apply F to the
factorial function, the result would be the factorial function. Thus we get an
equation:

fact = F(fact)

Since fact has this property, it is called a fized point of the function F. In
general, we define a fixed of a function G to be any element z of the domain of
G such that G(z) = z. We also define a fized point operator, call it fiz, to be a
functional that takes a function as its argument, and returns the fixed point of
its argument. It turns out that a fixed point of a function G can be found by
repeatedly applying it to itself “infinitely many times”

Now consider the infinite list of functions:
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ho 4’ a function that is undefined on all inputs

hy % hy(0) = 0!, k() undefined for z > 1

hy %' By(0) = 0!, hy(1) = 11, hy(2) undefined for z > 2

hs % hs(0) = 0!, hg(1) = 11, h3(2) = 2, ha(x) undefined for = > 3
ha % Ra(0)=0!...hs(n—1) = (n —1)!, undefined for z > n

We can imagine that this list goes on forever, approaching a single function, h,.
But this supposed limit, hq,, is the factorial function. Another way of looking
at it is that for every z there is an element in the list, h;, such that hi(z) = z!.
This fact will be important later when we look at mathematical models.

What else can>we see? Well, notice that (F(hy)) = hy). More generally,
(F(hi)) = hi+1. But then:

((F(F...F(ho))) =h,
L —
n Fls
We can pretend n goes to oo and we have:
(F(...F(ho))) = factorial -
We could then almost say, then that:
(F(F(...F(hg)))) = F(factorial)

But then we could almost say:

factorial = F(factorial)

So we are almost truly convinced that:
(let fact = (fiz F))

really defines fact to be the factorial function. By looking carefully at the
example on pages 14-15 of the previous set of notes you can see this process at
work (note: In FKS, Y does the job of fiz). You can witness that this process
evaluates the body of F, then just when it needs it, (Y F') appears with another
copy of the body of F for the next recursive call.

There is one difficulty with this description. Joseph Stoy characterizes it quite
well in [1]:
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“It [the argument just given] certainly leaves some unanswered questions, which
must be settled before we can be happy with the above definition of fact. If B
has more than one fixed point [such as (Az*.z)], which one does (Y B) produce?
What happens when Y is applied to such expressions as Ar.z + 1 which ... has
no fixed points? It is questions like this last one that have earned Y the title of
‘paradoxical combinator’. ”

In the case of ((Y G) args) (with args appropriate to make that expression of
type ¢) where G has no fixed point, that term will diverge. But the question
of multiple fixed points is much more subtle. It turns out that Y is a “least”
fixed point operator, picking the “least” such result that is still a fixed point,
yet is compatible with all of the other fixed points. This notion of “least” will
be made more precise in the section on denotational semantics.

References

[1] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, 1977.
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Notes on Programming (Part III)
by Arthur Lent

This handout assumes that you are familiar with the material contained in hand-
out #29 (Part I of these notes). In particular you need to know the definition
of terms, F'V, BV, the substitution operation, =, , and the rewrite rules.

1 The SECD Machine

Introduction. The SECD machine was first introduced by Landin in 1963(1].
The importance of the machine’s introduction was that it was the first time that
a language was described abstracted away from a particular implementation—in
the past, a language was defined by the first compiler written for it. The SECD
machine takes a role between the further abstraction of rewrite rules and the
concreteness of an actual implementation—making explicit the control structure
of evaluation, yet still leaving unspecified arbitrary details.

The treatment here is taken largely from a work by Plotkin in 1975(2).

What is a SECD Machine. SECD stands for Stack-Environment-Control-
string-Dump. The precise technical definition of each of these terms will be
given in the next section. First, we wish to cultivate some intuitions about the
SECD machine. The SECD machine is an automaton whose basic actions are
pointer manipulations. In fact, its basic actions involve a constant number of
pointer manipulations. Once you see the full definitions it should be immediately
clear how to built an interpreter for FKS. You should be able to do it in about an
afternoon. You could not say the same thing about the rewrite rules presented
in the first section of the notes. Not only does this description lend itself much
more to being implemented, an implementation based directly on the SECD
machine is far more efficient than one based upon the rewrite rules. Yet this
does not mean that the rewrite rules are without value—they probably make a
more understandable operational definition of FKS, and they will be essential
for our work on denotational semantics.

Before we give technical definitions of the four components of the SECD machine

we will tell what each piece will be used for:

Stack The stack will be used to store intermediate results in the evaluation of
a function.
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Environment The environment is the environment in which the function is
being evaluated.

Controlstring The controlstring contains whatever operations still need to be
performed in order to complete the current function call.

Dump The dump stores the state of the machine that existed immediately
prior to the current function call. (It can be viewed as a stack of the
preceding activation records).

Definitions. The first new concepts to be defined are the sets Environments
and Closures. These correspond very closely to the notions defined in 6.001. In
fact, they are the same notions, but, in a language without side effects, they have
some additional nice properties. But first we should back up a step and address
why the SECD machine needs environments and closures. It uses them in order
to implement substitution. The process of turning an arbitrary term M into the
term Mz := N] is nontrivial. The traditional way of doing substitution is to
say that the term M[z := N] can represented by M paired with an environment
an object that states that z really is N. M paired with this environment is
called a closure, and it “represents” the term M{z := N]. Now what if we want
to substitute (M[z := N]) for y into P to get the term Ply := (M[z := NJ)].
We want to represent this by the closure [P, E] where E(y) = (M[z := NJ).
Unfortunately, we do not actually have our hands on the term M({z := N]—
we have our hands on a closure representing it. Thus we do not really want
environments to map from variables to terms, but, rather, we want them to
map from variables to closures. This may look like a circular definition, but
then so does defining two functions in a mutually recursive way. Here is a
simultaneous mutual inductive definition of the set Closures of closures, the
set Value Closures of value closures and Environments of environments:

e 0, is an abbreviation for the totally undefined function. It is an environ-
ment.

o A partial function with finite domain, that maps variables of type o to
value closures of type o is an environment.

¢ If F is an environment, and M of type o such that FV(M) C Domain(E)
then [M, E] is a closure of type o. (In other words, F is defined on all of
the free variables of M).

o If M is a value of type ¢ and [M, E] is a closure then {M, E] is a value
closure.

Note that any closed term M can be represented by the closure [M, §].
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We also define E{Cl/z} (z and C! must have the same type) to be the unique
environment E’ such that E'(y) = E(y) if y # = and E'(z) = CI (for any
Cl € Closures).

Finally, to drive home the point that a closure can mechanically be “unwound”
into the term it represents we define a function Realterm : Closures — Terms.
It is defined inductively by:

Realterm([M, E]) = M([z; := Realterm(E(z,))] ... [z, := Realterm(E(z,))]

where

FV(M) = {z1,...,2n}

Note that this unwinding property is only possible when there are no side-effects
in the terms inside the closures being unwound, so for Scheme it will not work,
but there are many cases where closures are built up from terms without side-
effects, in which case you really can think of those closures in terms of this
unwinding process.

The set of stacks, Stacks, is the set of all finite sequences of closures, formally
written as Stacks = (Closures)*.

The set of controlstrings, Controlstrings = (Terms U ap, cd)* where ap, cd
are special symbols that are not elements of Terms. The function F'V is easﬂy
extended to work on controlstrings as follows:

. FV(ap) =
e FV(cd) =
o FV(Cy,...,Cp) =i, FV(Ci) (n>0)

Finally, the set of dumps, Dumps, is defined inductively by:

e nil € Dumps

}
e If S € Stacks, E € Environments, C € Controlstrings and C is such
that FV(C) C Domain(E), and D € Dumps then [S, £, C, D] € Dumps

This concludes the definitions of the primary data structures manipulated by
the SECD machine.

The functions constapply and Constapply. The SECD machine model
which we will present in the next section will be defined in a manner that
abstracts away from the constants that we have chosen to include in FKS. Thus
we could, in principle, add constants to the language (such as a curried plus
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operator) and the main proofs about the SECD machine would carry through
directly. In addition this abstraction separates out the “constant stuff” for
a particular language from the general principles of interpreting a functional
language.

The SECD machine will employ the function Constapply when it hits an
operator that is a constant. Since constant operators (namely Y') in our language
can take values as arguments, and values are general terms which might need
closures to fully define them, Constapply needs to be a partial function of the
type:

Constants x Closures — Value Closures

We will also be presenting a recursive characterization of the rewrite rules which
does not use stacks, closures, environments, or dumps, yet still captures explic-
itly the order of evaluation of the SECD machine. But for this recursive charac-
terization, which we will from now on call eval, we still need a Constapply sort
of function, but it must live wholly in the world of terms (no closures allowed).
We will call it constapply, and it needs to be a partial function of type:

Constants x Closed Values — Closed Terms
In actuality we will not define Constapply directly. Instead we will define

constapply, and then state that Constapply is as determined as it needs to
be by the following restriction:

Realterm(Constapply(a, Cl))=,constapply(a, Realterm(Cl))

What this requires is that Constapply gives a result that is independent of
how the closure that is its argument represents the term it is acting upon. So
Constapply cannot distinguish between:

[z, {[=,(MN)]}]

and

(= 9),{[=, M], [y, N1}

Here is the definition of constapply which we will use for FKS:

succ constapply(succ,n) - n+1
pred constapply(pred,n+1) — n
constapply(pred, o) — o
Y, constapply(Y,, V) — (V(z(o=9) (Y, V)z))

(foranz g FV (V)
and for V a value
and for o # ()
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Order of evaluation. The SECD machine will evaluate the operands of a
combination before the operators. This is to be contrasted with the order of
the rewrite rules which evaluate operators before operands. We apologize for
this confusion, and it should be obvious how to change the rewrite rules or
the SECD machine so that the order is reversed. Our main theorem, however,
carries through whichever order used in whichever scheme. This is because,
for FKS, the order does not matter (in fact for a particular scheme expression,
where the evaluating the operator or operands does not produce any side effects,
the order does not matter). Note that the definition of Scheme does not even
specify which is the correct order. The following is an exerpt from the Scheme
manual given to 6.001 students in Spring ’89:

“A procedure call is written by enclosing in parenthesis expressions for the
procedure to be called and the arguments to be passed to it. The operator
and operand expressions are evaluated (in an indeterminate order) and the
resulting procedure is passed the resulting arguments... Procedure calls are also
called combinations” (emphasis added).

The function SECD. The state transition function, a partial function from
Dumps to Dumps is defined as follows:
1. [Cl: S, E,nil,[S'" E',C'\D'|=[Cl:S' E',C', D'
[S,E,z:C,D]= [E(z):S,E,C,D]
{S,E,a:C,D] = [[e,0:S,E,C,D]
[S,E,(A\z. M):C,D] = [[(Az. M), E]:S,E,C,D]
[[(Az. M),E']:Cl: S,E,ap: C,D] = [nil, E'{Cl/z},M,[S, E,C, D]|

[[0, @] . [V, E"] :S,E,ap: C, D] = [nil’ E'\M', [S’ E,C, D]]
(where Constapply(a, [V, E"]) = [M, E'))

S, E,(MN):C,D] = [S,E,N: M :ap: C,D]

8. [S, E,(cond MNN>) : C,D] = [[N1,E] : [N2,E] : 5,E,M : cd : C, D]
9. [[o, Eo) : [N1, E1] : [N2, B2} : S, E,cd : C, D] =[S, E1, N1 : C, D]

10. [[frn + 2, Bol : (N, E1] : (N2, B) : S, E,cd : C, D] = [, Ea, N2 : G, D)

A o

~

We now need two functions Load and Unload which convert terms into
SECD machine state, and SECD machine state into terms. Specifically they
are defined by:

Load(M) = [nil, 8, M, nil]
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Unload([C1,0, nil, nil]) = Realterm(CL)

We can now define an evaluation function, which is a partial function from terms
to values as follows:

SECD(M) = V iff Load(M) = D, and V = Unload(D) for some dump D
The punchline of the section on SECD machines is the following theorem:
Theorem 1. SECD(M)=4N iff Eval(M)=,N for all terms M and N.

Remember that M and N are =, iff they differ only in the names of their bound
variables—called a-equivalence or equal up {0 renaming of bound variables.

In order to prove this theorem we will introduce another scheme for evaluating
programs that is midway between the rewrite rules and the SECD machine. This
will be a simple recursive definition that uses substitution rather than closures.

We would to like to find a (partial) function eval : Closed Terms — Values
such that:

eval(a) = a; eval(AzM) = AzM

eval(M'[z := N']) (if eval(M) = Az M'
_ and eval(N)=N)
eval(MN) = eval(constapply(a,N')) (if eval(M) = a
and eval(N) = N')

_ | eval(Ny) (ifeval(M) =0
eval(cond M Ny Np) = { eval(Ny) (if evaI(M; = n)+ 1)

Now this may look like a good recursive definition of a partial function, and it
turns out that it s good, but the precise sense in which equational recursive
definitions of partial functions work requires avoiding some mathematical pit-
falls, which we must not take for granted. So, to be perfectly precise about how
eval is defined, we define the predicate “M evals to N at stage ¢” by induction
on t, for closed terms M and closed values N

1. a evals to a at stage 1; (Az M) evals to (AzM) at stage 1.

2. If M evalsto (AzM’) at stage t and N evals to N’ at stage t’ and [N'/z] M’
has value L at stage t" then (M N) evals to L at stage t +¢' +1"' + 1.

3. If M evals to o at stage ¢ and N evals to L at stage ¢’ then (cond M Ny N»)
evals to L at stage t +t' + 1. If M evals to n + 1 at stage ¢ and N3 evals
to L at stage ' then (cond M N; Nj) evals to L at stage t +1t' + 1.
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4. If M evals to a at stage t and N evals to N’ at stage t' and if
constapply(a,N') is defined and evals to N” at stage ¢/, then (M N) evals
to N” at stage t + ¢/ + 1 + 1.

It is a fairly simple induction on ¢ to show that for all M, there is at most
one pair (N,t) such that M evals to N at stage ¢. Consequently this is a good
definition of a partial function:

eval(M) = N iff M evals to N at some stage.

There is a better way of defining evalvia an inference relation eval,; however,
time has not permitted working out this better definition.

Proving the equivalence of SECD and eval. In before we prove Theorem
1 we first prove the following, easier Theorem (notice the little “e”):

Theorem 2. SECD(M)=,N iff eval(M)=4,N for all terms M and N.

This theorem will be proven using three lemmas. The first says using closures
and environments to model substitution “works right”. The second will prove
direction = of this theorem, and the third will prove direction <= of this theorem.

Lemma 1. Suppose [Ay. M, E] and [N, E’] are value closures. Also suppose
that Realterm([Ay. M, E])=,(Az.M’) and

Realterm([N, E'])=qN’. Then Realterm([M, E{[N, E']/y}])=aM'[z := N'].

Proof Sketch: Observe that if Ay. M=qAz. M’ then M=,M'[z := y], hence
My := N)=oM'[z := N)]. The rest is a simple unwinding of the closures and
simply examining the definition of Realterm. M

The proof of this next Lemma captures how the SECD machine really works.
It is quite long, however, thus we will leave out the details of a few of the cases.

Lemma 2. Suppose E is an environment and [M, E] is a closure. Suppose
Realterm([M, E)) evals to M". Suppose C is a controlstring with FV(C) C
Domain(FE). Then there is a t’ > ¢, such that for all S, D,

[S,E,M :C,D) % [[M',E'] : S,E,C, D)

where [M’, E'] is a value closure and Realterm([M’, E'])=,M".
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This Lemma really does entail the right hand direction of Theorem 2, but re-
quires in its statement a rather hefty induction hypothesis.

Proof: This is a proof by induction on ¢. It is quite similar to that presented
by Plotkin [2]. There are 5 main cases:

1. M is a constant. Here Realterm([M,E]) =M = M" and t = 1. As
[S,E,M :C,D)=[M,0]:S,E,C,D)]
we can take [M', E'] = [M,0] and ¢/ = L.
2. M is a A-abstraction. Almost the same as the previous case.
3. M is a variable. Take [M’, £’} = E(M), and t = 1.

4. M = (cond P N; N,) is a conditional. Apply the inductive hypothesis to
P and then divide by cases according to P’ the value that P evals to at
stage ¢,

5. M = (M, M) is a combination. Then

Realterm([M, E]) (Realterm([M, E]) Realterm([M2, E]))

= (N N3) say.

This now divides into two subcases, depending on whether or not the value
to which N evals to is a A-abstraction or a constant.

(a) (Az. N3) is the value that N evals to at stage t;, N4 is the value
that N, evals to at stage to, M is the value that N3[z := N,] evals
to at stage t3 and t = t; 4+ 1o + 13+ 1.

Then by the induction hypothesis there are t; > ¢; (i = 1, 2) such
that:

[S,E,(My M) :C,D] = [S,E,My:M,:ap:C,D]
4 (M3, E5) :S,E,My :ap: C, D]
5% (M, Bf): (M, B3] : S,E,ap: C, D)
where
Realterm([M1, E\])=q(Az. M) and Realterm([M}, E3])=,Na,

and the [M{, E!] are value closures.
Here M| = (Ay. M}) for some M3, and

Realterm([M3, E1{[y := [M3, E5]}])=a[N4/z] N3 (by Lemma 1).
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(b)

Now

)

(M1, E{]: [M3,E5):S,E,ap: C, D)
= [ndl, E1{[M3, E5]/y}, M3, [S, E, C, D))

3 ([M', E"), E{{[M}, E3)/y},nil, [, E, C, DJ]
= [[M',E']: S,E,C, D]

where, by the induction hypothesis, Realterm([M’, E’]) is to within
a-equivalence the value that Realterm([M}, E\{[M}, E5]/y}]) evals
to at stage t3 < t5 and [M’,E’] is a value closure. Taking ¢/ =
] + 15 + 15+ 3 concludes this subcase.

a is the value that N; evals to at stage ¢;, V is the value that No
evals to at stage t;. Then, by the inductive hypothesis there are
t; > t; (i=1, 2), and a value closure V'C such that:

[S,E,(My M5),C,D] = [S,E,M>:M;:ap:C,D]

t'

2 [VC:S,E,M :ap:C,D]

4 ((a,0): VC :S,E,ap: C, D]
where Realterm(VC) = V. Now, finally, suppose that we have
Constapply(a, VC) = [M",E"], and N" is the value to which
Realterm([M", E")) evals at stage t3 (thus N is the value to which
constapply(a, Realterm(V C)) evals at stage t3). By the induction
hypothesis there are t5 and VC’ such that:

'I'+='é+1

(S, E, (M M5),C, D] ([a,0): VC : S,E,ap: C, D]

=  [il,E",M",[S,E,C, D
5 e, E" nil,[S,E,C, D]
= [VC':S$E,C, D

where Realterm(VC’) = N”. Then taking ¢’ =t{ + 5 +t5+ 3 and
[M', E'l = VC’ concludes the proof of the lemma.

Before we introduce the next lemma, we need a definition. If D 3 D , Where
D' does not have the form [Cl,0,nil, nil] and D' % D" for any D" then D is
said to hit an error state (viz. D).
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Lemma 3. Suppose E is a value environment and [M, E] is a closure. If
Realterm([M, E]) does not eval to a value at any t’ < ¢, then either for all
S, C, D, with FV(C) C Domain(E), [S, E, M : C, D] hits an error state or else
[S,E,M :C,D] = D' for some D'.

Proof Sketch: This is proved by induction on t—the number of steps used by
the SECD machine to evaluate M. It.is just a horrible counting exercise that
can just be grunged through. W

Proof: (Theorem 2). Suppose eval(M) = M". Then at some stage t, M" is
the value that M evals to at stage t. By lemma 2,

[nil, 0, M, nil] & [[M’, E'), 0, nil, nil],
where Realterm([M’, E'])=q M". So Eval(M)=,M".

Suppose, on the other hand, that M does not eval to a value at any stage. Then
by Lemma 3 either [nil,®, M] hits an error state or else for every t there is a D

such that [nil, 0, M, nil] & D. In either case SECD(M) is also not defined. W

Proving the equivalence of eval and Eval.

Theorem 3. For all well-typed, closed terms M with constants in Constants
then MM’ (M’ a value) iff M evals to M’ at some stage t (eval(M) = M’).

But first we need several facts:

Fact 1. — is deterministic. That is: if M — M’ then AM"” # M’ such that
M — M". Thusif MSM"”, M5 M' and m < n then M= M".

Fact 2. If M; M then (M; M3) 2 (M{M;) and (aM;)>(aM))

Fact 3. If M is a closed value, then (¢cM) — constapply(c, M) which is
to say that if constapply(c,M) is defined then (cM) reduces to it, and if
constapply(c,M) is not defined then AM': (cM)— M'.

Proof: (M =M’ = eval(M) = M’). By induction on n.

Basis. n = 0. M is a constant ¢, or M is an abstraction (AzN). In either case
M = M’ and M evals to M’ at stage 1.

Inductive Step. M is a combination, say (M;M;). For (M1 My)»M', a
value, then it must be the case that M;23M}, and M>;3M}, where M! and
M}, are values. By Fact 2, (M; M3)™3(M] M2)=3(M{M}). The proof now breaks
down into two cases depending on what kind of value M7 is.
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1. M{ =AzN. Then

(M M) 22 (A2 N) M) — (Nl = M3))" " g,
By the inductive hypothesis then eval(M,) = AzN, eval(M,) = M}, and
eval(N(z := M3]) = M'. Thus:
eval(M; M;) = eval(N{z := Mj)) = M'.
2. M} =c.

(M My)™ 27 (cM,) 23 (cMS) — constapply(c, M4)" "+ pp
By the inductive hypothesis:
eval(M,) = ¢, eval(M2) = M}, and eval(constapply(c, M})) = M’.

Thus:
eval(M1 M,) = eval(constapply(c, M3)) = M’

The case for when M is a conditional is left as an exercise. W

Proof: (M evals to M’ at stage £ = M-»M’). By induction on ¢.

Basis. t = 1. M = M’, and is either a constant or an abstraction. In either
case M > N and we are done.

Inductive Step. t > 1. M is neither a constant nor an abstraction so it must
be an application or conditional. We consider the case of an application, that
of the conditional is left as an exercise. So M = (M| M,).

M1 must eval to a value at stage some t; < t—2. So say M, evals to M] at stage
t1. Then by the induction hypothesis M;—»M;, and then (M;My)-»(M|M,).
In addition M3 must eval to a value at some stage t5 < t — (t; + 1). So say
M, evals to Mj at stage ¢t3. Then by the induction hypothesis My-»M}, thus
(M] Ma)—»(M{M3).

The analysis now breaks down into 2 cases based upon Mj.

1. M{ = AzN. In this case N[z := M;] evals to M’ at stage t — (1 + t2).
But then
M= (MiM;) -+ (AzN)M,
— Nz := M,]

and by the inductive hypothesis N'[z := Mj]-»M' and so M-»M'.
2. M{ is a constant. Let N = constapply(M], M3). By fact 3 we know that

(M{M}) — N. Finally, N must eval to value M’ at stage t — (t; +t2 + 1),
thus by the induction hypothesis N-»M’ and more importantly, M-—»M"'.
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Supplemental Problems on FKS

Remark. The following supplemental problems are not required exercises. Nev-
ertheless, in preparation for Quiz 4, you are strongly encouraged to attempt all
problems. Solutions will be handed out before the quiz so that you may study
them.

Problem 1. Recall the definition of the addition function plus given in lecture:

plus a Y (Ap.Az.Ay.cond y z (suce (p z (pred y))))
Using the rewrite rules, show all the steps in the evaluation of ((plus 31) 2).
Problem 2. Show all the steps of the SECD machine on the evaluation of
((plus 31) 1). That is, starting from the dump

[nil, 8, ((plus 31) 1), nil]

show all steps of the SECD machine till it halts.
Problem 3. Give a rigorous proof that ((plus n) m), under the rewrite rules,
evaluates to n + m, i.e., Eval(((plus 31) 1)) = n + m. (Hint: Use induction on

m. Note that this is a familiar fact, but is not obvious since the rewrite rules
could be defined in a bizarre way.)
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Notes on Programming (Part III revised)
by Arthur Lent

This handout assumes that you are familiar with the material contained in hand-
out #29 (Part I of these notes). In particular you need to know the definition
of terms, F'V, BV, the substitution operation, =, , and the rewrite rules.

1 The SECD Machine

Introduction. The SECD machine was first introduced by Landin in 1963[1].
The importance of the machine’s introduction was that it was the first time that
a language was described abstracted away from a particular implementation—in
the past, a language was defined by the first compiler written for it. The SECD
machine takes a role between the further abstraction of rewrite rules and the
concreteness of an actual implementation—making explicit the control structure
of evaluation, yet still leaving unspecified arbitrary details.

The treatment here is taken largely from a work by Plotkin in 1975[2].

What is a SECD Machine. SECD stands for Stack-Environment-Control-
string—-Dump. The precise technical definition of each of these terms will be
given in the next section. First, we wish to cultivate some intuitions about the
SECD machine. The SECD machine is an automaton whose basic actions are
pointer manipulations. In fact, its basic actions involve a constant number of
pointer manipulations. Once you see the full definitions it should be immediately
clear how to built an interpreter for FKS. You should be able to do it in about an
afternoon. You could not say the same thing about the rewrite rules presented
in the first section of the notes. Not only does this description lend itself much
more to being implemented, an implementation based directly on the SECD
machine is far more efficient than one based upon the rewrite rules. Yet this
does not mean that the rewrite rules are without value—they probably make a
more understandable operational definition of FKS, and they will be essential
for our work on denotational semantics.

Before we give technical definitions of the four components of the SECD machine
we will tell what each piece will be used for:

Stack The stack will be used to store intermediate results in the evaluation of
a function.
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Environment The environment is the environment in which the function is
being evaluated.

Controlstring The controlstring contains whatever operations still need to be
performed in order to complete the current function call.

Dump The dump stores the state of the machine that existed immediately
prior to the current function call. (It can be viewed as a stack of the
preceding activation records).

Definitions. The first new concepts to be defined are the sets Environments
and Closures. These correspond very closely to the notions defined in 6.001. In
fact, they are the same notions, but, in a language without side effects, they have
some additional nice properties. But first we should back up a step and address
why the SECD machine needs environments and closures. It uses them in order
to implement substitution. The process of turning an arbitrary term M into the
term M [z := N] is nontrivial. The traditional way of doing substitution is to
say that the term M[z := N] can represented by M paired with an environment
an object that states that z really is N. M paired with this environment is
called a closure, and it “represents” the term M[z := N]. Now what if we want
to substitute (M[z := NJ]) for y into P to get the term Ply := (M[z := NJ)].
We want to represent this by the closure [P, E] where E(y) = (M[z := N)).
Unfortunately, we do not actually have our hands on the term M[z := N]—
we have our hands on a closure representing it. Thus we do not really want
environments to map from variables to terms, but, rather, we want them to
map from variables to closures. This may look like a circular definition, but
then so does defining two functions in a mutually recursive way. Here is a
simultaneous mutual inductive definition of the set Closures of closures, the
set Value Closures of value closures and Environments of environments:

@ , is an abbreviation for the totally undefined function. It is an environ-
ment.

o If E is an environment, and M of type o such that FV (M) C Domain(E)
then {M, E] is a closure of type 0. (In other words, E is defined on all of
the free variables of M).

e If M is a value of type o and [M, E] is a closure then [M, E] is a value
closure of type o.

o If Cl; are value closures of types o; (for i = 1,...,n), and Dom(E) =
{z|1 £ ¢ € n}, and E(z]*) = Cl; (for i = 1,...,n) then E is an
environment.
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Note that any closed term M can be represented by the closure IM,0].

We also define E{Cl/z} (z and Cl must have the same type) to be the unique
environment E’ such that E'(y) = E(y) if y # z and E'(z) = C! (for any
Cl € Closures).

Finally, to drive home the point that a closure can mechanically be “unwound”
into the term it represents we define a function Realterm : Closures — Terms.
It is defined inductively by:

Realterm([M, E]) = M [z, := Realterm(E(x,))] .. .[zn := Realterm(E(z,))]
where
FV(M)={z1,...,za}

Note that this unwinding property is only possible when there are no side-effects
in the terms inside the closures being unwound, so for Scheme it will not work,
but there are many cases where closures are built up from terms without side-
effects, in which case you really can think of those closures in terms of this
unwinding process.

The set of stacks, Stacks, is the set of all finite sequences of closures, formally
written as Stacks = (Closures)*.

The set of controlstrings, Controlstrings = (Terms U ap, cd)* where ap, cd
are special symbols that are not elements of Terms. The function F'V is easily
extended to work on controlstrings as follows:

o FV(ap)=0
e FV(ed)=10
o FV(Cy,...,Ca) ==, FV(C;) (n20)
Finally, the set of dumps, Dumps, is defined inductively by:

e nil € Dumps

¢ If S € Stacks, E € Environments, C € Controlstrings and C is such
that FV(C) € Domain(E), and D € Dumps then [S, E,C, D] € Dumps

This concludes the definitions of the primary data structures manipulated by
the SECD machine.
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The functions constapply and Constapply. The SECD machine model
which we will present in the next section will be defined in a manner that
abstracts away from the constants that we have chosen to include in FKS. Thus
we could, in principle, add constants to the language (such as a curried plus
operator) and the main proofs about the SECD machine would carry through
directly. In addition this abstraction separates out the “constant stuff” for
a particular language from the general principles of interpreting a functional
language.

The SECD machine will employ the function Constapply when it hits an
operator that is a constant. Since constant operators (namely Y') in our language
can take values as arguments, and values are general terms which might need
closures to fully define them, Constapply needs to be a partial function of the
type:

Constants x Closures — Value Closures

We will also be presenting a recursive characterization of the rewrite rules which
does not use stacks, closures, environments, or dumps, yet still captures explic-
itly the order of evaluation of the SECD machine. But for this recursive charac-
terization, which we will from now on call eval, we still need a Constapply sort
of function, but it must live wholly in the world of terms (no closures allowed).
We will call it constapply, and it needs to be a partial function of type:

Constants x Closed Values — Closed Terms

In actuality we will not define Constapply directly. Instead we will define
constapply, and then state that Constapply is as determined as it needs to
be by the following restriction:

Realterm(Constapply(a, C!))=,constapply(a, Realterm(C1))

What this requires is that Constapply gives a result that is independent of
how the closure that is its argument represents the term it is acting upon. So
Constapply cannot distinguish between:

[z, {[=,(MN)]}]

and
(= ¥), {[z, M], [y, N]}]

Here is the definition of constapply which we will use for FKS:
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succ constapply(succ,n) - n+1
pred constapply(pred,n+1) — n
constapply(pred, o) - 0
Y,  constapply(Y,,V) — (V(Azle—9) (Y, V)z))

(for an ¢ ¢ FV(V)
and for V a value
and for ¢ # )

Order of evaluation. The SECD machine will evaluate the operands of a
combination before the operators. This is to be contrasted with the order of
the rewrite rules which evaluate operators before operands. We apologize for
this confusion, and it should be obvious how to change the rewrite rules or
the SECD machine so that the order is reversed. Our main theorem, however,
carries through whichever order used in whichever scheme. This is because,
for FKS, the order does not matter (in fact for a particular scheme expression,
where the evaluating the operator or operands does not produce any side effects,
the order does not matter). Note that the definition of Scheme does not even
specify which is the correct order. The following is an exerpt from the Scheme
manual given to 6.001 students in Spring ’89:

“A procedure call is written by enclosing in parenthesis expressions for the
procedure to be called and the arguments to be passed to it. The operator
and operand expressions are evaluated (in an indeterminate order) and the
resulting procedure is passed the resulting arguments... Procedure calls are also
called combinations” (emphasis added).

The function SECD. The state transition function, a partial function from
Dumps to Dumps is defined as follows:

1. [C1: S, E,nil,[S', E',C",D']) = [Cl: S', E',C", D]
(S,E,z:C,D]= [E(x): S, E,C, D]

[S,E,a:C,D] = [[a,0] : S, E,C,D]

(S, E,(Az. M): C,D] = [[(Az. M), E]:S,E,C,D]

((Az. M),E'] : Cl: S, E,ap : C,D] = [nil, E'{Cl/x}, M, (S, E,C, D]}

[[a)m] : [V) E”] ZS,E,GP : Ca D] = [n“’E’vMI)[S)EaC)D]]
(where Constapply(a, [V, E”]) = [M, E'])

7. [S,E,(MN):C,D}=[S,E,N: M :ap:C,D]

I
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8. [S,E,(cond MNN3):C,D] = [[Ny,E}:[N,E}: S,E,M :¢cd: C, D)
9. [[0, Eo] : [Nl,El] : [Nz, Ez] : S, E,Cd : C, D] = [S, El,Nl : C, D]
10. {[[m + 1, Eo] : [N1, E1) : [Na, E3) : S,E,ed : C, D] =[S, E5, N, : C, D]
We now need two functions Load and Unload which convert terms into
SECD machine state, and SECD machine state into terms. Specifically they

are defined by:
Load(M) = [nil, 0, M, nil]

Unload([Cl, 0, nil, nil]) = Realterm(CL)

We can now define an evaluation function, which is a partial function from terms
to values as follows:

SECD(M) = V iff Load(M) = D, and V = Unload(D) for some dump D
The punchline of the section on SECD machines is the following theorem:
Theorem 1. SECD(M)=,N iff Eval(M)=4N for all terms M and N.
Remember that M and N are =, iff they differ only in the names of their bound

variables-—called a-equivalence or equal up to renaming of bound variables.

In order to prove this theorem we will introduce another scheme for evaluating
programs that is midway between the rewrite rules and the SECD machine.
This will be a simple inductive definition that uses substitution rather than
closures.

We introduce the binary relation eval, on closed terms:

o eval.,(V,V) for V a value.

o if eval,,;(M;,Az.M) and eval,., (N, N2) and eval,.(M[z := N,],L)
then eval, (M1, N1), L)

o if eval,.i(Mi,c) and eval,i(N1, N2) and eval,i(constapply(c, N2)), L)
then eval,((My, N1), L)

o if eval,.i(M,o0) and eval,.;(N1, N}) then eval,.i((cond M N; N3), Nj)

o if eval,;(M,n + 1) and eval, (N2, Nj) then
eval,{(cond M N; N3), Nb)

The following two facts about eval,.;can be proven by induction on its defini-
tion:
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(a) eval,.iis the graph of a function

(b) If eval (M, N) then N is a value
Thus we can make the following definition of a partial function eval:

eval(M) %l the unique V, if any, such that eval, (M, V)

Note that this function evalis the same function as the Metacircular Evaluator
in scheme. Only here we have give a rigorous mathematical definition of eval—
which the 6.001 definition is not.

Neverless you can check that evaldoes “work like” the metacircular environment
in that it satisfies the equations:

eval{a) = a; eval(AzM) = daM

eval(M'[z := N") (if eval(M) = Az M’
' and eval(N)=N’)
eval(constapply(a, N')) (if eval(M) = a
and eval(N) = N')

eval(MN) =

eval{ N, if eval(M) =0

eval(cond M N, N3) = { evalENZ; éif evangg - n)+ )

From the definition of eval,.; and eval, it should be clear that we could define
the predicate “M evals to N at stage t”. Where this simply captures the notion
that determining eval,.;(M, N) takes exactly ¢t steps. An induction on t for
eval,;(M,N) is called an “induction on the length of the derivation”. So
concluding eval,.(V,V) for V a value takes one step. For all of the inductive
cases, if it takes ¢ steps to establish all of the hypotheses, then it takest+1 steps
to establish the consequents. Thus, for example, if M evals to (0) in t, steps,
and N; evals to L in t; steps, then (cond M N; Nj)evalsto Lint; +ta+ 1
steps.

Proving the equivalence of SECD and eval. In before we prove Theorem
1 we first prove the following, easier Theorem (notice the little “e”):

Theorem 2. SECD(M)=,N iff eval(M)=,N for all terms M and N.
This theorem will be proven using three lemmas. The first says using closures

and environments to model substitution “works right”. The second will prove
direction = of this theorem, and the third will prove direction <= of this theorem.
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Lemma 1. Suppose [Ay. M, E] and [N, E’] are value closures. Also suppose
that Realterm([Ay. M, E])=,(Az.M’) and

Realterm([N, E'])=4N’. Then Realterm([M, E{[N, E'|/y}])=a M'[z := N'].

Proof Sketch: Observe that if Ay. M=,Az. M’ then M=,M'[z := y], hence
My := N]=oM'[z := N]. The rest is a simple unwinding of the closures and
simply examining the definition of Realterm. W

The proof of this next Lemma captures how the SECD machine really works.
It is quite long, however, thus we will leave out the details of a few of the cases.

Lemma 2. Suppose E is an environment and [M,E] is a closure. Suppose
Realterm([M, E]) evals to M”. Suppose C is a controlstring with FV(C) C
Domain(E). Then there is a t’ > t, such that for all S, D,

[S,E,M :C,D) % [[M',E"): S,E,C,D]
where [M'| E'] is a value closure and Realterm([M’, E'])=oM".

This Lemma really does entail the right hand direction of Theorem 2, but re-
quires in its statement a rather hefty induction hypothesis.

Proof: This is a proof by induction on t. It is quite similar to that presented
by Plotkin [2]. There are 5 main cases:

1. M is a constant. Here Realterm([M,E])= M = M"” andt = 1. As
[S,E,M :C,D] = [[M,0]: S,E,C,D]
we can take [M’, E'] = [M,0] and ¢’ = 1.
2. M is a A-abstraction. Almost the same as the previous case.
3. M is a variable. Take [M’', E'] = E(M), and t = 1.

4, M = (cond P N; N,) is a conditional. Apply the inductive hypothesis to
P and then divide by cases according to P’ the value that P evals to at

stage t;
5. M = (M; M) is a combination. Then
Realterm([M, E]) = (Realterm([M;, E]) Realterm([M2, E}))

= (N; N,) say.

This now divides into two subcases, depending on whether or not the value
to which N evals to is a A-abstraction or a constant.
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(a)

(b)

(Az. N3) is the value that N; evals to at stage t,, N4 is the value
that N, evals to at stage ta, M is the value that N3[z := N4 evals
to at stage t3 and t =) + 5 +t3+ 1.

Then by the induction hypothesis there are t; > ¢; (i = 1, 2) such
that:

[S,E,(My M2):C,D] = [S,E,M;:M; :ap:C,D]
g [[MéxEIZ]:S)E)MIIap:CJD]

2 [[M{,E3): (M}, E}): S,E,ap: C, D]
where
Realterm([M,, E1))=o(Az. M) and Realterm([M}, E}))=q N4,

and the [M/, E}] are value closures.
Here M| = (\y. M3) for some M}, and

Realterm([M3, E1{[y := [M3, E3)}])=a[Na/2]N3 (by Lemma 1).
Now,

([M{,E{]: [Mj E3]:S,E,ap:C,D]
= nil, E{{{Mj, B3]/}, M3, [S, E,C, D]
3 (M, B, E{{[M3}, E3)/y}, nil, (S, E, C, D]]
= [[M',E']:S,E,C,D]

where, by the induction hypothesis, Realterm([M’, E']) is to within
a-equivalence the value that Realterm({M}, E{{{Mi, E5)/y}]) evals
to at stage t3 < t§ and [M', E’] is a value closure. Taking ' =
1] +15 + t5 + 3 concludes this subcase.

a is the value that N evals to at stage t,, V is the value that N,
evals to at stage ts. Then, by the inductive hypothesis there are
ti >t; (i=1, 2), and a value closure V'C such that:

[S,E, (M] Mz),c, D] = [S,E, My : M :ap: C,D]
3 [VC:S,E, M :ap:C,D]

4 ([a,0] : VC : S,E,ap: C, D]
where Realterm(VC) = V. Now, finally, suppose that we have
Constapply(a,VC) = [M",E"”], and N” is the value to which
Realterm([M", E"']) evals at stage t3 (thus N is the value to which
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constapply(a, Realterm(V C)) evals at stage ¢3). By the induction
hypothesis there are t5 and VC’ such that: ‘

[S,E, (M, M3),C,D] "2 [[0,0):VC:S,E, ap: C, D]
= [nil, E”,M",[S,E,C, D]
5 V¢, E" nil,[S,E,C, D]
~ [VC':S,E,C,D

where Realterm(VC’) = N”. Then taking t' =t} +t5 +t5 + 3 and
[M',E') = VC’ concludes the proof of the lemma.

Before we introduce the next lemma, we need a definition. If D > D , where
D’ does not have the form [Cl,0,nil, nil] and D’ # D" for any D" then D is
said to hit an error state (viz. D).

Lemma 3. Suppose E is a value environment and [M, E] is a closure. If
Realterm([M, E]) does not eval to a value at any t’ < t, then either for all
S, C, D, with FV(C) C Domain(E), [S, E, M : C, D] hits an error state or else
[S,E,M :C, D] < D’ for some D'.

Proof Sketch: This is proved by induction on t—the number of steps used by
the SECD machine to evaluate M. It is just a horrible counting exercise that
can just be grunged through. R

Proof: (Theorem 2). Suppose eval(M) = M". Then at some stage t, M" is
the value that M evals to at stage t. By lemma 2,

[nil, 0, M, nil] % [[M’, E'],0, nil, nil],

where Realterm([M’, E'])=oM". So Eval(M)=oM".

Suppose, on the other hand, that M does not eval to a value at any stage. Then
by Lemma 3 either [nil, @, M] hits an error state or else for every t there is a D

such that [nil, 0, M, nil] = D. In either case SECD(M) is also not defined. W

Proving the equivalence of eval and Eval.

Theorem 3. For all well-typed, closed terms M with constants in Constants
then MM’ (M’ a value) iff M evals to M’ at some stage t (eval(M) = M’).
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But first we need several facts:

Fact 1. — is deterministic. That is: if M — M’ then AM"” # M’ such that
M — M". Thus if MAM", MS M’ and m < n then M""="M".

Fact 2. If M, M| then (M) M) (M| M) and (aMy)2(aM]})

Fact 3. If M is a closed value, then (¢cM) — constapply(c, M) which is
to say that if constapply(c,M) is defined then (cM) reduces to it, and if
constapply(c,M) is not defined then AM': (cM) — M’'.

Proof: (MM’ = eval(M) = M'). By induction on n.

Basis. n = 0. M is a constant ¢, or M is an abstraction (AzN). In either case
M = M’ and M evals to M’ at stage 1.

Inductive Step. M is a combination, say (M;M;). For (MiM;)+M' a
value, then it must be the case that M;®3M!, and M3 M}, where M| and
M}, are values. By Fact 2, (M; M2) 3 (M] M3)23(M!M}). The proof now breaks
down into two cases depending on what kind of value M is.

1. M]{ =XzN. Then

(Mle)ﬂliﬂa((AIN)Mé) - (N[z = Mé])ﬂ—(nlin7+1)Ml.

By the inductive hypothesis then eval(M;) = AzN, eval(M;) = M, and
eval(N[z := M}]) = M'. Thus:

eval(My M) = eval(N[z := M})) = M'.
2. M{=c

(M1 M) ™2 (cM2)2(cM3) — constapply(c, M3)" ™"+

By the inductive hypothesis:
eval(My) = ¢, eval(Mz) = M3, and eval(constapply(c, M3)) = M'.

Thus:
eval(My M,) = eval(constapply(c, M3)) = M’

The case for when M is a conditional is left as an exercise. W
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Proof: (M evals to M’ at stage t = M-—»M'). By induction on t.

Basis. t = 1. M = M’, and is either a constant or an abstraction. In either
case M > N and we are done.

Inductive Step. t > 1. M is neither a constant nor an abstraction so it must
be an application or conditional. We consider the case of an application, that
of the conditional is left as an exercise. So M = (M;M,).

M must eval to a value at stage some t; < t—2. Sosay M; evals to M{ at stage
t1. Then by the induction hypothesis M;—»M{, and then (M;M,)—»(M|M,).
In addition M, must eval to a value at some stage {2 < t — (t; + 1). So say
M evals to M} at stage t3. Then by the induction hypothesis Ms—» M}, thus
(M Mz)— (M M3).

The analysis now breaks down into 2 cases based upon Mj.

1. M{ = AzN. In this case N[z := M,] evals to M’ at stage ¢ — (¢1 + t2).

But then
M= (M1M2) — (/\ZN)MZ
— Nz := M,

and by the inductive hypothesis N'[z := M>]-»M' and so M—+M'.

2. M] is a constant. Let N = constapply(M], M3). By fact 3 we know that
(M{M}) — N. Finally, N must eval to value M’ at stage t — (t; +t,+ 1),
thus by the induction hypothesis N—»M' and more importantly, M—»M’.
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Notes on Programming (Part IV)

by Arthur Lent

1 Models

Models. In general, a model is a method of assigning meaning to terms. We
would like to pick a model such that the desired equations between terms hold
(in the case of FKS we desire that if M is a program and Eval(M) = n then
our model assigns the meaning of M to n). There will be two levels of meaning
in or model so that we can accomplish two different tasks—we wish to assign a
meaning even to terms with free variables, and we want to be able to obtain a
meaning for closed terms and for open terms+an assignment of meanings to its
free variables. This will be done by having a “meaning function” [-] that map
the syntactic entities of terms into semantic objects. These semantic objects will
be functions which take environments (maps from variables to the domain of the
model) and return elements of the domain. For closed terms, this function will
be a constant function. Moreover, we would like our semantics to be such that
the denotation of a closed term M of type ¢ is a constant function that returns
the natural number which the syntactic object M represents. In addition, for
terms M of higher type we would map to bring us to the unique function
which the term M computes. So the whole motivation behind this is to give
a mathematical precision behind the notaion of a piece of code “computing” a
certain function. So, for example, for our semantics to be satisfactory we want
the meaning of a closed term M of type ¢ — ¢ to literally be the partial recursive
function f iff Eval((Mn)) = f(n). In order for this to work out our model will
have some properties which may not be familiar to you.

It is important that our model properties:

¢ Can give meaning to numerals, succ, pred, Y and conditionals.

o Is closed under A-definability. That is, if I have a meaning for a term
with free variable z, and I abstract over z to obtain a new function, that
function must be in the model.

o Is closed under application.

Given a particular set of functions and elements, it is not obvious that it has
these properties.

We wll now be more precise about the elements and functions of the particular
model we shall study. We define the collection {D?} of sets (for any type o)
inductively as follows:
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e D!'=N

e DT =D . D"

where A —, B is the set of partial continuous functions from A to B.

At this point, the reader is not expected to understand the definition of D,_,..
The next few pages will explain precisely these sets of functions.

Our sets will be ordered by the partial order . Remember that a partial order
is a relation that is reflexive, transitive, and anti-symmetric (ifa Cband bCa
then a = b). We will writea J b for & C a. C will be ordering objects based upon
information content. So any two natural numbers will be incomparable since no
natural number has any more or less information contained in it than any other,
yet they have distinct information. Consider a function f which agrees with g
on all arguments for which g is defined, but is also defined on more arguments;
f has a greater information content than g, and its information is compatible
with that of g. But if for even one argument, both f and g were defined, but
took on different values, then their information content would be incomparable.

We will provide a definition of C by induction on types. Note that it only makes
sense to ask the question a C b if a and b are elements of the same set; to do
otherwise is a “type error”. We now formally define C by induction on types
(i.e., we define C for elements of D* then we define C for elements of D(°—7)
assuming C is defined for elements of D and D7). So, a C & (a, b € D*) iff:

o Case of Kk = 1. D* =N ordered discretely, we have a C b iff a = b. This is
what we mean when we say N is ordered discretely. We forget the normal
ordering on N (namely <) and use this new ordering (C) under which

two distinct natural numbers are incomparable (e.g. ifa # bthena Z b
and b I a).

o Case of Kk = ¢ — r. So, we are comparing two functions from D’ to
DT. fCygiffforalldCe, d, ¢ € D then either f(d) is undefined or
f(d) T g(e).

Note we will use a C b as an abbreviation for (a C b and a # b); 1 is defined
similarly.

Example. Consider the following infinite set of functions:
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ho = afunction that is undefined on all arguments

ki % hy(0) = 0!, hy () undefined for z > 1

hy % hy(0) = 0!, hy(1) = 1!, ho(z) undefined for z > 2

ha % hg(0) = 0, ha(1) = 11, ha(2) = 2!, hs(z) undefined for = > 3
def N

hn = ha(0)=0'...ha(n —1) = (n—~1)!, undefined for £ > n

These are all elements of D“~*). You can easily check that:

hoChiChoC...

Definition 1. Now we define the least upper bound (LUB) of a set X C D°
for some o (written UX). We say d = UX (if it exists) is uniquely if d has the
following two properties: ‘

d is an upper bound For alld' € X, d' C d.
d is least For all d' # d in D7 such that d' is an upper bound on X, d C d'.

Note that not all sets X have an least upper bound (written LUB).

Note the following interesting fact:
Fact 1.

U'>o h; = Fact the factorial function.
1_.

Proof: We know that Fact is an upper bound on the set {h;}. Suppose f is
also an upper bound on the set {h;}. Then show that Fact C f. Why? f must
be total, since Fact is. Why else? Fact(n) C f(n) since h,(n) = Fact(n), for
all n, and h,(n) C f(n) (note that if A = B and A C C then B C C). But then
FactC f. B

Example. We now show that there exist sets X € D? such that X has no
upper bound. Such sets are found throughout almost all of the D”’s.

We take 0 = ¢ — 1 and X = {f, 9} where f(z) = 2! and g(z) = 2! + 1. X has
no upper bound. Why not? First, f # g. But f and g are maximally defined.
Thus there are no elements k of D% such that f C k or ¢ C k. But if k were
an upper bound of X then it would have to be the case that f = k = g. Since
f # ¢, X has no upper bound (much less a LEAST upper bound).

There also exist sets X € D? such that X has an upper bound, but no least
upper bound.
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Definition 2. A subset X of D7 is directed iff:

For every pair of elements w, y € X there is a z € X such that:
wCzand yC 2.

Fact 2. The set {h;} is directed.

Proof: Consider h;, h;, and withour loss of generality, assume j > i. Then
h; C h;, h; C h;. So, h; is an upper bound. W

Definition 3. A complete partial order (cpo)is a pair {D,C] (where D is any
set, and C is a partial order on that set), that meets the following additional
property: ’

| ] X € D (for all directed X C D)

Note that each of [D?,C), for all types o, is a cpo.

Definition 4. A partial function f : D7 — D7 is continuous iff f{UX) =
U{f(2)lz € X}.

Fact 3. The function f whose definition is:

1 (if z = 0)

f(k) = m where m(z) = { z%(k(z —0)) otherwise

is a partial continuous function.

We now have enough definitions in order to fully understand the definition of
our type frame.

The meaning function: [.]. Here is one more definition which will help in
defining our “meaning” function.

We use the notation f =~ g, for expressions f and g, to be true iff either both f
and g are undefined, or they are both defined and have the same value. We also
write f ed to mean “undefined” if either f or d do not exist, and f(d) otherwise.

There is a two step process to map a term into an element of the domain of
our model. The first step is to apply the meaning function ([-]) to the term.
Because an arbitrary term might have free variables, it is not possible for the
meaning function to assign a term directly to an element of the model. Instead
the meaning function maps a term to a functional which takes an environment
as argument. This functional then uses the environment to find the values
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1

[cstlp cst for est = 0,1,...,succ, pred—but not ¥
[=1p p(z)

(M N)]p ~  [M]p-[N]p

R

- [M]pif [M]p =0
fcond M Ny N2]p = { [N2Jpif [MJp=n+1
[rz?. M]p = f wheref(d) ~ [M]p[z° :=d]
[[Y]]p .d jad UnZOfn
where fp is the totally undefined function
fn+1 = d(Fn)

Figure 1: The definition of [-] for FKS

of the original term’s free variables, and can then return a unique element of
the domain of our model. Thus [] is a partial function of type: Terms —
(Environments — D7), where a term of type o is mapped to an element
of D?. Environments (written as p) are from Variables to D that are total
on their domain. The meaning of the term M in environment p is written as
follows:

[M]p

In order for this to make sense, however, we need the following condition:
p(27) € D? defined for all z7 € FV (M)

Thus environment p is total on its domain, which is the free variables of the term
for which it is being used. We need our meaning to obey certain constraints.
These constraints are defined in Figure 1.

By looking at this definition of [-] we can see from where some of the constraints
upon our model have arisen. It is closed under application, since f € D?™" must
be a partial continuous function from D? to DT. This simply follows from the
fact that Range(f) € D7. Closure under A-definability is a much more subtle
issue. We know that in the case mentioned above, such an f exists. It is even a
function from D? to D7; however, it is not at all obvious that f is continuous.
Well, it is, but it is beyond the scope of these notes to justify that statement.

Our last desire about this model in general is that the meanihg which we have
given to Y really is that of a least fixed point operator. Trust us, it is.
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2 Soundness of the Model

A property that is absolutely essential about any model of anything is that
reasoning in the model be sound. For our partial function model of the language
FKS, this soundness takes the form of the following theorem:

Theorem 1. (Soundness) For any program M, and constant k, Eval(M) = k
implies [M](p) = k.

So soundness says that if programs M, M’ evaluate to the same value then they
have the same denotation.

3 Adequacy of the Model

The adequacy is a statement of a sort of completeness of the model. It is
complete for knowing how programs in isolation will behave. The formulation
of adequacy which we will prove is as follows:

Theorem 2. (Adequacy) For any program M, and constant k, Eval(M) = k
iff [M](L) = k.

Proof Sketch: The direction => is simply soundness. The direction <= will be
proving that divergent programs do not denote anything (their denotation is
undefined). W

A direct corollary of adequacy is the following;:
Corollary 1. If [M]p~ [N]p for all environments p then M=,3, N

Proof: Well, suppose not. In other words [M]p ~ [N]p for all environments p,
yet M £ N. Let C[] be a program context of which can distinguish between
M and N. ie. Eval(C[M]) # Eval(C[N]). But by our adequacy theorem,
this implies that [C[M]](L1) # [C[N]](L). But our hypothesis ([M]p ~ [N]p
for all environments p) implies [C[M]]}(1) = [C[N]](1). Contradiction. W

It is this adequacy theorem that we have been looking for in terms of the use-
fulness of our semantic model. Given adequacy, we now have a powerful piece
of machinery that enables us to prove that two pieces of code are completely
interchangeable. This is quite a robust notion. Unfortunately, this notion is
not quite as robust a notion as we might like. In particular, we might wish also
to have the converse—namely that if M=,,; N then M and N have the same
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denotation. When you have both adequacy and its converse, the semantics for
the language is termed to be fully abstract. What full abstraction gives you is: if
two terms are interchangeable, then they have the same denotation. Moreover,
when you have fully abstract semantics, if you can prove that two terms do
not have the same denotation, then the code they represent is not completely
interchangeable.
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Problem Set 8 Solutions

Grades. The grades went as follows:

| number submitted min max mean median

1 8 15 25 215 23.5
2 9 10 25 21.7 25

3 9 5 25 21.7 25

Problem 1. Let I be a set of quantifier-free sentences which contain no func-
tion symbols and do not contain “=”. Give a simplified proof from scratch that
if every finite subset of I' is satisfiable, i.e., I' is 0.k., then T is satisfiable. (Hint:
Rework and simplify the proof of Lemma 3 from the proof of the Completeness
Theorem; the proof here should be easier, since the only terms to consider are
names and there are no equality constraints.)

Solution. The point of this problem is to see that equivalence classes, and the
extra headaches that go along with them, can be eliminated from the proof of
Lemma 3 under certain conditions.

We start the same way as we did in the original proof. Let T" = ¢y, ¢s,... be the
constants appearing in I'; since we have no function symbols, these are the only
terms. Also, let A1, Az, ... be the atomic formulas constructed from terms in T
and predicates in '—we do not consider formulas with equality, however.

Next, let 'y = I', and let

T _J Tau{4,} ifok.
"+1 71 r,u {—An} -otherwise

By a fact proved in lecture, each I['; is o.k. Finally, let B; be whichever of A; or
_1A,' is in F,’+1.

Now define an interpretation Z that matches ' by the following:
e D =T;

e To each name ¢;, assign the value ¢;;

e For each predicate R, we set R to be true precisely when (R t;...t,) = B;
for some 1.
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o For each sentence letter R, Ristrue if R = B; for some 1.

Since we don’t have equality, there is no checking to do here—this is a good
definition of an interpretation! Also, by the way we’ve set up the predicates,
each B; is true in 7.

Now to see that 7 is a model of T, suppose $ € I'. Then for some k, S is built
out of the atomic formula {A4,,.. ., Ai} (maybe not all of them) using logical
symbols but no quantifiers. Consider the set

Y= {Bl,.-.,Bk,S}-

Since 7 is a subset of the o.k. set Ly, there is a model 7 of 7. But this model
assigns the same truth values to Ay, As, ..., Ax as T does. Since Sistruein J
and since it is built from Ay, ..., A, Sistrue in T.

Problem 2. We say that a first-order sentence S is a V-sentence if it has the
form

Vz,...Vz,  F

where F is a quantifier-free formula (note that F may contain function symbols
in addition to predicates and names.) Show that the set

{S|Sisavalid V-sentence}

is decidable. (Hint: Show that a canonical refutation from the negation of any
V-sentence is finite.)
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Problem 3. Let S be a sentence. Prove that if I' S, then there is a finite
subset I C T such that ' = S. (Hint: Compactness.)
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Solutions to Supplemental Problems

Problem 1. Recall the definition of the addition function plus given in lecture:

plus & Y (Ap.Az.Ay.cond y = (succ (p z (pred v))))
Using the rewrite rules, show all the steps in the evaluation of ((plus 31) 2).

Solution. Before giving the complete reduction, let’s define some names for terms
(as the notes do) to make the reduction easier to read:

body 4
H £ Azy.cond yz (suce (Az.plus 2) z (pred y)))

G & )y.cond y 31 (suce ((Az.plus z) 31 (pred y)))

Az.dy.cond y z (suce (p z (pred y)))

The complete reduction sequence, carefully written and showing each step, is:

((plus 31) 2) — (((Ap.body) (Az.plus z)) 31) 2)

((H31)2)

(G2

cond 2 31 (succ ((Az.plus z) 31 (pred 2)))

suce ((Az.plus z) 31 (pred 2))

succ (plus 31 (pred 2))

succ (((/\p.l?ody) (Az.plus z)) 31 (pred 2))

succ (H 31 (pred 2))

suce (G (pred 2))

suce (G 1)

succ (cond 1 31 (suce ((Az.plus z) 31 (pred 1))))
succ (succ ((Az.plus z) 31 (pred 1)))

succ (suce (plus 31 (pred 1))

succ (succ (((Ap.body) (Az.plus z)) 31 (pred 1)))
succ (suce (H 31 (pred 1)))

succ (suce (G (pred 1)))

suce (suce (G 0))

succ (suce (cond 0 31 (suce ((Az.plus z) 31 (pred 0)))))
suce (suce 31)

suce 32

33

L A A A A A
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A lot of parentheses have been left out of the terms in this reduction sequence—
remember that (M N P) is shorthand for (M N) P).

Problem 2. Show all the steps of the SECD machine on the evaluation of
((plus 31) 1). That is, starting from the dump

[nil, 0, ((plus 31) 1), nil]

show all steps of the SECD machine till it halts.

Solution. This problem should exercise all of the rules of the SECD machine.
Here is the first part of the history of the evaluation of the SECD machine:

[nil,

0, (plus 31) 1), nil] = [nil, 0,1 : (plus 31) : ap, nil]

= [[1,0],0, (plus 31) : ap, nil]

= [[1,0],0,31 : plus : ap : ap, nil]

= [[31,0] : [1,0],0,plus : ap : ap, nil]

= ([31,0] : [1,0],0,(Ap.body) : Y : ap: ap : ap, nil]

= [[Ap.body, 0] : (31,0]): [1,0],0,Y : ap: ap : ap, nil]

= [[Y,0] : [Ap.body, 0] : (31,0]: [1,0],0,ap : ap : ap, nil]
= [nil, 0, ((Ap.body) (Az.plus 2)),[S1,0,ap : ap, nil])

= [nil,0,(Az.plus 2) : (Ap.body) : ap, [S1,0, ap : ap, nil]]
= [[(Az.plus 2),0],0, (Ap.body) : ap,[S1,0, ap : ap, nil]]
= [[(Ap.body), 8] : [(Az.plus z),0],0,ap,[S1,0,ap : ap, nil]]
= [nil, 0{[(Az.plus 2),0)/p}, body, [nil, 0, nil,[S;, 0, ap : ap, nil]]]
= [[body, E1), E1, nil, [nil,0,nil, [S1,0, ap : ap, nil]])

= [[body, E1],0,nil,[S1,0, ap : ap, nil]]

= [[body, E1] : [31,0) : [1,0],0,ap : ap, nil]

= [nil, E1{[31,0])/z}, bodyy, [[1, 0], 0, ap, nil])

= [[body,, E,), Eo, nil, [[1,0],0, ap, nil]]

= [[body,, E5] : [1,0], 0, ap, nil)

= [nil, E3, bodya, [nil, 0, nil, nil])

= [[z, E3] : [bodys, E3], E3, y : cd, [nil, 0, nil, nil]]

= [[1,0] : [z, E3] : [bodys, E3), E3, cd, [nil, 8, nil, nil]]

= [nil, E3, bodys, [nil, 8, nil, nil]]
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where
body £ Az.Ay.cond y z (succ (p z (pred y)))
bodyy £ Ay.cond y z (suce (p z (pred ¥)
body, £ condy z (succ (p z (pred y)))
bodys £ (suce (pz (pred v)))

E: ¥ o{[(rz.plus z),0)/p}
E» € E{[31,0)/z}
Es £ E{[1,0/y}

For brevity, the evaluation has been terminated here although there are many
more reductions to do.

Problem 3. Give a rigorous proof that ((plus n) m), under the rewrite rules,
evaluates to n + m, i.e., Eval(((plus n) m)) = n + m. (Hint: Use induction on
m. Note that this is a familiar fact, but is not obvious since the rewrite rules
could be defined in a bizarre way.)

Solution. The point of this problem is to see that the rewrite rules work in the
expected way, i.e., the code for plus works as its informal description says it
does. The notation may be a bit confusing: (n -+ m) is a numeral representing
the addition of the numerals n and m.

We prove the fact by induction on m. First, let’s define body and H as above,
and for any numeral n, define
G, ¥ Ay.cond y n (suce ((Az.plus 2) n (pred y)))

In the base case, m = 0. Then ((plus n) 0) has the following reduction sequence
using the rewrite rules: ‘

((plus n) 0) ((((Ap-.body) (Az.plus z)) n) 0)

((H n) 0)

(Ga 0)

cond 0 n (suce ((Az.plus z) n (pred 0)))

[ A

as desired.

The induction case, where m = k + 1, requires a delicate argument. Note that
((plus n) m) has the following reduction sequence:

((plus n) m) —  ((((Ap.body) (Az.plus z)) n) m)
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((H ) m)
(Gp m)

cond m n (suce ((Az.plus z) n (pred m)))
suce ((Az.plus z) n (pred m))

suce (plus n (pred m))

suce ((((Ap.body) (Az.plus 2)) n) (pred m))
suce ((H n) (pred m))

suce (Gp, (pred m))

suce (G, k)

A A A

We cannot yet apply the induction hypothesis, since we have yet to run across
a subterm of the form ((plus n) k). However, notice that

((plus n) k) — ((((Ap.body) (Az.plus z)) n) k)
— ((Hn)k)
- (Gn k)

which, by induction, must finally reduce to the numeral (n+k). The definition of
the rewrite rules guarantees that operands evaluated until they become values;
hence, succ (G, k) must reduce to suce (n + k) in some number of steps. Thus,
((plus n) m) reduces to the numeral (n + m), and we are done.
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Quiz 4

Instructions. This exam is closed book. Do all problems in the provided white
book, carefully labeling solutions with their corresponding numbers. Points are
listed for each problem. You have one and a half hours. Good luck.

Problem 1. [20 points] (Refutation Procedure) An V3-sentence is a sentence
of first-order predicate calculus of the form

Vo Vre .. Ve 3y3ye ... 3ym F (21, .., Zny Y1y -+ 5 Um)

where F’ is quantifier-free and has no function symbols. Show that it is decidable
whether an V3-sentence is valid.

Problem 2. [30 points] (Evaluation of FKS terms)

2(a). Using the rewrite rules, work out the first 6 steps of the evaluation of
((Y (Af*=4.f)) 3). Briefly describe the remainder of the evaluation (see the
appendix for the rewrite rules of FKS.)

2(b). Describe precisely the partial recursive function represented by the term

Y (Af*=.1)).

Problem 3. [25 points] (Compactness) Show that there is no first-order sen-
tence which means precisely “the binary relation < is a strict partial order on
an infinite domain.” (Hint: Note that there is a sentence, PO, which means “<
is a strict partial order,” namely

VaVyVz(z < y) Ay < 2) — (2 < 2)] AVaVy(z < y) — =(y < 2)].)

Problem 4. [25 points] (Arithmetic definability)

4(a). Show that the set of true atomic sentences of arithmetic is decidable.
Conclude that the set of true quantifier-free sentences of arithmetic is also de-
cidable.
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Let pair : N x N — N be a recursive, bijective (i.e., one-to-one and onto)
function. For A C N, we write right(A) as shorthand for {m | pair(n, m) € A}.

4(b). Let F; be a quantifier-free formula of arithmetic with free variables zg,
z1, and 3, and let G be the formula

3z,Ves Fi (2o, 21, 22).
Let
4, % {pair(ns, (pair(ny,no))) | F1(no,n1,ny) is true in arithmetic}
B, gt right(right(A;))

Then it is not hard to see that B is the arithmetically definable set defined by
G.. Now let G5 be a formula

V113£23£3F2(Zo, ri, T2, 233).

and let

4, £ {pair(ng, pair(n,, (pair(ny, ng)))) | Fa(no,n1,nz,n3) is true in arithmetic}
Write an expression for the corresponding set Bs in terms of A, and the oper-
ators “righ?” and complement. No explanation is required.

4(c). Conclude that every arithmetically definable set may be obtained from
some recursive set by applications of the complement and right operations.
(Hint: Prenex form.)
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Appendix—Rewrite Rules of FKS.

1.

(a) (suce n) = (n+1)

(b) (pred 0) =0

(c) (pred(n+1)) > n

(d) (Yo V) = (V (Az7.(Y, V) 27)) (where z ¢ FV(V))
(a) (Az.M) V) — Mz :=V] (for V a value)

(b) (cond 0 Ny Np) — Ny

(c) (cond (n+ 1) Ny N3) — N,

(a) if M — M’ then (M N) — (M’ N)

(b) if N — N’ then (V N) — (V N’) (for V a value)

(c) if M — M’ then (cond M Ny N3) — (cond M’ Ny N,)
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Quiz 4 Solutions

Problem 1. [20 points] (Refutation Procedure) An V3-sentence is a sentence
of first-order predicate calculus of the form

VzVzo .. . Vzudndye .. . Jym F(z1, ... 20,01, -+ ., Ym)

where F is quantifier-free and has no function symbols. Show that it is decidable
whether an V3-sentence is valid.

Solution. Note first that the negation of an V3-sentence is an 3V-sentence (sim-
ilarly defined.) Now consider the canonical derivation beginning from a single
3V-sentence; we first do n applications of the EI rule, followed by as many ap-
plications of the UI rule as we can do. Since there are no function symbols, the
only terms we need to use in the applications of the UI rule are the constants
that have appeared previously in the derivation (n of them) plus those that
appear. in the original sentence. This is a finite number—hence, the canonical
derivation is finite.

Now we can check to see whether the 3V-sentence is satisfiable or not by looking
at the finite canonical derivation. If it is satisfiable (i.e., every finite set of
quantifier-free sentences in the derivation is satisfiable), the original ¥3-sentence
is not valid. If the 3V-sentence is not satisfiable, the original sentence is valid.
This gives us a decision procedure, so the set of valid V3-sentences is decidable.

Problem 2. [30 points] (Evaluation of FKS terms)

2(a). Using the rewrite rules, work out the first 6 steps of the evaluation of
((Y (Aft=2.f)) 3). Briefly describe the remainder of the evaluation (see the
appendix for the rewrite rules of FKS.)

Solution. The first six steps of the reduction sequence are
(Y Af75N)3) = (LHP2Y (AfT0) 2)) 3)
— (AzY (A~ 2)3)
(Y (Af50) 3)
((A7-HH(AzY (Af7.f) 2)) 3)
(Y (A1) 2) 3)
(Y (A7) 3)

The remainder of the reduction sequence simply repeats this pattern ad infini-
tum.

—
—
—
—
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2(b). Describe precisely the partial recursive function represented by the term

Y (AF=8F)

Solution. The fact that we used the numeral 3 used in the above sequence is
inconsequential—on any numeral the function (Y (Af*=*.f)) will loop. Thus,
this term represents the totally undefined partial function.

Problem 3. (25 points] (Compactness) Show that there is no first-order sen-
tence which means precisely “the binary relation < is a strict partial order on
an infinite domain.” (Hint: Note that there is a sentence, PO, which means “<
is a strict partial order,” namely

[VaVyVz(z < y) Ay < 2) = (z < )] A VaVy(z < y) = ~(y < z)})

Solution. Proceed by contradiction—suppose there is a first-order sentence S
which is true precisely in interpretations with an infinite domain where < is
a strict partial order. Now consider the sentence (—S)—this sentence is true
precisely in those interpretations either with a finite domain or where < is not
a strict partial order. Finally, consider the sentence (—.S) A PQ; this sentence
is true precisely in those interpretations in which < is a strict partial order on
a finite domain.

Let R, be the sentence that says that the domain “has at least n elements,”
i.e.,
f
Rn € 32...32a. N\ (2i#2))
1<igjgn

The set of sentences {(~S) A PO, Ry, Ry, Ry, ...} is finitely satisfiable (ok), and
hence by Compactness has a model. But this model must have an infinite num-
ber of elements (as it satisifies each R,) and satisfies (—=S)A PO, a contradiction.

Problem 4. [25 points] (Arithmetic definability)

4(a). Show that the set of true atomic sentences of arithmetic is decidable.

Conclude that the set of true quantifier-free sentences of arithmetic is also de-
cidable.

Solution. The atomic sentences of arithmetic are just equalities between closed
terms, where closed terms are built from the constant 0 and the function symbols
! ., and 4. It is easy to decide whether two closed terms over this language
are equal—simply calculate the values and check to see whether they are equal!
The set of true quantifier-free sentences may be decided using this calculation
procedure as a subroutine—calculate the values of all the terms and see whether
the sentence comes out to be true using truth tables.
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Let pair : N x N — N be a recursive, bijective (i.e., one-to-one and onto)
function. For A C N, we write right(A) as shorthand for {m | pair(n,m) € A}.

4(b). Let Fy be a quantifier-free formula of arithmetic with free variables z,
z), and z,, and let G be the formula

HzIszFl (Zo, x), 22).

Let
A £ {pair(ng, (pair(ny,n0))) | Fi(no,n1,ns) is true in arithmetic}
By L right(right(A,))

Then it is not hard to see that B is the arithmetically definable set defined by
G,. Now let G, be a formula

Vzlilzgazan(ro, T, T2, 23)‘
and let

df . . .
Ay = {pair(ns, pair(ny, (pair(ny, ng)))) |
F3(ng,ny,ng, ng) is true in arithmetic}

Write an expression for the corresponding set B, in terms of A, and the oper-
ators “righ?” and complement. No explanation is required.

Solution. By = right(right(right(A2))).

4(c). Conclude that every arithmetically definable set may be obtained from
some recursive set by applications of the complement and right operations.
(Hint: Prenex form.)

Solution. Suppose a set S C N is definable by a formula G(z¢) with a single free
variable zg. Without loss of generality, we can assume that G(zg) is in prenex
form (if not, put it in that form); that is,

G(z) = @1z ...Qnzr F(zo,21,...2¢)
where F is quantifier-free, and the Q,’s are either 3 or V. By part (a) and the
fact that pair is recursive, the set
A = {pair(ng,pair(ng_y, (..., pair(n1,ng)...))) |
F(no,...,n;) is true in arithmetic}
is recursive.

Now recall a formula VzH is equivalent to =3z(~H). To determine the set
defined by G(z), we use a little recursive procedure based on the outermost
quantifier of a prenex formula H:
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o If no quantifiers appear in H, return A;
o If H = JzH', apply right to the set obtained by the recursive call on H’;

o If H = VzH’, apply complement, right, and then complement to the set
obtained by the recursive call on H'.

When we put in G(z) into this procedure, we get the set defined by G(z) in
terms of applications of complement and right to the recursive set A. We are
thus done.

Appendix—Rewrite Rules of FKS.

1. (a) (suce n) —(n+1)
(b) (pred 0) — 0
() (pred (n+1)) = n
(@) (Yo V) —(V (A29.(Ys V) 27)) (where z & FV(V))
2. (@) (Az.M)V) > M[z := V] (for V a value)
(b) (cond 0 N1 N3) — N;
(c) (cond (n+1) Ny N3) — N,
3. (a) if M = M' then (M N) — (M’ N)
(b) if N — N’ then (V N) — (V N') (for V a value)
(c) if M — M’ then (cond M N; N3) — (cond M’ Ni Na)
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