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6.044J/18.423J: Computability, Programming, and Logic Handout 1
Massachusetts Institute of Technology 11 September 1987

Course Information

Staff.
Lecturer: Prof. Albert R. Meyer NEA43-315 x3-6024
meyerQ@theory.lcs.mit.edu
Teaching Assistant: Mihir Bellare NE43-334 x3-5866
bellare€@theory.lcs.mit.edu
Secretary: Arline Benford NE43-316 x3-6025

ahQ@theory.lcs.mit.edu
Send netmail to the TA so we know your net address.

Lectures and office hours. Class meets Monday, Wednesday, and Friday from 3 to'4, in
34-302. There will be no regular sections, but tutorial/review sessions may be organized in
response to requests. Office hours will be announced; you can also meet with the instructor
or the TA by appointment.

Prerequisites. The official requirement for the course is either 18.063 (Introduction to
Algebraic Systems) or 18.310 (Principles of Applied Mathematics). If you know the basic
vocabulary of mathematics and how to do elementary proofs, then you may take this
course with the permission of the instructor. Course 6-3 students may use this course as
a substitution in kind for the 6.045J/18.400J requirement.

Contrarequisites. There will be up to a 40% overlap in topics (namely, basic computabil-
ity theory) between 6.045J /18.400J and this course. For this reason, Course 6 students are
discouraged from taking both courses. There will be a smaller overlap with 6.840J/18.404J;
students, especially Math majors, may take both this course and 6.840J/18.404].

Textbooks. The required text is:
Z. Manna, Mathematical Theory of Computation, McGraw Hill, 1974.
You may wish to consult the following supplemental texts:

J. Loeckx and K. Sieber, Foundations of Program Veﬁﬁcation, Prentice-Hall,
1986.

H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computa-
tion, Prentice-Hall, 1981.
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Other well written, more advanced texts covering portions of the course include:

Davis and Weyuker, Computability, Complezity, and Languages, Academic
Press, 1983.

J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1984.
H. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.

Handouts and Notebook. We suggest that you get a loose-leaf notebook for use with
the course, since all handouts and homework will be on standard three-hole punched paper.
If you fail to obtain a handout in lecture, you can get a copy from the file cabinet outside
Arline’s office (NE43-316). If you take the last copy of a handout, please inform Arline so
that more copies can be made.

Pictures. You can help us learn who you are by giving us your photograph with your
name on it. This is especially helpful if you later need a recommendation.

Grading. There will be problem sets, two evening quizzes, and a regular three hour final
exam. The problem sets, quizzes, and final each count about equally toward the final grade.
Some exam problems are typically adaptations of earlier homework problems. Quizes and
final are open book.

Problem Sets. There will be eight to ten problem sets. Homework will usually be as-
signed on a Friday and due the following Friday. Problem sets will be collected at the
beginning of class; graded problem sets will be returned at the end of class. Solutions will
generally be available with the graded problem sets, one week after their submission.

Each problem is to be done on a separate sheet of three-hole punched paper. If a
problem requires more than one sheet, staple these sheets together, but keep each problem
separate. Do not use write in red. Mark the top of the paper with:

e Your name,

o 6.0447/18.423],

o the assignment number,
e the problem number, and

e the date.

Try to be as clear and precise as possible in your presentations. Problem grades are
based not only on getting the right answer or otherwise demonstrating that you understand

N

™
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how a solution goes, but also on your ability to explain the solution or proof in a way helpful
to a reader. ‘

If you have doubts about the way your homework has been graded, first see the TA.
Other questions and suggestions will be welcomed by both the instructor and the TA.

Late homeworks should be submitted to the TA. If they can be graded without
inconvenience, they will be. Late homeworks that are not graded will be kept for reference
until after the final. No homework will be accepted after the solutions have been given
out.

Collaboration. You must write your own problem solutions and other assigned course
work in your own words and entirely alone. On the other hand, you are encouraged to
discuss the problems with one or two classmates before you write your solutions. If you
do so, please be sure to indicate the members of your discussion group on your
solution.



6.0441/18.423J: Computability, Programming, and Logic Handout 2
Massachusetts Institute of Technology 18 September 1987 (due 25 September)

Problem Set 1

Reading assignment. For this assignment: Manna, sections 1-2 to 1-4.1.

Problem 1.

1(a). Design a Turing machine M over the alphabet ¥ = {a,b} which does the following

o If the input is the string a then M moves to the right forever, without changing the
contents of the tape.

o If the input is not the string a then M puts a b at the end of the input word and
halts with its tape head on this b.

Present the program of this machine in the form of a graph as described in Manna.

1(b). Exhibit the behaviour of M, in the style of Manna’s Example 1-8, on the two input
words a and aa. '

Problem 2. In class we described Turing machines as finite flowcharts built up of boxes
(instructions) of the following kinds:

PRINT o forallc e TUV U{A}

LEFT

(over)




2 6.044J/18.423J Handout 2: Problem Set 1

where V = {ai,...,a,}. This is different from Manna’s description of Turing machines as
finite graphs with state transitions given by labelled arrows. The purpose of this exercise
is to illustrate, by examples, the essential equivalence of these descriptions. Suppose F is
a Turing machine flowchart. A translation of F to graph form is a graph description G of
a Turing machine which has the following property: If the machines described by F' and G

are both started in their respective START states on a tape containing an arbitrary input
word w, then either

(i) both loop forever, or
(ii) both halt with identical tape contents and final head positions.

A translation of a graph description to a flowchart description is defined similarly.
2(a). Translate the graph of Figure 1-4 in Manna to an equivalent flowchart description.

2(b). Translate to a graph description the following flowchart description

___<£{f_;>__.

b PRINT b N

|
()

of a Turing machine over the alphabet {a,b} with V' = 0.
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Problem 3. We explained in class how to translate an arbitrary Turing machine state
diagram to a Post machine state diagram, essentially by translating each arrow in the in

the Turing machine diagram to a piece of a Post machine flowchart. The translation of a
right shift

(a,b, R)

@ &

was described in class, and the corresponding piece of Post machine flowchart is reproduced
in Figure 1. Produce a similar flowchart piece for a Post machine to translate a left move

(a,b,L)

DD

of a Turing machine.

Problem 4. Briefly explain why r.e. sets are closed under union (i.e., if A and B are r.e.
sois AU B).

Hint: Given Turing machines M4 and Mp accepting A and B respectively, describe
a Turing machine M accepting AU B.

Try to explain the ideas of the construction at a high level without getting enmeshed
in details of Turing machine code.

(over)
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Figure 1: Translation of Turing machine right shift to Post machine

We reproduce the piece of Post machine flowchart that translates the Turing machine

arrow

B (a,b,R) _
@ >

The Post machine uses two auxiliary symbols # and * not in the alphabet of the Turing
machine. Recall that we are representing the Turing machine tape contents

Vel

?

where y,z € (E')-‘, ce¥,and & = T UV U{A}, by the Post machine variable

T = cz#y.

The Turing machine move we are considering should, in the case that ¢ = a and z # A,

change z to

z#yb.

In the special case that ¢ = a and z = A, z becomes

A#tyb

Here is the Post machine flowchart piece:

.

*
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Problem Set 1 Errata

We proiride here an annotated version of the Post machine code of problem 4, together
with a more complete description of the notation and conventions used in this code. You
are encouraged _to annotate your own code in your solution to problem 4.

o

— la WD

>( x

)

« 2 b

—
r 4

a

Cponnlly sumere Lo ¥ )

(expy e

. A

«— 3 1T

i~
AR X 4 ?i
T8 b ’:?“%83
3 *«'iga
x ¢ y
* ——gﬁsii
SR
b x ¢ I_____.__\!x<————
38; ':S\“ ;
Ty }«.}:{p{ T~
~ 2R Y
3
gﬂ?i\é £ b
i ~ g a
4
o -
i 435 ?F’;‘\
l.___;'f:u,g ) i
d i
v '§ X
. §\T_/

[

Cond rapby, e # )

Trt 4 At

(over)
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Say the Post machine alphabet is {a;,...,a,}. A flowchart piece of the form

- c— % Aa.
(x‘—év-é(*n) ‘t_.,

- 1

Box 2

, a;, | '_~- -
Box 1 ! |

( priece of ol ) !

is a shorthand for the following more complete flowchart piece:

- . = - e

(- X 2 a LSox T
Lox 4 'e___————Lx"' il (%) Ye——! feni2 o s oa,)
! D : 1
i . I:'.-'-—
A - e == ac.'-' ' BK 2
'
g .
A T '(6«4654‘)
—- - -y = - - 7T
' ok
Box 2 & z'l
L e PRV
« 2 oa.) < Ay

Here Box 2 is replicated for each arrow out of the z « tail(z) instruction which is labelled

with a symbol different from a;, and in the replication corresponding to the arrow labelled
a;, 0 is replaced by a;. So

o P #

]2_:‘:‘ il C:v;‘-&.\.lcuv))__._____—s\ze-xr\

just means
l:—:—-}(—;‘ ot _(;‘. M’*’——;t—‘*\zexa_l
L - =
KYE

olilan Ao W)

\xc—x#\

———————
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Problem Set 2

Problem 1. Show that a language L C I* is r.e. iff L is empty or equal to the range of
a total recursive function f : {a,b}* — I*. (Hint: Let f(pair(z,y)) = y if an appropriate
Turing machine halts on input y in |z| steps, where pair is a pairing function on {a,b}".
That is, pair : {a,b}* x £* — {a,b}* is a recursive function which codes pairs of strings
into strings over {a,b}.) )

Problem 2. Let D be a decidable language over the alphabet {a,b}, and let E be an
r.e. language over {a,b}. Let f be a total recursive function from {a,b}* to {a,b}*, and
let ¥ be a partial recursive function from {a,b}* to {a,b}*.

(a) Show that f~}(D) = {z € {a,b} | f(z) € D} is recursive.
(b) Show that ¥~'(E) = {z € {a, b#| ¥(z) € E} is r.e.
(c) Show that f(D) = {f(z) € {a, bﬁ z € D} isree.

(d) Give examples to show that “r.e.” cannot be replaced by “recursive” in (b) and (c).

Problem 3. For each of the sets below, state whether it is recursive,r.e. but not co-r.e.,
or co-r.e. but not r.e., and briefly explain why.

(a) The set of TMs that halt on no inputs.

(b) The set of TMs that halt on blank tape in < 10° steps.

(c) The set of TMs that halt on blank tape in > 10 steps.

(d) {M] 10° < |d(M)]}.

(e) The set of integers n such that there are at least n occurrences of the digit ‘8’ after
the n'® place in the decimal expansion of (2.7)!2*. (Hint: Case 1: there are infinitely

many ‘8’s in the decimal expansion of (2.7)", Case 2: there are finitely many ‘8’s in
the decimal expansion of (2.7)12%.)
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Problem 4. Define
Ko« = {M | M is a Turing machine which halts on every input z € {a,b}"} .
(a) Show that K; <p Kiot, where K is the blank-tape halting problem.

(b) Use a diagonalization argument to show that K, is not the range of a total recursive
function from {a,b}" to {a,b}*. (Hint: Let f: {a,b}* — Ko be onto and recursive.
Define the “diagonal function” p : {a,b}* — {a,b} by

o(z) = {a. if d(M) = f(z) and M halts on input z with output b,
b otherwise.

Show that a contradiction results from the assumption that f is computable by some

machine Mp.) :

(c¢) Conclude from (a) and (b) that K, is neither r.e. nor co-r.e.

—~
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Notes on Computability Theory

The following notes outline the main definitions and results about computability
theory developed in the course lectures which went beyond Manna'’s text.

1 Simulation

The “simulation thesis” says that all general computation models are capable of simulating
one another, ignoring issues of efficiency (e.g., time or space). Thus, an apparently very
weak Turing machine model computes the same set of functions over, say, {a,b}", as
are computable by Scheme programs, register machines, or Post machines. This class of
functions is the class of Turing computable functions. _

The class of partial recursive functions as defined by Manna (section 1-4.2) coincides
with the class of Turing computable functions. So a function is partial recursive iff there is
a program (in some language—Dby the simulation thesis it does not matter which language)
that computes it.

2 Coding Functions

We will want to talk about computations on strings, integers, graphs, lists, flowcharts,
ordered pairs and finite sets of these, and various other finite or finitely representable
mathematical objects. In each case we assume, without going into detail, that standard
encodings of these objects into finite “binary” strings over {a,b} are adopted, and that a
function on, say, graphs, is “partial recursive” iff the string function on the graph codes is
partial recursive.

For example, one might code integers by their binary representations or perhaps their
unary representations, i.e., a string of n a’s represents the natural number n. Since it is
easy to write a unary to binary translation program, or vice-versa, it follows that the class
of computable functions on the integers is unaffected by the choice of coding. '

In a basic argument below, we will speak of the Turing Machine (Self-)Halting
Problem, K,. The “problem” is represented by the set of Turing machines that halt
“when given themselves as input”. More precisely, we must define a coding function
d : Turing machines — {a,b}*” under which every Turing machine is coded &s a binary
string. It is straightforward enough, though a little tedious, to do this; we’ll skip the de-
tails and take it as done. It is technically convenient if every string in {a,b}" is the code
of some Turing machine. We can always make this hold by invoking the conve::tion that
every string not in the range of d is to be interpreted as the code of a particiilar fixed
Turing machine which, say, doesn’t halt on any input.
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We now define
K, = {d(M) | M is a Turing machine that halts on input d(M)} .!

Similarly, we can straightforwardly code strings over an arbitrary countably infinite
alphabet into binary strings, and of course we can code a pair of binary strings into a
single string. Thus, when we say the (General) Turing Machine Halting Problem, K, is

Ko = {(M, z) | Turing machine M halts on input z} ,
we really mean

Ko = {z € {a,b}" | z codes the pair (y1,¥2),
where y; = d(M) and y; codes = € T},
and M halts on input z } .

The precise set of binary words equal to Ky or K; depends of course on how we choose the
coding function d, but the salient properties we establish about these sets are independent
of the details of the coding.

3 Axioms for Coding Computable Functions (Optional)

There is a simple set of axioms which characterize the properties of the set of codewords
abstractly without having to mention d or Turing machines at all; only the general notion
of partial computable function need be known. For simplicity we'll state the axioms for
computable functions on strings over the alphabet {a,b}. First, saying that d is a coding
certainly implies that d(M) and z uniquely determine the behavior of M on z. The
important part of d is thus the mapping from d(M) and z to the output of M on z. This
is captured the idea of a coder function.

Definition 1. A partial-computable-function coder is a partial function v : {a,b}* x
{a,b}* — {a,b}"* such that for every partial computable function ¢ : {a,b}* — {a,b}",
there is a z, € {a,b}" with the property that for all z € {a, b}",

v(2e, 2) = p(2).

Such a z, is called a code or Gdédel number for . Coders are also called universal functions
for the partial computable functions.

Having chosen a partial-computable-function coder v, the axiomatic definition of K;
becomes

1This is the same set as the complement I, of the set L, of section 1-3.1 of Manna, given our convention
for interpreting strings not of the form d(M) as the code of a never halting Turing machine.
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Definition 2.
K, = {z € {a,b}" | (z,z) € domain(v)}.

The intuitive requirement that d be computable serves to guarantee that the coding
is effectively decipherable—there is some computable way to recover information about M
from d(M). This is abstractly captured by the universal machine theorem:

Theorem 1. There is a partial-computable-function coder v which is itself a partial com-
putable function.

One other property of the coder will be needed for some of the later results. In
addition to determining the input/output behavior of M, the code d(M) can be modified
to obtain the code for simple variants of M. For example, from d(M) and y € {a,b}*, one
can easily construct a machine Myr), which replaces its input z by the word pair(y,z
and then acts like M on the modified input. This is abstractly captured by thinking of the
function s(2,y) = d(Mym),,) and saying it is total and computable. For historical reasons,
this is known as the S]'-Theorem:

Theorem 2. There is a total computable function s : {a,b}* x {a,b}* — {a,b}* such that
for all z,y,z € {a,b}"
v(z, pair(y,z)) = v(s(z,v),2)

In the rest of these notes we continue to give explanations in terms of a function d
coding Turing machines into binary strings. We confidently omit the details of how d is
defined because a careful reading of the arguments will reveal that Theorems 1 and 2 are
the only facts we need about the coding to obtain all the results below. In fact, there is
an elegant “recursive isomorphism” theorem due to Hartley Rogers which explains why all
reasonable codings—namely those that satisfy the universal machine and S theorems—
have the same properties with respect to computability.

Theorem 3. Let v; and v be two coders satisfying the universal machine Theorem 1
and the ST*-Theorem 2. Then there is a total computable one-one and onto function
t:{a,b}* — {a,b}* such that

v1(2, z) = va(¢(2), z)

for all z,z € {a,b}".

The proof is not very hard but a bit long, and to save time we’ll skip it.

Theorem 3 can be understood as saying that there is a one-one onto computable
function ¢ translating, say, Scheme programs into equivalent CLU programs. So Scheme
and CLU (and Turing machines, Post machines, etc.) are indistinguishable from the point
of view of general computability theory. This is a clear warning that the conclusions of
the theory will not bear on some central Computer Science issues—such as which language
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features which make Scheme or CLU more desirable for certain problems. On the other
hand, the conclusions of the theory, especially negative conclusions about the noncom-
putability of certain functions, will hold with great generality and can’t be gotten around
by changing programming languages. '

4 Terminology
Let ¥ be an arbitrary alphabet and let * € ¥ be a new symbol.

Deflnition 3. A partial function ¢ : (£*)* — X* is called Turing computable iff thereis a
Turing machine M with input alphabet U {*} that computes it. Namely, if ¢(zi1,...,2z5)
is defined, then M on input z,*...*z, halts, leaving on its tape the string ¢(z1,...,,)
followed only by blanks, with the leftmost tape cell of M containing the first symbol

of ¢(z1,...,2Zn). On the other hand, if ¢(z1,...,2,) is not defined, then M on input
Z1*...*I, never halts.

A synonym for Turing computable function is partial recursive function. Actually,
there is another inductive definition of the class of partial recursive functions (given in
Manna’s text), and it is a long programming exercise to show that the two definitions are
equivalent. We will skip this.

Definition 4. A partial recursive function that happens to be totally defined (on (X*)")
is called total recursive.

A language D C X* is decidable iff its characteristic function fp : £* — {a,b} is
total recursive, where

fo(z)={ a ifzeD,
@}bothemse.
A language R C X* is recursively enumerable (r.e.) iff

R = {z € " | MR halts on input z}
for some Turing machine Mp.

A setisr.e., recursive, etc., iff the language consisting of binary codes of elements of
the set is r.e., ete.

Synonyms:
o Recursive set = decidable set = Turing-decidable set.
¢ R.e. set = recursively enumerable set = Turing-acceptable set.
¢ [Turing] computable partial function = partial recursive function.

o Total recursive function = recursive function = [Turing] computable total function.

If P is a property of sets, then “A is co-P” means P(4) holds.
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5 Basic Properties of R.E. and Recursive Sets

Lemma 1. Recursive sets are closed under complement. (That is, if A is recursive, then
A is recursive.)

Theorem 4. A is recursive iff both 4 and 4 are r.e., i.e., iff A is both r.e. and co-r.e.

Theorem 5. The following are equivalent for a language A:

o Aisr.e.
e A is the domain of a partial recursive function of one argument.
e A is the range of a partial recursive function.

o A =0 or A is the range of a total recursive function.

Definition 3. The canonical order <caq of strings in £* (where X is ordered) is defined for
all w,u € L* as follows: w <caq u iff |w| < |u| or |w| = |u| and w precedes u alphabetically.

Note that canonical order is different from alphabetical (dictionary) order. For ex-
ample, b <can ab even though ab precedes b alphabetically. The canonical ordering of £*
is A, a,b,aa, ab,ba, bb, aaa, aab,....

Definition 8. A function f : £* — I* is an increasing function iff, for all strings z, y in
its domain, T <can y implies f(¢) <can f(y).

Theorem 6. A language A is recursive iff it is finite or the range of a total increasing
recursive function.

Theorem 7. Recursive sets are closed under union, intersection, and complementation.

Theorem 8. R.e. sets are closed under union and intersection.

6 Undecidability of the Halting Problem
Definition 7.

Ko = {(M,z) | Turing machine M halts on input z}
K, = {M | Turing machine M halts on input d(M)}

Theorem 8. K, is not r.e.
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Proof. Assume that K, is r.e. Then there is some Turing machine M, that halts on
precisely the binary words in K;. By the definition of K,, we have for any Turing machine
M that

M e K, iff M does not halt on input d(M).

By the definition of M;, we have for every Turing machine M that
M € T(l iff Ml halts on d(M).

Hence,

M, halts on d(MY ¥ M does not halt on d(M).

Now, let M = M, and we obtain - aediate contradiction. ®
Corollary 1. K, is not decida’

Proof. If it were, then K; wouid be recursive too by Lemma 1, and so would be r.e. by
Theorem 4, contradicting what we just proved. ®

Corollary 2. Kj is not decidable.

Proof. K, is a special case of Ky, so if Ky were decidable, then K; would be too. ®
Claim 1. Kj and K are r.e.

Proof. Left to reader. ®

Corollary 3. K is not co-r.e.

7 Many-one Reducibility

Definition 8. Given two languages A C £, B C I}, we say A is many-one reducible to
B, in symbols A <, B, iff there is a total computable function f : £% — T} such that

zeA iff f(z)€B
forallz €%y We v, AZ B [AS] 44 B—CM/fj

The following properties are easily verified:
Transitivity. A <, B and B <, C implies A <, C.
Recursiveness Inherits Down. A <., B and B recursive implies A recursive.

Non-recursiveness Inherits Up. A <, B and A not recursive implies B not recursive.
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R.e. Inherits Down. A <, B and B re. imply A r.e.
Non-r.e. Inherits Up. A <, B and A not r.e. implies B not r.e.
Symmetry w.r.t. Complement. A <, Biff A <, B.

An Incomparability. If A is r.e. but not recursive, then A and A are <p-incomparable.

Note that the ability to decide membership in a set obviously implies the ability
to decide membership in the complement of the set. But the last property above reveals
that a set and its complement may be <j-incomparable! So we recognize that <y is a
technical notion of reducibility which is more restricted than the general intuitive notion
of “reducing” one problem to another.

Corollary 4. Ky <m A4 implies A is not co-r.e.

Corollary 5. Ko x Kp is neither r.e. nor co-r.e.

Lemma 2. If A is r.e., then A <, K.

Proof. Suppose M accepts A; let f(z) =(M,z). Thenz € Aiff f(z) € Ko. ®

Deflnition 9. If R is a class of sets and < is a relation on sets, then a set K is <-hard
for Riff C < K for all C € R. A set K is <-complete iff K is both <-hard and K € R.

In particular, Kj is <p,-complete for r.e. sets.
Lemma 3. Any set other than the empty set and £* is <n-hard for recursive sets.

If Ko <m A, then by the transitivity of <m, 4 is <yu-hard for r.e. sets, and if A is
r.e. too, then it is an <n-complete r.e. set. We will see next that K, (and K; given below)
is also an <p-complete r.e. set.

8 Undecidability of K,
Theorem 10. The language K; = {M | M halts on blank tape} is a <p-completer.e. set.

Proof. Clearly K; is r.e., so we need only show that it is <n-hard for r.e. sets.

Let R C T* be any r.e. set and say R = domain(Mpg) for some Turing machine M.
We show that R <, K; as follows.

For any string z € £*, we can define a new Turing machine My (that is, f(z) is
the code of this Turing machine) that operates as follows:

“On input w, erase w, print z on the tape as input, and then act exactly
like Mp.”
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By definition, the behavior of My(;) does not depend on its input—it always halts or it
never halts. In fact,

ze R iff Mphaltsonz

iff Mj(s) halts on some input

iff Mj(;) halts on input A

iff f ((D) € K, .
But it is not hard to see that the function f is total recursive. (Think of writing a Scheme
procedure that, when applied to character string z, prints out a Turing machine flow-
chart for My(;). The Scheme program has a flowchart for Mg as a “built-in” constant.
Alternatively, we could justify this claim using the S7*-Theorem 2. This is the first result

in these notes other than the recursive isomorphism Theorem 3 which depends on the
Sm-Theorem.) Hence, R<,, K, ®

Theorem 11. K, is a Sm-cémplete r.e. set.

Proof. Replace “2” by “1” in the preceding proof. ®

9 Rice’s Theorem

Definition 10. A property of languages is nontrivial iff there is some r.e. language that
has the property and some r.e. language that does not.

For example, the property of being an r.e. language is trivial (since all r.e. languages
have it); the properties of

e containing the empty word,
e being empty, or
e being infinite

are each nontrivial.

Theorem 12. The set Kp = {M | P(domain(M))} is not decidable for any nontrivial
property P of r.e. sets. In fact, if ~P(0), then Kp is <y-hard for r.e. sets.

Proof. Suppose that P(@) is not true. Since P is nontrivial, there exists a machine M,
with domain(M,;) = L, # @ such that P(L,).
Let R C =* be any r.e. set and say R = domain(Mp) for some Turing machine Mp.  —
We show that R <, Kp as follows. :
For any string z € £*, we can define a new Turing machine My, (that is, f(z) is
the code of this Turing machine) that operates as follows
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“On input w, save w temporarily, and simulate Mg on input z. If this
simulation halts, then act exactly like M; on input w.”

By definition,

z€R iff Mghaltsonz
implies My, acts like on every input
implies domain(My(,)) = L,
implies f(z) € Kp ,

and also

z € R if Mg does not halt on z
implies domain(M;(;)) =
implies f(z) € Kp .

Moreover, as in the proof for K3, the function f is total recursive. Hence, R <, Kp. ®

10 Total Functions

Definition 11.
Kigo ={M|L(M)=%X"}

Lemma 4. K, is neither r.e. nor co-r.e.

Proof. In homework. ®

11 Turing Reducibility and Oracle Machines

Many-one reducibility is a good technical tool for establishing that one language is no
harder than another, but as we noted, it does not completely capture the idea of reducing
one problem to another. We introduce Turing reducibility, <t, as a formulation of this
general notion.

Informally, A is Turing-reducible to B, or equivalently A is decidable in B, in symbols,
A <t B, iff there is some program computing the characteristic function of A, where the
program is allowed to repeatedly “call a subroutine” to answer questions about membership
in B. It may use the answers however it likes. (For contrast, many-one reducibility allows
only a single question about membership in B, viz., “f(z) € B”, and must return the same
answer as that question.)

We formalize “calling a subroutine” for B by defining Turing machines with (string
and) language inputs. This is a Turing machine with one extra tape, called the language
tape. The head on the ordinary tape operates as usual. The language tape is a read-
only tape over B’s alphabet plus the blank symbol. Unlike the Turing machine tapes
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considered so far, the language tape will start with useful information in every cell. This is
a mathematical trick to allow the Turing machine access to the whole language B. There
may not be any reasonable physical way to initialize the entire infinite language tape nor
any effective way to grow it as computations proceed.

To run a generalized Turing machine on string input z € £} and B C X}, we start
with AzA on the work tape in the normal way. We initialize the language tape with the
values of the characteristic function, fg, of B on the successive words of L} in canonical
order. For example, if ¥; = {a,b}, ordered with a coming before b, the language tape
looks like:

(A fs(4) [ fe(a) | fa(b) | fo(aa) | fo(ab) | fo(ba) | fo(bb) | fr(aaa)|...|

In general, the leftmost symbol on the tape is a blank, A, and the n'® symbol to
the right of the A is an a if the n*® string in the canonical order of £} is in B, and a b
otherwise.

When we run a generalized machine M on inputs £ and B, we are essentially doing
a computation as if we had a subroutine for deciding membership in B.

Now we say that A <1 B iff there is a generalized Turing machine M which, given
fixed language input B, halts on all string inputs z, printing yesor noas x € A or z ¢ A.

Similarly, we say that A is r.e. in B if there is a generalized Turing machine M such
that z € A iff M halts on inputs z and B. '

Theorem 13. Basic Facts about Turing Reducibility:

e Aisre. iff Aisr.e. in 0.

e A is decidable iff A is decidable in 0.

e If R is a recursive set, then A is recursive iff A is decidable in R.
e A<t Band B<tCimply A<t C.

¢ A <x B implies that A <1 B.

e It is not the case that A <t B implies A <,, B. (For example, Ky <1 Kp, but it is
false that Ky <m Ko.)

e A <1 A for any set A.
e A<1Bif A<t Biff A<t B.

We define the relativized Halting Problem in B to be
B’ = {(M,z) | M halts on input z and B} .

So Ko amounts to #. B’ is also called the jump of B, for short. p
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Theorem 14. (Relativized Halting Problem) B’ is r.e. but not recursive in B.
The proof of this theorem is the same as the proof that for the ordinary halting
problem K, = @', with all the ordinary Turing machines in the original proof replaced by

language input Turing machines with fixed language input B.
We say A <t B iff A <1 B and B £1 A. Thus, we have

B<y B'.
Theorems (and proofs) about Turing machines that carry over without change to
Turing machines with language inputs are said to relativize. Most of our theorems rela-

tivize. For example, the remark that a set A is r.e. iff A <p Ko (which follows immediately
from the facts that Kp is a <p,-complete r.e. set and r.e. inherits down <) relativizes to:

Theorem 15. A is r.e. in B iff A<n, B.
Likewise Theorem 4 relativizes to:

Theorem 16. A <t B iff A is both r.e. and co-r.e. in B.
Some further relativizations:

Theorem 17. The following are equivalent:

e Aisr.e. in B.
e A = domain(yp), where ¢ is a partial recursive function in B.

o A =range(f), where f is a total recursive function in B.

Lemma 5. B’ =, {M | M halts on blank string input with language input B}. (That
is, the relativized halting problem is =, to the relativized blank-tape halting problem.)

Theorem 18. A” is neither r.e. nor co-r.e. in A.
Proof. To show a language B is not r.e. in A4, it suffices to show that 4’ <., B (since 4’
is not r.e. in A and non-r.e.-in inherits up <p).

But A’ <t A’ trivially, so by Theorem 16, A’ isr.e. A’ and A’ is r.e. in A’. Therefore,
by Theorem 15, A’ <m A” so A’ <y A”, and also A’ <, A”. ®

Corollary 6. K| is neither r.e. nor co-r.e.



12 6.044J/18.423J Handout 5: Notes on Computability Theory

Define

B©® =9
B+l = (B(My |

By the preceding theorems, B(™ <1 B+ for all n. So the sequence of sets
@(T o <T m(z) <7 e

has strictly more difficult successive membership problems. This sequence, or more pre-
cisely the sequence of families {L | L <m #(} for n = 0,1,..., is called the Arithmetic
Hierarchy. . ‘

Thus, there is a rich classification possible among undecidable problems. Various
natural decision lie along the arithmetic hierarchy. For example, the problem of proving
“partial correctness” of program schejmes turn out to be = #(®. Since such problems are
not even r.e. in the Halting Problem, it will follow that there is no complete axiom system
for proving partial correctness even assuming availability of a completely effective decision
procedure for first-order logic. More about this later in the course....
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Practice for Quiz 1

The following is a sample of the kind of problems you will see on Quiz 1. We present it
here as an optional practice problem.

Problem 1. Let

A = {M | M diverges on input A and writes an infinite
number of a’s during its computation on input A} .

(a) Show that K, < A.
(b) Show that K; < A.
(¢) Conclude that A is neither r.e. nor co-r.e.

(K2 = {M | M halts on input A} is the blank tape halting problem.)
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Problem Set 2 Solutions

Announcement: The Quiz is on Wednesday 07 October, 7-9:00PM, in 34-302. It is
open book. :

Problem 1. Show that a language L C X* is r.e. iff L is empty or equal to the range of
a total recursive function f: {a,b}* — X*. (Hint: Let f(pair(z,y)) = y if an appropriate
Turing machine halts on input y in |z| steps, where pair is a pairing function on {a,b}".
That is, pair : {a,b}* x £* — {a,b}" is a recursive function which codes pairs of strings
into strings over {a,b}.)

We proved in class that L C £* isr.e. iff it is the range of a partial recursive function
¥ : {a,b}* — X*, a fact we will use here.

Suppose L C L* is empty or the range of a total recursive function f : {a,b}* — T*.
In either case it is the range of a partial recursive function ¥ : {a,b}* — &*, forif L =0
we can let i be the function which is undefined for all inputs, and otherwise we can let 3
be f. So Lisr.e.

Conversely suppose L is recursively enumerable. So L is the range of a partial
recursive function ¥ : {a,b}* — £*. If L = @ then it is certainly r.e., so suppose L is
non-empty and let z be an element of L. Let M be a machine computing 1. Define
f:{a,b}* = Z* by

f(w) = y if w = pair(z,y) and M halts on input y in < || steps
~ | z otherwise

The function f is certainly total, and since pair is a good coding function it is also com-
putable. M halts on input y iff it does so in |z| steps for some z. So the range of f is the
set of outputs of M: range(f) = range(y) = L.

Problem 2. Let D be a decidable language over the alphabet {a,b}, and let E be an
r.e. language over {a,b}. Let f be a total recursive function from {a,b}* to {a,b}*, and
let 3 be a partial recursive function from {a,b}* to {a,b}".

(a) Show that f~'(D) = {z € {a,b} | f(z) € D} is recursive.
(b) Show that ¥~!(E) = {z € {a,b}* | ¥(z) € E} is r.e.
(c) Show that f(D) = {f(z) € {a,b}* |z € D} isr.e.

(d) Give examples to show that “r.e.” cannot be replaced by “recursive” in (b) and (c).
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Let
e Mp be a machine deciding D.
e Mg be a machine accepting FE.
e M; be a machine computing f.

e My be a machine computing .

(a) A decider M for f~!(D) works as follows. On input = € {a,b}*,

e Compute y = f(z) (using Mjy).
o Accept z if Mp accepts y, and reject = if Mp rejects y.

(b) An acceptor M for ¥~!(E) works as follows. On input z € {a,b}",

¢ Run M, on input =z.

o If M, halts then let y denote its output, and run Mg on input y.
e If Mg halts on y then halt.

(c) Define a partial function ¢ : {a,b}* — {a,b}" by

_J f(z) ifzeD
¥(e) = { T otherwise

(where T denotes “undeﬁned”). Since f is total recursive and D is decidable, ¥ is
partial recursive. The range of ¢ is f(D). So f(D) is r.e.

(d) Let E be any r.e. non-recursive set, and let ¥ be the identity mapping on {a,b}".
Then ¢~}(E) = E is not recursive. This provides the counterexample for (b).

For (c) let D = {a,b}"* and let f be a total recursive function whose range is Ko. We
know such an f exists by problem 1.

Problem 3. For each of the sets below, state whether it is recursive,r.e. but not co-r.e.,
or co-r.e. but not r.e., and briefly explain why.

(a) The set of TMs that halt on no inputs.
(b) The set of TMs that halt on blank tape in < 10° steps.
(c) The set of TMs that halt on blank tape in > 10° steps.

(d) {M] 10° < |d(M)]}.
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(e) The set of integers n such that there are at least n occurrences of the digit ‘8’ after
the n'® place in the decimal expansion of (2.7)*". (Hint: Case 1: there are infinitely
many ‘8’s in the decimal expansion of (2.7)!*", Case 2: there are finitely many ‘8’s in
the decimal expansion of (2.7)".)

(a) The set A = {M]| M does not halt on x for all £ € {a,0}"} is co-r.e. because it is
easy to accept those M which halt on some input. To show that A is not r.e. either
show that K; <p, A as done in class for similar examples, or appeal to Rice’s theorem.

(b) {M | M halts on input A in < 10° steps} is recursive. Given M, just run it for 10°
steps on input A and see whether or not it halts.

(c) We omit the easy argument that the set A = {M | M halts on input A in > 10° steps}
is recursively enumerable. A is not co-r.e. because K3 <p, A; the reduction maps an
input machine M into a machine M  which on any input wastes 10° steps and then
acts like M on that input.

(d) A = {M | 10° < d(M)} is recursive. It is easy to write a program which accepts
precisley those strings z € {a,b}* of length > 10° which are well-formed Turing
machine codes. In fact, given our convention of regarding any string in {a,b}" as the
code of some Turing machine, A is just the set of all strings of length > 10°.

(e) This is recursive. There are either an infinite or a finite number of ‘8’s in the decimal
expansion of (2.7)*". In the first case our set is the set of all integers. In the second
case it is a finite set. In either case it is recursive.

Problem 4. Define
Kiot = {M | M is a Turing machine which halts on every input z € {a,b}"} .
(a) Show that K3 <m; Kiot, where K} is the blank-tape halting problem.

(b) Use a diagonalization argument to show that K\, is not the range of a total recursive
function from {a,b}* to {a,b}*. (Hint: Let f: {a,b}* — K, be onto and recursive.
Define the “diagonal function” p : {a,b}* — {a,b} by

o(z) = {a. if M halts on input = with output b, where d(M) = f(z)
b otherwise.

Show that a contradiction results from the assumption that f is computable by some
machine My.)

(c) Conclude from (a) and (b) that K, is neither r.e. nor co-r.e.
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Let M be a Turing machine. Let M be the machine which on input = ignores r and
behaves exactly like M would on input A. So for any z,

M’ halts on z iff M halts on A.
So

M € K. iff M € K;.
The translator function f taking M to M ' is total recursive. So K7 <m Kiot-

Assume f: {a,b}* — . 1s onto and recursive.

Claim 1. The function p is computable.

Proof. Consider a machine M, operating as follows: “ On input = € {a,b}*, compute
f(z). Let M be the machine for which d(M) = f(z). Run M on input z. By
definition M € Ko, so M will halt on input z. If the output of M is b, output a
and halt. Otherwise output b and halt.” This machine M, clearly computes p. ®

The function p is by definition total. So M, € K, by Claim 1. Since f is onto, there
is an zo € {a,b}" such that f(z¢) = d(M,). Now

p(zo) =a iff M halts on input zo with output b, where d(M) = f(xo)
iff M, halts on input zo with output b
iff p(:cO) =b,

a contradiction (the first iff follows from the definition of p, the second because
d(M,) = f(zo), and the last because M, computes p). So f could not have been both
onto and computable.

Ko is not co-r.e. by (a) since non co-r.e. inherits up. It is not r.e. because (b) says
it is not the range of a total recursive function.
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Quiz 1

Instructions. Do all 4 problems; a total of 100 points is allocated as shown on each
problem. This exam is open book. There is a short glossary and summary of notation on
the last page. You have two hours. Good luck.

Problem 1 {30 points]. Let

OddSquare = {M | Turing machine M halts on input A with
its head on an odd numbered tape square } .

(a) [10 points] Explain why Rice’s theorem doesn’t apply to OddSquare. More precisely,
show that OddSquare # Kp for any property P of r.e. sets.

(b) [20 points] Show that OddSquare is a <,-complete r.e. set anyway.

Problem 2 [20 points]. For any total function T : {a,b}* — N define the set
KT = {M | M halts on input d(M) in < T(d(M)) steps}
and the class of languages

Accept(T) = {L C {2,b}" | 3M such that domain{M) = L and Vz € {a,b}", if
M halts on input z then it does so in < T(x) steps } .

Prove that K7 ¢ Accept(T).

Problem 3 [25 points]. For each of the sets below, indicate with a single capital letter
whether it is (D) decidable, (R) r.e. but not co-r.e., (C) co-r.e. but not r.e., or (N) neither.

No explanation is required and there is no penalty for guessing. »
—>

(a) The set of Thue systems S such that there exist ¢ # y € &% for which z@ y.
(b) The set of TMs that accept languages containing only strings of even length.
(c) {M |3M such that d(M) # d(M") but M and M’ accept the same language}.
(d) {M | M writes a A symbol during its computation on some input}.

e) KT x KT where K7 is given in Problem 2, and T(w) = 2/,
g
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Problem 4 [25 points]. Let
A = {M | M halts on input a and doesn’t halt on input b}

Show that A is neither r.e. nor co-r.e.

Glossary and notation

d(M) € {a,b}* is the code of the Turing machine M.
N = {0,1,2,...} is the set of natural numbers.
Kp = {M | P(domain(M))} where P is a property of r.e. sets.

A set A is <;y-complete for r.e. sets if and only if

(i) Ais an r.e. set

(ii) B <m A for any r.e. set B.

A is the blank symbol for Turing machines.

T /4% y means that y is not derivable from z for strings z,y over the alphabet s of the
Thue system S.
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Problem Set 3

Reading assignment. For this assignment: Manna, sections 1-5.3,1-5.4.

Problem 1. Show that if A is a recursive set, then A <, B for essentially any set B.
Identify the exceptional B’s.

Problem 2. Show that the Post Correspondence Problem over the alphabet {a,b} is =,
to the Post Correspondence Problem over arbitrary alphabets.

Problem 3. An input-tape limited machine (ILM) is a Turing machine variant in which
a shiftright off the portion of the tape initially occupied by the input is interpreted in
the same way as shiftleft off the tape, namely as “halt-and-reject”. Thus, the entire
computation on any input z occurs in the first |z| tape squares.

3(a). Show that the halting problem for ILM’s is decidable.

3(b). Show that the Emptiness Problem for ILM’s is an <p-complete co-r.e. set. (The
Emptiness Problem for ILM’s is {M | M is an ILM and domain(M) = @}

Problem 4. The Busy Beaver function, b : N — N, is defined as

b(n) = maz{m > 0 | some Turing machine M with d(M) < n
halts in exactly m steps on input A} .

(By convention, maz@ = 0). A total function f : N — N majorizes b if f(n) is greater
than b(n) for sufficiently large n. More precisely, f majorizes b if

AneVn > no (f(n) > b(n)) .

Show that the Busy Beaver function is not majorized by any total computable func-

tion f: N — N.
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Quiz 1 Solutions

Problem 1 [30 points]. Let

OddSquare = {M | Turing machine M halts on input A with
its head on an odd numbered tape square } .

(a) [10 points] Explain why Rice’s theorem doesn’t apply to OddSquare. More precisely,
show that OddSquare # Kp for any property P of r.e. sets.
One can find two distinct machines M and M’ which have the same domain but only
one of which is in OddSquare. Let M be the machine with the description “on input
z halt with the head in the first square of the tape”, and let M’ be the machine with

the description “on input z halt with the head in the second square of the tape”.
Then

domain(M) = domain(M') = {a,b}*,
but M € OddSquare and M ¢ OddSquare. If OddSquare were equal to Kp for

some property P of r.e. sets we would have both
P(domain(M)) = P({a,b}")
and
—~P(domain(M')) = -P({a,b}"),

which is impossible.
(b) [20 points] Show that OddSquare is a <;,-complete r.e. set anyway.

OddSquare is r.e. because it is easy to write a program which given M runs M on
input A and halts iff the computation of M on A terminated with M’s head in an odd
numbered square of its tape.

We show that K; <j, OddSquare. Since K, is a <;,-complete r.e. set this will imply
that OddSquare is <-hard for the class of r.e. sets.

For any machine M let M’ be the machine with the following description: “on input z
run M on z. If M halts then return to the first square of the tape and halt.” Let the
function f mapping Turing machines to Turing machines be defined by f(M) = M.
It is easy to see that f is a total computable function. M halts on z iff M’ halts on
¢ with its head in an odd numbered tape square, by definition of M. So

r€ K, if f(z) € OddSquare .
So K; <, OddSquare via f.
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Problem 2 [20 points]. For any total function T : {a,b}* — N define the set
KT = {M | M halts on input d(M) in < T(d(M)) steps}
and the class of languages

Accept(T) = {L C {a,b}* | 3M such that domain(M) = L and Vz € {a,b}", if
M halts on input = then it does so in < T(z) steps } .

Prove that K7 ¢ Accept(T).

We will use a diagonal argument to derive a contradiction from the assumption that
KT € Accept(T).

Suppose KT € Accept(T). By definiton of Accept(T) this means there is a Turing
machine M whose domain is K7 and which for all z € K7 halts on input z in < T(z)
steps. We consider the action of M on input d(M). We have

M e KT iff M halts on input d(M) in < T(d(M)) steps
if MeKT,

a contradiction (the first iff is by the definition of M and the second is by the definition
of KT).

Problem 3 [25 points]. For each of the sets below, indicate with a single capital letter
whether it is (D) decidable, (R) r.e. but not co-r.e., (C) co-r.e. but not r.e., or (N) neither.
No explanation is required and there is no penalty for guessing.

(a) The set of Thue systems S such that there exist = # y € X5 for which z A% y.

This problem contained a misprint: we meant to say ¢ —% y rather than = /4% y.
For the question as we meant it the answer is that the set is decidable. For there are
distinct z,y such that £ —% y iff the Thue system has a rewrite rule with its right
hand side different from its left hand side. For the question as it appeared on the
quiz we think the answer is “C”, but the proof that K is many-one reducible to this
set seems hard to work out. All answers to this question got full credit because of
our misprint.

(b) The set of TMs that accept languages containing only strings of even length.
Call this set A. The complement of A is

{M | domain(M) conjtains a string of odd length .}

This set is r.e.: it is easy to write a program which given M searches the domain of
M for a string of odd length and halts iff it finds one. So A is co-r.e.. Rice’s theorem
implies that A is not recursive. So A is not r.e..
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(<)

(d)

(e)

{M | 3M such that d(M) # d(M') but M and M’ accept the same language}.

Given any Turing machine M one can add superfluous instructions to its flowchart
to create a different machine M’ which accepts exactly the same set of strings as M.
So our set is just the set of all strings {a,b}* and is certainly decidable.

{M | M writes a A symbol during its computation on some input}.

Call this set A. A is r.e. because we can write a program which given M runs M
in parallel on all inputs, and halts iff M writes a A during its computation on some
input. A is not co-r.e. because K; <, A and non-co-r.e. inherits up. The reduction
takes a machine M to the machine M’ whose description is as follows: “on input «,

ignore z and run M on input A, using a new symbol in place of the blank symbol A.
If M halts, print a A and halt”.

KT x KT where KT is given in Problem 2, and T(w) = 2l*!,

KT is decidable for any total computable function T because we can write a program
which given M runs M on input d(M) and sees whether or not it halts in T(d(M))
steps. Being the complement of a decidable language, K7 is also decidable. KT x KT
can be decided by checking for a given pair of inputs (M;, M;) whether M; € KT
and M, € KT.

Problem 4 [25 points]. Let

Show

A = {M | M halts on input a and doesn’t halt on input b}

that A is neither r.e. nor co-r.e.

Claim 1. K; <, A.

Proof. For any Turing machine M let M’ be the machine whose description is: “on input

z, if
f(M)
halts

z = b then diverge. Else behave like M on input A”. The function f defined by
= M is total computable. M’  never halts on input b, and halts on input a iff M
on A. So

MeK, if MeA,

and K <pn Avia f. B

Claim 2. K, <., A.
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Proof. For any Turing machine M let M  be the machine whose description is: “on
input z, if £ = a then halt. Else behave like M on input A”. The function f defined by
f(M) = M’ is total computable. M " always halts on input a, and halts on input b iff M
halts on A. So

MeK, iff MeA,
and K, <m Avia f. &

Since non-r.e. and non-co-r.e. inherit up, the claims imply that A is neither r.e. nor
co-T.€.

Glossary and notation

d(M) € {a,b}" is the code of the Turing machine M.
N = {0,1,2,...} is the set of natural numbers.
Kp = {M | P(domain(M))} where P is a property of r.e. sets.

A set A is <p-complete for r.e. sets if and only if

(i) Ais an r.e. set

(ii) B €m A for any r.e. set B.

A is the blank symbol for Turing machines.

z /% y means that y is not derivable from z for strings z,y over the alphabet Ts of the
Thue system S.



6.044J/18.423]): Computability, Programming, and Logic Handout 11
Massachusetts Institute of Technology 16 October 1987 (due 23 October)

Problem Set 4

Reading assignment. Manna Chapter 2: Introduction and 2-1.1 to 2-1.4.
Problem 1. Manna exercise 2-9 (a).
Problem 2. Manna exercise 2-10 (a),(b),(c),(d),(n).

Problem 3. Let ¥ = {a,b}. Recall that an equation over ¥ is an expression of the form
- =y
where r and y are semigroup terms over ¥. Let
AX ={F,...,Fy,...}
be a set of equations.

Definition 1. Let E be an equation. We define the notion that E is provable from azioms
AX, written F4x E, inductively as follows:

(1) Fax Eif E € AX.
(2) Fax z=z for all z € T+.
(3) If '-AX T1=T2 and l—AX T1=T3 then '-AX Tro=I3.
A rule such as the above is usually displayed in the format

Fax T1=23 , Fax z1=13
Fax z2=23

The assertions above the horizontal line are usually called the antecedents of the
rule, and the assertion below the line is called the consequent.

(4)

Fax T1=z2 , Fax 1=y
Fax Tih =Ty, )

Prove the completeness of this system. That is, show that for any equation E,

Fax E if AXEE.

Hint: By the completeness theorem proved in class AX = Eif AX F E (ie. AX
E iff the left and right hand sides of E rewrite to each other under the Thue system whose
rules are AX). Show that the Thue system rewriting process can be simulated in the above
system so that AX  E implies F4x E. Conversely prove by induction on the definition
of Fax that Fax E implies AX + E.
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Problem Set 5

Reading assignment. Manna sections 2-1, 2-2 and the notes on logic (to appear).

Problem 1. Let ¥ be a finite alphabet. For each ¢ € T let f, be a unary function symbol.
For any word z = 0, ...0, € £* where 0y,...0, € L, and for any individual variable v, let
fz(v) abbreviate the term

for(for (-« fou(®).-2)) -

(By convention fy(v) abbreviates v.) For any monoid equation z =y let lz =yl be the
first order formula

Vo(fz(v) = fy(v)) -

In this problem we will use the symbol |=_ to denote satisfaction over monoids, and the
symbol =, to denote satisfaction in the predicate calculus.

(a) Let T = ((M,*),I) be a monoid interpretation of . We define a first order logical
interpretation I’ = (M, I.,I!) over the signature {f, | ¢ € £} as follows:
I!(fs) : M — M is the function defined by

I(fo)(m) = I(o) *m
for all m € M. Prove that for any monoid equation z =y over L,

Ik, z=y iff I'|=pr:c=y].

(b) Prove that for any first order logical interpretation T = (D, Z,,Z,) over the signature
{fs | ¢ € £} we can define an associated monoid interpretation Z° over £ with the
property that for any monoid equation z =y,

P, =y iff I}=pf:c=y].

(¢) Use parts (a) and (b) to show that for any set of monoid equations AX, and for any
monoid equation E,

AXELE #ff (Ap,x "F') 2 BV is valid.

(d) Conclude that the validity problem for the predicate calculus is undecidable.
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Problem 2. Let & be a first order predicate calculus signature consisting of n unary
predicate constants,

S={P,...,P.}.

Let T = (D, I.,T,) be an interpretation of S. We say that two elements d and d' of D have
the same truth pattern iff

Z.(P;)(d) iff I.(P)(d') foralli=1,...n.

It is easy to see that the property of having the same truth pattern defines an equivalence
relation over D. The equivalence class of an element d of D is

[d] = {d' € D | d and d' have the same truth pattern} .

The collapse of T is the interpretation 7 = (D,Z.,Z,) of S defined as follows:

o the domain D of T is the set of equivalence classes,
D={d|deD}.
e For each unary predicate symbol P; of § and each d € D we define
I.(P)(ld) iff Z(P))(d) .
(Z.(P;) is well defined because if [d] = [d] then I.(P,)(d) iff I.(P;)(d")).
e For each individual variable z we let

j--v("’) = [I,,(:z:)] . .
~t <yl

(a) Prove by induction on the definition of a first order wiff A over the signature S that

IEAfTEA.

(b) Use part (a) to show that the validity problem for S is decidable. That is, show that
there is a program which given any first order formula A over the signature S outputs
“ves” if A is valid and “no” otherwise. —_
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Problem Set 6
Quiz: Quiz 2 is scheduled for Monday 09 November, 7:00-9:00 PM, in 34-302.

Problem 1. LetZ = ((D,Z.),Z,)and T = ((D',T,), T,) be interpretations over a common
second-order predicate calculus signature S.

Definition 1. A function h : D — D’ is a homomorphism between T and I, written
h:T—-T,iff
(1) for all n-ary function constants f in § and for all d,...,d, € D,

MZ(F)(dy, .- ,dn)) = Z(F)(A(dr); .. ., h(dn)) ,

and similarly for all n-ary function variables F'.
(2) for all n-ary predicate constants p in S and for all dy,...,d, € D,

Tp)(d1,...,dn) ff T (p)(h(d1),...h(dn)),

and similarly for all n-ary predicate variables P.

The homomorhism is onte iff h : D — D’ is onto, and in this case I’ is said to be a
homomorphic image of T.

(a) Let & = {c,,c,} where ¢, and ¢, are constant symbols. Describe a pair of interpre-
tations T and I’ such that 7’ is a homomorphic image of Z and

Ike~(e,=c,) but IT'f—(c,=¢c,).

(b) Suppose I’ is a homomorphic image of . Prove that for any wff A over the signature
S such that A does not contain the equality symbol,

IkA f TEA.

(Hint: Use induction on the definition of A. Begin by using induction on the definition
of terms to show that h((t)r) = (t)p for any term t over §).

We will need the notion of isomorphism of models which we proceed to define here.

Definition 2. A homomorphism h : T — I’ is an isomorphism between T and I iff the
function h: D — D’ is a bijection. 7 and T are isomorphic, written T = T, if there is an
isomorphism between 7 and T .

Definition 3. Two models M and M’ over a common signature S are isomorphic iff there
is a pair of interpretations Z, and Z, of the free variables such that (M, Z,) = (M',T,).
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Problem 2. Let S = {-, EqLen} be a signature consisting of one binary function con-
stant - and one binary predicate constant EgqLen. Let ¥ be an alpahabet, and let Mg.
be the standard Interpretation of S. That is, Mg« = (X*,7.) where Z, is defined by

e Z.(+)is -, the usual concatenation operator on strings.

e I.(EgLen) is the equal length predicate EqLen :
EgLen(z,y) = true iff |z| = |y|

for z,y € &*.

Write down a second-order predicate calculus formula Fy. over the signature § with
the property that for any model M over the signature S,

MEFge iff M= Msg..

Briefly explain why your formula works. (Hint: This is similar to the construction of the
formula Farien in class).

Problem 3. Let F be the conjunction of the following first-order formulas over the sig-
nature § = {0, suc, +} :

o VzVy[(suc(z) = suc(y)) D (z =y)] (sucis 1-1)
o Vz(suc(z) # o) (o is not a successor)

o VazVy[(z+o = z) A (z+8uc(y) = suc(z+y))] (inductive definition of +)

Give an example of a model of F' such that the interpretation of + is not a commu-
tative operation.

(Optional Problem: Same thing when the formula

Vz[(z # 0) D Jy(suc(y) = z)]

(every non-zero element has a successor) is conjuncted into F').
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Problem Set 4 Solutions
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Thue Systems and Semigroups

We provide here a summary of the notation, definitions, and theorems in the logic
of Thue systems and semigroups.

Deflnition 1. A semigroup is a pair (S, *) where S # 0 is a set whose members are called
the elements of the semigroup, and * is an associative binary operation on S (that is,
*: S — S is such that s; * (s * 33) = (8; * 3;) * 33 for all sy,32,33 € 5).

Definition 2. An element e of a semigroup (S, *) is an identity element iffexs = sxe = s

forall s € S.
Definition 3. A monoid is a semigroup which has an identity element.
Lemma 1. There is exactly one identity element in a monoid.

Notation. Let ¥ be an alphabet. Then ©* = X* — {A} denotes the set of non-empty
strings over X.

Example 1. ({a,b}*, ) is a semigroup (- denotes the operation of concatenation of strings),
and ({a,b}*,-) is a monoid with A as its identity element.

Example 2. ({true,false},A) and ({true,false}, =) are monoids with true as identity
element, and ({true,false},d) is a monoid with false as identity element (the operation
@ is called exclusive-or and is defined by z @ z = false and z @ -z = true for all
r € {true,false}).

Definition 4. A semigroup term over an alphabet £ is a word in . A monoid term
over ¥ is a word in Z*.

Definition 5. Let ¥ be an alphabet. A semigroup interpretation over signature ¥ consists
of a pair T = ((S, *), I) where (S, ) is a semigroup and I : © — S. We extend I to a map
from TF to S (calling the extension I by an abuse of notation) by induction on the length
of semigroup terms as follows:

I(oz) =I(s)*I(z) (z€Z*,0€X).

I(z) is called the meaning of the word z. By a further abuse of notation the mapping I is
sometimes itself called the interpretation, and we write ZI(z) for I(z).

Monoid interpretations are defined similarly. In the case of a monoid interpretaion
((M,*),I) the extension of [ : & — M is a map from £* to M defined as before on T+
and in addition mapping the emptry string A to the identity element of (M, ).
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Lemma 2. I(zy) = I(z) * I(y) for a semigroup or monoid interpretation Z over ¥ and
strings z,y over .

Proof Sketch: Use induction on the length of = for each fixed y. ®
Example 3. © = {a,b}, S = ({true,false},®). Let
I(a) = true, I(b) = true.
Then Z(abaab) = true. In general, the meaning of a word is true iff it is of odd length.

If z,y are semigroup terms over ¥ we call “z =y” a semigroup equation over T. A
semigroup equation is a syntactic entity consisting of two elements of £* seperated by the
symbol “=". Monoid equations are defined analogously.

Given a semigroup interpretation Z we can talk about the meaning of a semigroup
equation under I.

Definition 8. 7 satisfies t =y, written T |z =y, iff Z(z) = I(y).

Note that the first two occurences of “=" in Definition 6 indicate the formal symbol
for equality while the last occurence denotes mathematical equality.

Deflnition 7. A set of equations {E;} logically implies an equation F', written {E;} = F,
iff for any 7 such that T |= E; for all i, it is also the case that 7 = F.

Definition 8. A set of equations {E;} proves an equation z =y, written {E;} F z =y, iff
r rewrites to y under the Thue system whose rules are {E;}.

Example 4. Let E;, E; and E3 be the equations aa=a, bb =b, and ab = ba respectively.
Then

{E\, E;,E3} - aaaaba=abb,
since aaaaba «—} abb where P is the Thue system {(aa, a), (bb,b), (ab,ba)}.

Theorem 1. (Completeness theorem) {E;} + F iff {E;} = F.

Proof Sketch: To prove that {E;} + F implies {E;} |= F use induction on the length
of the rewriting. For the converse, suppose that {E;} I/ F and derive a contradiction by
constructing a “term model” T with the property that T |= {E;} forallibut Z = F. =

Corollary 1. The problem of determining whether {E;} = F' is undecidable.

’ N
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Problem Set 3 Solutions

Problem 1. Show that if A is a recursive set, then A <p B for essentially any set B.
Identify the exceptional B’s
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Problem 2. Show that the Post Correspondence Problem over the alphabet {a,b} is =
to the Post Correspondence Problem over arbitrary alphabets.
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Problem 3. An input-tape limited machine (ILM) is a Turing machine variant in which
a shiftright off the portion of the tape initially occupied by the input is interpreted in
the same way as shiftleft off the tape, namely as “halt-and-reject”. Thus, the entire
computation on any input z occurs in the first |z| tape squares.

A notion central to this problem is that of a configuration of a Turing machine
computation. A configuration C of a computation of M on z consists of the state of the
finite control of M (or box of M’s flowchart), the non-blank portion of M’s tape, and the
position of the head. We view a computation of M on z as a sequence of configurations.

The configuration at any point completely determines the future behaviour of M. In
particular, if in a computation of M on input z a certain configuration C is repeated, then
M will not halt on halt on input z.

3(a). Show that the halting problem for ILMs is decidable.
The halting problem for ILMs is the set

H={(M,z)| M is an ILM and M halts on input z} .

The computation of an ILM M on input z is confined to the first |z| tape squares. So
the computation has only a finite number of possible configurations. Thus in a non-halting
computation of M on input z some configuration C must be repeated. This is the basis
for the following description of a decision procedure for H:

“On input (M, z), run M on input z, and keep track of the succesive configurationss
of the computation. If at any point M moves beyond the |z|-th tape sqaure then halt and
reject (M was not an ILM). If a configuration is repeated, halt and reject (M will not
halt). Else if M halts, halt and accept.”

3(b). Show that the Emptiness Problem for ILMs is an <j-complete co-r.e. set. (The
Emptiness Problem for ILMs is E = {M | M is an ILM and domain(M) = #}).

We first observe that E is co-r.e. The complement of F is
E={M| M is not an ILM or domain(M) # 0} .

and the machine with the following description accepts E: “On input M, run M on all
input strings A,a,b,aa,ab,... in parallel. If M uses more than |z| tape squares in a
computation on input z then accept (M is not an ILM). If M halts on input z then accept
(domain(M) # @).”

We show that E is co-r.e. hard by reducing the co-r.e. complete set K; to E. We first
need some conventions about representing configurations. We represent configurations of
M on z as strings over the alphabet £js U {A}. The string vBw (v € (£, U {A}D",w €
(Zpm U {A})*, B a state of M) represents the configuration in which the tape of M holds
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the string vw and M is in state B scanning the first symbol of w. As an example, the
configuration corresponding to

alelalele|ale

B,

is written abaB;bb. Blanks to the right of the last non-blank symbol are ignored in the
representation of a configuration unless the head is scanning them.

Given a Turing machine M let M’ be the machine with the following description:
“Regard the input as a sequence Cy, ..., C, of configurations of a computation of M (if it is
not of this form, diverge). Check that C;,, follows from C; by one move of M, for all : < n.
Then if C, is a configuration of a halting state of M and C, is a starting configuration of
M on input A, halt. Else diverge.”

Note that the computation of M’ on input z can be carried out in the first |z| tape
squares. So M’ is an ILM. Then observe that K; <m E via the reduction f(M) = M".

Problem 4. The Busy Beaver function, b : N — N, is defined as
b(n) = maz{m > 0| some Turing machine M with d(M) < n
halts in exactly m steps on input A} .
(By convention, maz@® = 0). A total function f : N — N majorizes b if f(n) is greater
than &(n) for sufficiently large n. More precisely, f majorizes b if
dne¥n 2 ng (f(n) > b(n)) .

Show that the Busy Beaver function is not majorized by any total computable func-

tion f: N — N.

Suppose f : N — N is a total computable function that majorizes b,
dneVn > ng (f(n) > b(n)) .

Define g : N — N by
_Jf(m) ifno<m
g(m) = {f(no) otherwise.

Observe that g is total computable and
Vn (g(n) > b(n)) .

We now derive a contradiction by giving a description of a machine M which uses g
to decide K. This implies that g, and hence f, could not exist. M works as follows:

“On input M’, compute ¢t = g(d(M’)). Run M’ on input A for ¢ steps. Accept if M’
halts within these ¢ steps and reject otherwise.”
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The Predicate Calculus I

1 Syntax
The syntax of the predicate calculus is constructed out of two kinds of symbols: the logical
symbols and the non-logical symbols. The logical symbols are
e Constants: “(”, “)” (parentheses), “,” (comma), true, false.
e Connectives: - (not), D (implies), A (and), V (or).
e The equality operator: =.
o Quantifiers: V (universal quantifier), 3 (existential quantifier).
e Variables:
(1) n-ary function variables F{* (¢ > 1,n > 0); F? is called an individual variable
and is also denoted by z;).
(2) n-ary predicate variables P (i > 1,n > 0); P? is called a propositional
variable.
The non-logical symbols are

e n-ary function constants f* (: > 1,n > 0); f? is called an individual constant and
is also denoted by c;).

e n-ary predicate constants p? (i > 1,n > 0); p is called a propositional constant.
s
Deflnition 1. A $ignature is a set of non-logical symbols.

Terms and formulas over a given signature are defined by induction. Let S be a
signature.

Definition 2. A term over S is defined as follows.

(1) Each individual variable z; is a term over S.

(2) Each individual constant ¢; € S is a term over S.

(3) Ifty,...,t, aretermsover S (n > 1) and f7 is a function variable then f!(¢1,...,%,)
is a term over S.

(4) If t4,...,t, are terms over S (n > 1) and F* € § is a function constant then
FM(t1,...,t,) is a term over S.
Note that the parentheses and commas used in the expressions f!(¢;,...,t,) and

FMty,...,t,) of Definition 2 are the pmslogical symbols “(” , “)” and “,” listed above.

Deflnition 3. An atomic formulaf over S is defined as follows:
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(1) Each propositional variable P? is an atomic formula over S.

(2) Each propositional constant p? € S is an atomic formula over S.

(3) If t; and ¢, are terms over § then ¢; = ¢, is an atomic formula over §.

(4) Ift,,...t, are terms over S and P is a predicate variable then P(t,,...,t,) is an
atomic formula over S.

(3) It,...t, are terms over S and p} € S is a predicate constant then p}(¢1,...,tn)
is an atomic formula over S.

Definition 4. A formula (wff) over § is defined as follows:

(1) An atomic formula over § is a formula over S.
(2) If A and B are formulas over S then so are (—A4), (A D B), (AA B), and (AV B).
(3) If z; is an individual variable and A is a formula over § then (Vz;4) and (3z;A4)

are formulas over S.

We emphasize that terms and formulas over S are syntactic entities construced out
of the symbols in § and the m&®-logical symbols.

Parentheses will be dropped in writing wffs where there is no ambiguity. We will
sometimes use symbols different from the above, such as z,y, 2 for variables and f,g for
function constants. See Manna for details of this nature.

We omit here the technical definitions of free and bound variables in a formula. See
Manna for this. We can now define closed terms and formulas:

Definition 5. A closed term (formula) is a term (formula) with no free variables.

We write [A]2+*» for the formula obtained by replacing each free occurence of z;
with ¢; in A. Bound variables in A are renamed if necessary so that the quantifiers of A do
not capture the free variables in the ¢;. We will not give here a complete formal definition

of substitution; the above will suffice for our purpose.

2 Semantics

Let S be a signature. We proceed to define the meaning of terms and formulas over §.
Contter o Lipy .o, of M)
Definition 6. A model of S is a pair M = (D, I.) where D is a non-empty set and I, is
a function with domain § which assigns values to the elements of S as follows:
(1) I.(c;) is an element of D for each individual constant ¢; € S.
(2) I.(p?) is either the value true or the value false for each propositional constant
0
p; € S.
(3) I(f!): D — D is a n-ary function over D for each function constant f! € S
(n>1).
(4) I.(pF) C D™ isa n-ary predicate over D for each predicate constant p} € S (n > 1).
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Definition 7. A valuation function for a model M = (D, I.) of § is a function I, which
assigns values to the variables as follows:

(1) Ix(z;) is an element of D for each individual variable z;.
2) P?) is either the value true or the value false for each propositional variable
PP,

(3) I4F!): D" — D is an-ary function over D for each function variable F}".
(4) Z[(P) C D" is a n-ary predicate over D for each predicate variable P".

Definition 8. An interpretation of S is pair T = (M, I,) where M is a model for § and
I, is a valuation function for M.

We define the meaning of a term by induction over the definition of a term.

Definition 9. The meaning of a term ¢ over § in an interpretation 7 = ((D, I.),I,) of S
is an element (t)r of D defined as follows:

(1) (=zi)z = L, (z;) for each individual variable z;.

(2) (ei)r = I(c) for each individual constant ¢; € S.

(3) Iftq,...,t, are terms over S (n > 1) and f is a function variable then
V (i, s ta))r = L))z, -5 (B0)1) -
(4) Ifty,...,t, are terms over S (n > 1) and F* € S is a function constant then

(F7' (b1 s ta))z = L(E7 )8z, -+, (n)) -

Definition 10. (Satisfaction of atomic formulas) Let A be an atomic formula over S and
let T = ((D,1I.),I,) be an interpretaion of S. I satisfies A, written 7 = A, is defined
inductively as follows:

(1) For each propositional variable P?,
TP iff I,(P?) =true.
(2) For each propositional constant p? € S,
Ik p?if;Ic(p?) = true.
(3) If ¢t; and ¢; are terms over S then
I '= tl = t2 lﬁ (tl)I = (tg)z’ .

— Q(Note that the first = here is the syntactic symbol for equality while the second
= is the equality amongst elements of D).
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(4) Ift,...t, are terms over S and P! is a predicate variable then
T &= P*t,...,tn) iff L(PM)((t)z,...,()1) -
(5) Iftq,...t, are terms over S and p} € S is a predicate constant then
IEpi(t,...tn) Mt L(p!)(t)z,. .. (tn)1) -

We need some preliminary notation before proceeding to define the satisfaction of
formulas. The following describes the patching operation on functions and interpretations.

Notation 1. If f : S — T is a function and s € S,t € T then f[s — t] denotes the
function S — T defined by
flsmtl(sy = { f5) Hs 7o
t if ¢ =s.
Notation 2. If T = ((D, I.), I,,)) is an interpretation of S, d € D, and z; is an individual
variable, then Z[z; — d] denotes the interpretation ((D, I.), I, [z; — d]).

Definition 11. (Satisfaction of formulas) Let A be a formulaover S and let T = ((D, I,), I,,)
be an interpretaion of S. I satisfies A, written Z = A, is defined inductively as follows:
(1) T = A for an atomic formula A iff T = A according to Definition 10.
(2) If A and B are formulas over S then
o Ik -Aiffitis not the case that T = A.
o Ik AD B iff whenever T = A it is also the case that 7 = B.
¢ IEAABifTEAandT [ B.
¢ ITEAVBifTEAorIEB.
(3) If z; is an individual variable and A is a formula over S then 7 = Vz;A iff for all
d € D it is the case that Z[z; — d] E A.
(4) If z; is an individual variable and A is a formula over S then 7 = 3x;A iff there is
a d € D such that T[z; — d] E A.

We will often talk of satisfaction over models rather than over interpretations. This
is defined as follows.

Definition 12. Let A be a formula over S and let M be a model of S. We say that M
satisfies A, written M | A, iff for all valuation functions I, for M it is the case that
(M, L) E A. '

Lemma 1. Let A be a closed formula (Definition 5) and suppose T = (M, I,) = A. Then
M E= A

Proof Sketch: Work through the definitions. ®

There is another notation we sometimes use for models. A model M = (D, ;) of §
is written by listing the meanings of its symbols, as

(D,Ic(ci),Ic(f?),Ic(P?»c,-,fp,ppes .
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3 Subsets of the Predicate Calculus

The predicate calculus as defined above is usually called the second-order predicate calcu-
lus. The terms and formulas over certain restricted subsets of the second-order predicate
calculus symbols are of special interest.

The first-order predicate calculus is obtained by restricting the allowable symbols so
that the only variables allowed are the individual variables z; ( > 1). The first-order terms
and formulas over a signauture § are thus those second-order terms and formulas which
contain no predicate variables and no n-ary funtion variables with n > 1. Interpretations
are modified appropriately to assign meaning to only the relevant symbols.

Another interesting subclass is obtained by removing the symbol for equality. We
will talk, for example, of the first-order predicate calculus without equality.

4 Validity and Satisfiability

Definition 13. A formula A over a signature S is valid iff for all interpretations 7 of S
it is the case that 7 = A.

We often talk of valid formulas without specific reference to a signature. In this
case we are referring to the signature consisting of all allowable non-logical symbols. Thus
the phrase validities of the first-order predicate calculus refers to all the valid first-order
formulas.

Definition 14. A formula A over a signature S is satisfiable iff there is an interpretation
T of S such that T | A.

Definition 15. A formula A over a signature S is unsatisfiable iff it is not satisfiable.

The following remark will be of importance when we desribe a procedure for enu-
merating the validities of the first-order predicate calculus.

Remark 1. A is valid iff - A4 is unsatisfiable.

WL\/ gdf'b‘w( 444((,5 '/\)4 r,_e o Cd"f\.(j‘

5 A Summary of theorems Thv -

Theorem 1. The valid formulas of the first-order predicate calculus are recursively enu-
merable.

The proof of this theorem will require a fairly substantial development which will be
outlined in later sections.
Theorem 2. The valid formulas of the first-order predicate calculus are not recursive.
See Manna section 2-1.6 for a proof of thxs He e {
v "—Cath tan

Theorem 3. The first order theory o'f strmgs is not recursively enumerable.

Details on the proof and definitions for this theorem are postponed.
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6 Special Classes of Formulas

Definition 16. A formula A is a unsversal wif if it is of the form Vz;...Vz,B where B is
quantifier free. A is an ezistential wil if it is of the form 3z, ... 3z, B where B is quantifier
free. B is called the matriz of the formula.

Prenex normal form, which we will not define here, is another important form for
formulas. See Manna section 2-1.5 for a definition.

7 Relations Between Formulas

Let A and B be formulas (not necessarily over the same signature).

Definition 17. A and B are equisatisfiable iff

A is satisfiable iff B is satisfiable.

Definition 18. A and B are equivalent iff for every interpretation Z which assigns meaning
to the symbols in both A and B,

ITEA if TEB.

We will be interested in various effective transformations between formulas which
have the property of yielding a formula either equivalent to the original one or at least
equisatisfiable with it. The first lemma in this vein is about the reduction to Prenex normal
form.

Lemma 2. There is an effective procedure to transform a given formula A into an equiv-
alent formula B which is in Prenex normal form.

Further simplifications of the structure of a formula are possible if one asks only to
preserve satisfiability.
o

Lemma 3. There is an effective procedure to transform a given first-rder formula A into
an equisatisfiable first-order formula B which is a universal wif.

The technique used to reduce a formula A in Prenex normal form to an equisatis-
fiable universal wif B is called Skolemszation. For this reason, B is sometimes called the
Skolemized form of A.
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8 Herbrand’s Theorem

Let A =Vz,...Vz,B be a first-order universal formula, and let § be the signature which
consists of all the non-logical symbols occuring in A. If A has no individual constants, add
a new individual constant c to S.

Deflnition 19. A ground term of A is a term over the signature S.

Deflnition 20. A ground instance of A is a formula obtained by replacing each free oc-
curence of z; in B by a ground term of A. That is, a ground instance of A is a formula of
the form [B]& i where t,...,t, are ground terms of A.

T yee0sTn

We consider next the notion of propositional satisfiability of a conjunction of ground
instances of A. Let G; A... A G, be a finite conjunction of ground instances of A. Treat
each distinct atomic subformula of the formulas G,,..., G, as a propositional variable and
assign it the value true or false. The formula Gy A...AG, now has a true or false value
determined by the assignments to the atomic subformulas and the rules of propositional
logic.

Deflnition 21. G; A ... A G,, is propositionally satisfiable iff there is an assignment of
truth values to the atomic subformulas under which G; A ... A G,, has the value true.
Gi1 A...A G, is propositionally unsatisfiable iff it is not propositionally satisfiable.

Theorem 4. (Herbrand’s theorem) A first-order universal formula is unsatisfiable iff there
is a finite conjunction of ground instances of the formula which is propositionally unsatis-

fiable.

Theorem 4 provides a semi-decision procedure for the validity problem of the first
order predicate calculus. Lemmas selbmmwewest and 3 and theorem 4 provide the proof of
theorem 1. 2
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Problem Set 5 Solutions

Problem 1. Let T be a finite alphabet. For each o € X let f, be a unary function symbol.
For any word z = 0, ...0, € T* where 0,,...0, € &, and for any individual variable v, let
fz(v) abbreviate the term

for(foa(- - fou(v) .- ) -

(By convention fj(v) abbreviates v.) For any monoid equation z =y let [z =yl be the
first order formula '

Vu(fz(v) = f(v)) -

In this problem we will use the symbol |=_ to denote satisfaction over monoids, and the
symbol |=  to denote satisfaction in the predicate calculus.

(a) Let T = ((M,*),I) be a monoid interpretation of X. We define a first order logical
interpretation I’ = (M, I', I',) over the signature {f, | © € L} as follows:
I'.(fs): M — M is the function defined by

I'(fo)m)=1I(c)*m
for all m € M. Prove that for any monoid equation z =y over L,

Ik, z=y iff I’|=pra:=y] .

Claim 1. (fz(v))1{wsm) = I(z) * m for any z € T*.
Proof: By induction on the length of z. ®

Suppose I |=,, z =y. By definition of =, this implies that I(x) = I(y). Using
Claim 1 we thus have

(f(V)pripm) = I(z) ¥ m = I(y) * m = (fy(v))1orsm]

for all m € M. Hence I' |=, =1yl

Conversely suppose I’ k=, Tz =yl. So (fo(v))rfwsm) = (fy(v))1/fram) for all m € M.
By claim 1 this implies that I(z)*m = I(y)*m for all m € M. In particular, setting
m = e (the identity element of M) we get I(z) = I(y). Thus T |=,_ z=y.



(b)

(o)

(d)

6.044J/18.423J Handout 18: Problem Set 5 Solutions

Prove that for any first order logical interpretation Z = (D, I., I,) over the signature
{f, | @ € £} we can define an associated monoid interpretation I° over ¥ with the
property that for any monoid equation z =y,

Ik, z=y iff I':Fra:=y1.

The monoid interpretation Z° = ((M, %), I) associated with Z = (D, I, I,) is defined
as follows. Let

M={g:D— D}

be the set of all functions mapping D to D. Let * be the operation of function
composition,
g1*g2=4G1092

for all g;,g92, € M. It is easy to see that (M, *) is a monoid with identity element the
identity function on D. Define I : ¥ — M by

I(o) = I.(f,)
for all o € Sigma. We omit the easy check that Z° has the necessary properties.

Use parts (a) and (b) to show that for any set of monoid equations AX, and for any
monoid equation E,

AXE, E iff (Np . F') D E is valid.

Suppose that AX = E. We need to show that for any predicate calculus interpre-
tation 7 it is the case that

Tk, (Areax 'F1) 2 18"

Supose T |=, [F\ for all F € AX. We wish to show that Z E, [El. By the result of
(a) it is the case that I'|=, F for all F € AX. By assumption AX | EsoI'|=, E.
The result of part (a) then implies that T = 1E1.

The converse implication is the same argument using part (b) instead of (a).

Conclude that the validity problem for the predicate calculus is undecidable.

The result of part (¢) implies that the validity problem of the predicate calculus is
at least as hard as the question of whether AX |=_ E, and we know from our work
on monoid interprations that the latter is undecidable.
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Problem 2. Let S be a first order predicate calculus signature consisting of n unary
predicate constants,

S={P,...,P.}.

Let T = (D, I, I,) be an interpretation of S. We say that two elements d and d’ of D have
the same truth pattern iff

L(P)(d) iff I(P)(d) foralli=1,...n.

It is easy to see that the property of having the same truth pattern defines an equivalence
relation over D. The equivalence class of an element d of D is

[d] = {d' € D | d and d' have the same truth pattern} .
The collapse of T is the interpretation Z = (D, I.,I,) of S defined as follows:
o the domain D of 7 is the set of equivalence classes,

D={[d)|deD}.

e For each unary predicate symbol P; of S and each d € D we define
L(P)(d) iff L(P)d).
(I.(P;) is well defined because if [d] = [d'] then I.(B:)(d) iff I.(P;)(d")).

o For each individual variable z we let
I,(z) =[L(z)] .

(a) Prove by induction on the definition of a first order wff A without equality over the
~ signature S that

IEARTEA.

We need a technical remark about the relationship between the patching and the
collapsing operations.

Claim 2. I[z — d] = Z[z — [d]] for any d € D and any individual variable z.

Proof: By the definition of I,. ®



(b)
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We now induct on the definition of wifs without equality over S to show that
IEAMff TEA.
The only atomic wif is of the form P;(z). (Note that the only terms over & are
individual variables ). We have
I P(z) iff I(P).(z) if Z(P)|[T.(2)])) iff I(P)(1.(z))
using the definitions of I. and T,. So
T P(z) if Ik P().
If A is of the form -~ B or BAC the result follows easily by induction. Finally suppose
A is Vz B. Then
IEA f I[r—dEBforallde D
if I[r—d EBforallde D
if Z[z—|[d]|=Bforalde D
iff TEA.
The first iff here is by the definition of the meaning of V. The second iff is by the

induction hypothesis. The third iff is by Claim 2. The last iff is again by the definition
of the meaning of V.

Use part (a) to show that the validity problem for S is decidable for formulas without
equality. That is, show that there is a program which given any first order formula A
without equality over the signature S outputs “yes” if A is valid and “no” otherwise.

The first necessary remark is

Lemma 1. There is an algorithm which when given a finite model M and a formula
A decides whether M | A.

To any subset D of {true,false}" we associate a model MP = (D, IP) of S with
domain D and with IP defined as follows: for each i = 1,...n and each (v1,...,v,) €
{true,false}”,

IP(P)((vy,...,v,)) iff wv; =true.

Part (a) of this problem implies that for any model M of S there is some D such
that for any wif without equality,

MEA if MPEA.

This implies that to check whether A is valid it suffices to check that A is true in
all the models MP. Now note that the number of models MP? is finite (in fact,
[{MP | D C {true,false}"}| = 2"*") and each MP is finite. Hence we may use
Lemma 1 to check whether it is the case that MP |= A for all D C {true, false}™.
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Quiz 2

Instructions. Do all 5 problems; a total of 100 points is allocated as shown on each
problem. This exam is open book. You have two hours. Good luck.

Problem 1 [10 points]. Show that
{a =bc,bd = db, cd = dc} |, a%d° = d°a°

where =, denotes logical implication over semigroups.

Problem 2 [10 points]. Explain why the following Post Correspondence Problem has no
solution: (This is problem 1-20(a) from Manna’s text)

{(ba, bab), (abb, bb), (bab, abb)} .

Problem 3 [20 points]. Describe a countermodel to show that the following formula is
not valid:

{VzVyVz [p(z,y) A p(y,2) D p(z,2)] AVzVy [p(z,y) V p(y, )]} D F=Vy p(z,y) .

Problem 4 [20 points]. Let S = {p;,p.} be a signature consisting of two unary predi-
cate constants. Write down a satisfiable first-order formula, A, without equality over the

signature S such that the domain of any model of A has exaetly 4 elements.
ot Grga i

Problem 5 [40 points]. A 3V-wff is a first-order wif of the form
Az, ...3z,Vy, ... Vyn B

where B is a quantifier free wff. Similarly, a V3-wif is of the form
Ve,...Vz,3y1...3ym B .

(a) [10 points] Show that the validity problem for V3 wifs is many-one reducible to the
unsatisfiability problem for 3V wifs.

(b) [15 points] Let A be the wif

3132V VY2 [p(21, y2, 1) A —p(Y2, T2, 31))

Exhibit all the ground instances of the Skolemized form of A. (Note: In the special
case of Skolemizing an 3z preceded by no universal quantifiers, one introduces zero-
ary function constants; that is, individual constants c;).

(¢) [15 points] Use the ground instances of part (b) to conclude that -4 is valid.
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Quiz 2 Solutions

Problem 1 [10 points]. Show that
{a =bc,bd = db,cd = dc} |5, a%d® = d°a®

where |=, denotes logical implication over semigroups.

By the completeness theorem it suffices to show that
{a =bc,bd = db,cd = dc} |, a%d® = d°a®.

By the definition of I, this means we must check that a3d® rewrites to d%a
under the Thue system whose rules are

{(a,bc),(bd,db),(cd,dc)} .

This rewriting is easily verified and we omit the details.

Problem 2 [10 points]. Explain why the following Post Correspondence Problem has no
solution: (This is problem 1-20(a) from Manna’s text)

{(ba,bab),(abb,bb), (bab, abb)} .

A solution would be forced to begin with the pair (ba,bab) because the
other pairs are mismatched in the first charecter. At this point there is one
more b at the bottom than at the top. Since all three pairs have the property
that the number of bs in the second half of the pair is > the number of bs in
the first half, further use of any of the pairs will not reduce the diference in
the number of bs between bottom and top. So no solution is possible.

Problem 3 (20 points]. Describe a countermodel to show that the following formula is
not valid:

{VzVyVz [p(z,y) A p(y, z) D p(=, z)] A VaVy [p(z,y) V p(y, z)]} D J=Vy p(z,y) .

Let the domain of the model M be the integers Z, and let the interpre-
taion of p be the usual ordering on the integers,

IL(p)(m,n) if m2>2n

for all m,n € Z. Since > is a transitive and total order on Z the antecedents
of the implication in the formula are true. But since there is not largest
integer, the consequent of the implication is false. So M does not satisfy the
formula.
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Problem 4 [20 points]. Let & = {p1,p2} be a signature consisting of two unary predi-
cate constants. Write down a satisfiable first-order formula, A, without equality over the
signature S such that the domain of any model of A has at least 4 elements.

Elements with different “truth patterns” (cf. Problem Set 5, problem 2)
are distinct. Hence the formula

Az,3z23z33z4[ (p1(z1) A p2(z1))
A (=pi(z2) A pa(22))
A (pr(z3) A —pa(z3))
A (=p1(z4) A —p2(z4))]

does the job.
Problem 5 [40 points]. A 3V-wff is a first-order wff of the form
Az, ...3z,Vy; ...Vyn B
where B is a quantifier free wif. Similarly, a V3-wff is of the form
Vzi...Vz,3y;...3y. B .

(a) [10 points] Show that the validity problem for V3 wffs is many-one reducible to the
unsatisfiability problem for 3V wifs.

A wif is valid iff its negation is unsatisfiable, and the negation of a V3-
wif is (equivalent to) 3V-wff. The function mapping a V3-wff A to a IV-wif
equivalent to —A is computable. Our many-one reduction consists of this
function.

(b) (15 points] Let A be the wif

Jz13zVy1 Vyo [p(21, Y2, 1) A (Y2, T2, Y1)]

Exhibit all the ground instances of the Skolemized form of A. (Note: In the special
case of Skolemizing an 3z preceded by no universal quantifiers, one introduces zero-
ary function constants; that is, individual constants c;).

The Skolemized form of A is

Vy1Vy2 [p(Czys Y2, Y1) A 2P(Y25 Cop0 Y1) -
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The ground terms are ¢, and ¢,,. Substituting these in all possible ways
for y; and y, yields four ground instances:

(1) P(Ca1s€a1y€a1) A P(Cays Cazs Cay)
(2) Plezyy €y o) A P(Czy5 €y Cay)
(3)  P(CzysCay5€23) A —P(C2yyCassy Caz)
(4)  P(Cz1sCaz5€23) A 7P(C2z5 €2z Crs)

(c) [15 points] Use the ground instances of part (b) to conclude that —A is valid.

—A is valid iff A is unsatisfiable. By Herbrand’s theorem, A is unsatis-
fiable iff the conjunction of the four ground instances of part (b) is propo-
sitionally unsatisfiable. This is indeed the case because the conjunction of
the ground instances (1) and (2) includes the propositionally unsatisfiable
pair

ﬂp(c-‘lu ’ c-‘l:z, cn) A p(C,,l ’ czz, czl) .
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Problem Set 7

Problem 1. Prove the validity problem for V3-wffs without function symbols is decidable.
(Hint: Generalize the last problem on Quiz 2.)

Problem 2.

(a) Let A range over second-order wifs with signature {+, *,=}. Show that it is decidable
whether (Z3,+,*) |= A, where Z5 denotes the integers modulo 3.

(b) Generalize part (a) to conclude that

{(B,n) | B is a second-order wff (with any signature), n.> 0,
and B has a model whose domain is of size n }

is decidable.

Problem 3. Let T be (an infinite) set of first-order wifs. Let M od(T) be the set of models
of (every formula in) T,

Mod(T) = {M | M Aforall Ac T} .

Show that Mod(T) # {M | the domain of M is finite}.
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Problem Set 8

Problem 1. Let F be the flowchart schema of Figure 1.

4)

(z1,22) — (f(xl‘), f(z2))

Gl ™)
E

6)

72— fz1) '

Figure 1: The flowchart schema F

The edges of the flowchart F' are numbered so that we can refer to a path in F by the
sequence of numbers of the edges that constitute it. The following table illustrates the
construction of the formulas Sgp.e. Fill in the blank entries of the table.

Path (p) T 2 SFp

A I Ts true

1 T T true

1,3 2 s —q(z1,3)

1,3,4 f(xl) f($2) ’WQ((L'l, 1:2)

1,3,4,2 f(z1) | f(=2) | ~q(z1, 22) N platFezD)
1,3,4,2,6 q,c,cw\,fc#-ﬂ
1,3,4,2,6,7

1,3,4,2,6,7,3

1,3,4,2,6,7,3,4

1,3,4,2,6,7,3,4,2

1,3,4,2,6,7,3,4,2,5
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Problem 2. Let F be the flowchart schema of Figure 2.

( START )

Figure 2: The flowchart schema F

We say that a wif A ezpresses divergence of F iff for all interpretations 7,
Ik A iff F underZ does not halt.

(a) Write down a second-order wif which expresses divergence of F, and explain your
answer.

(b) For each n > 0, let A, be the wif
~p(f(@) A-p(f (@) A ... A-p(f*(2))

where f"(z) abbreviates the term

f(...(f(=))...)

(f°(z) is z). Suppose A is a wif which expresses divergence of F. Show that the set
of formulas

{-~4}u {4, |n 20}
is finitely satisfiable but not satisfiable.

(c¢) Conclude from part (b) that there is no first-order wif which expresses divergence of ™
F.
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Problem 3. In this problem we assume for simplicity that wifs and flowchart schemes
are without the equality symbol. We call a first-order wif a ¥, wif if it is of the form

dz,...dz, 4
where A is quantifier-free.

(a) Use Herbrand’s theorem to show that the satisfiability problem for closed £, wffs is
decidable.

(b) Conclude from (a) that the validity problem for quantifier-free first-order wifs is
decidable.

(c) We showed in class that given a flowchart schema F' and an integer n > 0 one can
effectively find a quantifier-free first-order wff Sr, with the property that for any
interpretation 7,

I Srn if F under T halts in exactly n steps .
Use this and part (b) to show that

{(F,n) | the flowchart schema F halts in < n steps
under all interpretations 7 }

is decidable.
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Problem Set 8 Solutions

Problem 1. Let F be the flowchart schema of Figure 1.

(a4

(fcl,xz) - (f(-’ﬂl), f(fcz))

The edges of the flowchart F' are numbered so that we can refer to a path in F' by the
sequence of numbers of the edges that constitute it. The following table illustrates the

plg(z2)) )

(€)

!
Ty — f(x1)

Figure 1: The flowchart schema F

construction of the formulas Sr;pq:4. Fill in the blank entries of the table.

The completed table is as follows.

Path (p) z, T, SF;p

A T T true

1 ) z; SF.a A true

1,3 ) z; Sri1 A oq(z1, x2)

1) 3a4 f(xl) f(x2) SF;1-3

1,3,4,2 f(z1) | f(z2) | Sri134 A g(f(21), f(z2))
1,3a4a2a6 f(zl) f(zz) SF;1,3_4'2/\‘1p(g(f($2)))
113a4a216a7 f(zl) fz(xl) SF;1,3,4,2,6

113a412a617a3 f(ml) fz(xl) SF;1,3,4.2.6,7A _‘Q(f(ml)a f2(331))
1,3,4,2,6,7,3,4 A=) | £(=1) | SFi13,4,267,3
1,3,4,2,6,7,3,4,2 | f2(z1) | f2(=1) | Srin8426734A q(f2(21), f2(21))
1a3a4a 2’ 6a 7a3a4a2,5 fz(zl) fs(xl) SF;1y3,4,2,6,7,3,4,2Ap(g(fa(zl)))

Handout 24
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Problem 2. Let F be the flowchart schema of Figure 2.

2]
)"
y — f(y)

Figure 2: The flowchart schema F'

We say that a wif A ezpresses divergence of F iff for all interpretations Z,
Ik A iff F under 7 does not halt .

(a) Write down a second-order wif which expresses divergence of F, and explain your
answer.

Let A be the second-order wif 3Q B where B is
Q(z) AVY[Q(y) O QUfF(¥)] AVy[Q(y) D —p(y)] -

We claim that A expresses divergence of F. For suppose F' does not halt
under Z. This means that for all n > 0 it is the case that

I |=-p(f*(2)) -

So
IR~ {(f"(=Nr In20} =B,
and hence T = A.
Conversely suppose Z = ((D, I.),I,) = A. So there is a D’ C D such
that
Z[Q— D' E=B.
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By definition of B it is the case that
{(f"@PzIn20}C D

and
Ily = d] = -p(y)
for alld € D'. So
Ily ~ d] = —p(y)
for all d € {(f™(z))z | n = 0}. That is,
T = -p(f*(z))

for all n > 0. So F does not halt under 7.
(b) For each n > 0, let A, be the wif
=p(f°(2)) A ~p(f(z)) A ... A =p(f*(2)) ,

where f"(z) abbreviates the term

f(..(f(z))...)

(f°(z) is z). Suppose A is a wif which expresses divergence of F. Show that the set
of formulas

{-A}u{4n|n >0}
is finitely satisfiable but not satisfiable.

To show that {-A} U {A, | n > 0} is finitely satisfiable it suffices to
show that for each ¢ > 0 there is an interpretation I* such that I* =
{-A}U {A. | 0 < n < i}. We define T to be the interpretaion ((N, I}), I})
where

e Ii(f) is the succesor function.
o Ii(p)(k) =trueiff k =i+ 1.
e Ii(z)=0.

Clearly I = A, for each 0 < n < i. But I' | p(f*!(z)) so F halts
under Z. So I* = - A.

The set {~A} U {A, | n > 0} is clearly unsatisfiable. For if T = A,, for
each n > 0 then F' does not halt under Z. So by definition of A it must be
the case that T | A.

(c) Conclude from part (b) that there is no first-order wif which expresses divergence of
F.

If the A of part (b) were a first-order wif then {-A} U {4, | n > 0}
would be satisfiable by the compactness theorem, which is a contradiction. -



4 6.044J/18.423J Handout 24: Problem Set 8 Solutions

Problem 3. In this problem we assume for simplicity that wifs and flowchart schemes

are without the equality symbol. We call a first-order wif a £, wif if it is of the form
3z,...3z, A

where A is quantifier-free.

(a) Use Herbrand’s theorem to show that the satisfiability problem for closed T, wifs is
decidable.

Skolemizing a closed £, wif 3z,...3z, A yields the quantifier-free wff
Ac;,...,cn

T yeeny TN

where the c; are new 0-ary function constants. There is only one ground
instance, so Herbrand’s procedure terminates.

(b) Conclude from (a) that the validity problem for quantifier-free first-order wffs is
decidable.

A quantifier-free wif is valid iff the negation of its universal closure
is unsatisfiable. The latter wif is a £, closed wiff whose satisfiability is
decidable by part (a).

(c) We showed in class that given a flowchart schema F' and an integer n > 0 one can
effectively find a quantifier-free first-order wiff Sr., with the property that for any
interpretation Z,

T = Sr;n iff  F under 7 halts in exactly n steps .

Use this and part (b) to show that

{(F,n) | the flowchart schema F halts in < n steps
under all interpretations Z }

is decidable.
For any interpreation Z,
F haltsin <nstepsunderZ if ITESroV...VSra.

Thus F halts in < n steps under all interpretations iff the wif Sp.o V...V
Sr.n 18 valid. Since this wif is quantifier free, its validity is decidable by
part (b).
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Problem Set 7 Solutions

Problem 1. Prove the validity problem for V3-wffs without function symbols is decidable.
(Hint: Generalize the last problem on Quiz 2.)

Let A be a V3-wif without function symbols. The negation of its universal
closure is a 3V closed wif

dz,...3z,Vy ...Vym B

without function symbols which is unsatisfiable iff A is valid. Skolemizing
this wif introduces new constants c,,...cs,, and since there are no function
symbols these are the only ground terms. The Skolemized form thus has not
more than n™ ground instances. Since the number of ground instances is
finite, Herbrand’s procedure terminates and says whether or not this wif is
satisfiable.

Problem 2.

(a) Let A range over second-order wffs with signature {+, *,=}. Show that it is decidable
whether Z = (Z3, +, *) |= A, where Z; denotes the integers modulo 3.

The structure Z is finite. Given any formula A we can decide whether
or not Z = A by an exhaustive search through all possibilities for the
quantified variables. A more formal argument would specify a recursive
algorithm based on the inductive definition of the formula.

(b) Generalize part (a) to conclude that

{(B,n) | B is a second-order wff (with any signature), n > 0,
and B has a model whose domain is of size n }

is decidable.

Given (B,n) let S be the signature consisting of all the function and
predicate constants occuring in B. There are only finitely many (upto iso-
morphism) different models over this finite signature which have a domain
of size n, and we can systematically genereate these models (i.e. generate
a model from each isomorphism class) and test for each, using the method
of part (a), whether or not they satisfy A.



2 6.044J/18.423J Handout 25: Problem Set 7 Solutions

Problem 3. Let T be (an infinite) set of first-order wifs. Let Mod(T') be the set of models
of (every formula in) T,

Mod(T)={M | MEAforall A€ T}.
Show that Mod(T) # {M | the domain of M is finite}.

Let
F ={M | the domain of M is finite} .

For each n > 1 let ¢, be the (closed) wif
3z,...3z, [/\‘,#z,- # zj]
which says that the domain has at least n elements. Let
S=TU{oa|n=1}.
Claim 1. If # C Mod(T) then S is finitely satisfiable.

Proof: We wish to show that every finite subset of S has a model. For this
it suffices to show that for each ¢ > 1 the set S; = TU{on |1 < n < ¢}
has a model. By assumption any model with finite domain is a model of T.
Choose an M € F whose domain has > i elements. Then M = S;. ®

Claim 2. If F C Mod(T) then T has an infinite model.

Proof: By Claim 1 the set S is finitely satisfiable. By the compactness
theorem it has a model M. But M = o, for all n > 1 so the domain of M
must be infinite. And M =T sinceTCS. B

Claim 2 implies that Mod(T) # F.
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6.044J/18.423]: Computability, Programming, and Logic Handout 26
Massachusetts Institute of Technology 17 December 1987

Moster™

Final Exam

Instructions. Do all 8 problems; a total of 200 points is allocated as shown on each
problem. This exam is open book—you may appeal to any results from the text, handouts,
or lectures. In doing a problem, you may also assume the results of any preceding problem
(or problem part) on this exam. You have three hours. Good luck.

Problem 1 [20 points]. [Diagonalization] A language R C {a,b}" is said to separate a
pair of languages A and B iff A C R and B C R. Let d(M) € {a,b}* denote the code of a
Turing machine M as in class notes. Let

K, ={M | M on input d(M) outputs a}
Ky ={M | M on input d(M) outputs b} .

Prove that there is no recursive set R separating K, and Kp. (Hint: Consider the machine
M which computes the function

b ifz€R
f(x)={a ifz ¢ R.)

Problem 2 [25 points]. [Post Correspondence Problem] A Post system {(ai, £1),...,(ax, 5}
(cf. Manna, §1-5.4) has an infinite solution iff there is an infinite sequence of integers
t1,%2,... (1 £i; <k for all j > 1) such that

ailat‘g e = ﬂi’}ﬂiQ e

For example, the Post system with one pair {(a,aa)} has no solution in the ordinary (finite)
sense, but does have an infinite solution. Let

IPCP ::= {S| S is a Post system with an infinite solution}.

(a) [5 points] Briefly explain why, in Manna’s reduction of the halting problem for Post
machines to PCP, if the machine diverges then the Post system Manna constructs
has an infinite solution.

(b) [20 points] Show that IPCP is not r.e. (Hint: Slightly modify Manna’s construction
to reduce the complement of the halting problem for Post machines to IPCP.)
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Problem 3 [25 points]. [Semigroup Word Problems] Consider semigroup terms and in-
terpretations over the alphabet {a, b} e=mwerds-infab}™ (cf. Handout 15). The core of
a semigroup interpretation Z is {Z(u) | u € {a,b}*}. A set of semigroup equations is
degenerate iff the core of every interpetation which satisfies the equations has exactly one
element. Let

DG = {£ | € is a finite, degenerate set of semigroup equations}

Prove that DG is r.e. (Hint: Use Completeness.)

Sequence logic is an extension of first-order logic in which there are two kinds of
variables: individual (first-order) variables z,y, z,... which refer as usual to elements of
the domain, and sequence variables, X,Y, Z, ... which refer to finite sequences of elements
of the domain; there will also be first-order terms ¢ and sequence terms T. The definitions
are precisely what you might expect, but to avoid doubts we now spell them out in more
detail.

For any first-order signature, the terms and wifs of sequence logic (s-wff’s) are defined
by the following gra.mmar-ueina_\lith three additional symbols =, -, mkseq.

t := ... first-order terms...
T ::= T.T|mkseq(t) | X
atf ::= ...first-order atomic formulas... |T =T

Au= atf|~A|AANA|Vz.A|VX. A

A model in sequence logic is simply a first-order model. Valuation functions, however,
assign values to sequence variables as well as to individual variables. Namely, let

D* = {(dl,...,dn) | dl,...,dn € D,n > 0}
be the set of finite sequences of elements from a set D. Then

Deflnition 1. A sequence valuation function over a model M with domain D is a function
I, which assigns an element of D to each individual variable and an element of D* to each
sequence variable, i.e., I,(z) € D and I,(X) € D*. A sequence interpretation I is a pair
(M, I,) where M is a model and I, is a sequence valuation function over M.

The meaning of sequence terms in a sequence interpretation 7 = ((B54=3, I,,) is de-
fined as in first-order logic with the additional feature that - is interpreted as concatenation,
., of sequences and mkseq is interpreted as the function which promotes an element to the
sequence of length one consisting of just this element. That is,

o (t)r is defined exactly as in first-order logic.
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o (X)r=I(X).
o (') =(T)r (T7)1.

o (mkseq(t))r = ((t)1)

Satisfaction over a sequence interpretation Z is then defined as in first-order logic with the
addition that the symbol = is interpreted as equality of sequences:

¢ T = A for a first-order atf A is defined exactly as in first-order logic.
o IETI =T, iff (T)r = (T2)z.
e IE-A, ITEAAB, and 7 }= Vz.A are defined exactly as in first-order logic.

o 7T = VX.Aiff for all d* € D* it is the case that Z[X — d*] = 4.

Abusing notation, we write () instead of mkseq(t) in s-wff’s. We also use the other
logical connectives (D, etc.) and quantifiers 3z and 3X which can be expressed in terms
of the connectives above in the usual way. For example, the s-wiff

Vzy,z2, X1, Xs. ({21)- Xy = (22)-X3) D (21 = 22) A (X1 = X3)

asserts that every sequence which has a first element has a unique first and rest. This s-wif
is valid in all models.

Problem 4 [20 points]. [Simple wff’s and Compactness]

(a) [3 points] Write an s-wif whose only free variable is X and whose meaning is that X

is the empty sequence A € D*. (Remember that no constant denoting A appears in
s-wif’s.)

(b) [3 points] Write an s-wff whose only free variables are z and X, and whose meaning
is that z occurs in X.

(c) [4 points] Write an s-wff which is valid in precisely those models with finite (non)\
empty) domain.

(d) [10 points] State precisely and explain the conclusion that sequence logic does not
satisfy the Compactness Property.

Problem 5 [25 points]. [Incompleteness]
Let Th({a,b}*) be the first-order wif’s valid over the structure ({a,b}*,a,b,-) of
strings of a’s and b’s under concatenation. Let s- Valid be the set of valid s-wif’s.

(a) (20 points] Show that Th({a,b}") <., s-Valid.

(b) [5 points] Conclude a “Gédel’s Incompleteness” Theorem for sequence logic.
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Sequence while program schemes (swps’s) are while program schemes extended to
include sequence variables. That is, swps’s are while program schemes with sequence
assignment statements of the form X := T in addition to ordinary assignment statements
of the form z := t. Tests in swps’s are quantifier-free s-wffs. We also allow sequence
assignment statements of the form X := e whose effect is defined to be setting X to the
empty sequence, A € D*. For example, if X is a sequence of a’s, then the following swps
has the effect of setting ¥ equal to X and z equal to a or b depending on the parity of the
length of X.

Y:i=¢€ z:=a;
while Y # X do

Y := (a).Y;

ifY = X then z:=1b else Y:= (a)-Y fi
od

Problem 6 [25 points]. [Induction on Terms and While Program Schemes] This problem
explains why the “extra” sequence assignment statement X := € is needed in swps’s. A
sequence interpretation T is A-free iff I,(X) # A for all X.

(a) [10 points] Prove that if T is A-free, then (T)r # A for all sequence terms T.
(b) [15 points] Conclude that there is no swps without the constant € which halts with X

equal to A in all interpretations.

Problem 7 [30 points]. [Hoare Logic] Let W be the swps given above. Use the axioms
and rules of Hoare logic, extended to allow s-wff’s as pre- and post-conditions, to prove
the partial correctness assertion

{true}W{3Z2.(X = Z.2Z) = (z = a)}

Problem 8 [30 points]. [While Schemes and Computability] Let Z, be the integers mod n
under addition, and let Zy be the valuation under which all first-order variables are zero
and all sequence variables are A. In this problem we consider swps’s whose only first-order
symbols are 0,1, 4+, =. Define spectrum(W) for a swps W to be

{n > 1| W halts started in (Z,,70)} .
(a) [5 points] Explain why spectrum(W) is r.e. for every swps W.

(b) [10 points] Exhibit a swps which, for all n > 1, halts under interpretation (Z,, 7o)
with variable X equal to a sequence of n zeroes.

(c) [15 points] Sketch an argument demonstrating that every r.e. subset of {n | n > 1}
is the spectrum of some swps.
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6.0447/18.423] (Fall 1987)
LECTURE SUMMARY

Fri, 9/11/87 Overview: computability and logic.
Mon, 9/14/87 Overview: logic and logic of programs.
Wed, 9/16/87 Turing Machines: definitions and examples.

Fri, 9/18/87 Multi-Turing machines, systolic arrays, Post machines,
Simulation Thesis.

Mon, 9/21/87 Simulation Thesis, RAMs; Defintion of Turing accept-
able / recursive sets; Thm: Recursive iff r.e and co-r.e.

Wed, 9/23/87 Coding into strings; Halting Problem is r.e. not recur-
sive.

Fri, 9/25/87 Diagonalization and Countability: Cantor’s theorem.

Mon, 9/28/87 Computable functions; Thm: r.e. iff range of partial
computable function; Definition of <,,; Halting Problem <,, Blank
Tape Halting problem.

Wed, 9/30/87 Basic properties of <,; Rice’s Theorem: statement
and discussion.

Fri, 10/2/87 Rice’s Theorem: proof; Thue / Semi-Thue system deriv-
ability problem: statement.

Mon, 10/5/87 There exist non r.e. non co-r.e. sets: counting argu-
ment; Undecidability of the semi-Thue system derivability problem.

Wed, 10/7/87 Undecidability of the Thue-system derivability prob-
lem.

QUIZ I (EVENING)

Fri, 10/9/87 Post-Correspondance, Matrix mortality.
ADD DATE
Mon, 10/12/87 NO CLASS Columbus holiday



14.

15.
16.
17.
18.
19.

20.
21.

22.
23.

24.

25.

26.

27.

28.

Wed, 10/14/87 Thue Systems and semigroups; Completeness theo-
rem: statement.

Fri, 10/16/87 Completeness theorem: proof and corollaries.

Mon, 10/19/87 Predicate calculus: definitions.

Wed, 10/21/87 Predicate calculus: definitions; validity problem.

Fri, 10/23/87 Undecidability of the validities of the predicate calculus.

Mon, 10/26/87 Expressive power of the second-order predicate calcu-
lus; Fin; Overview of logic: completeness and incompleteness.

Wed, 10/28/87 Farin; First-order theory of strings is not r.e.

Fri, 10/30/87 Herbrand’s procedures: eciuisatisﬁability and equiva-
lene, Prenex form.

Mon, 11/2/87 Every wif is equivalent to a wif in Prenex form: proof.

Wed, 11/4/87 Skolem form; Herbrand’s theorem: statement and ex-
planation.

Fri, 11/6/87 Towards the proof of Herbrand’s theorem: Konig's lemma
and propositional compactness.

Mon, 11/9/87 Compacthess theorem of first-order logic; Non-standard
models of arithmatic.

QUIZ II (EVENING)
Wed, 11/11/87 NO CLASS Veterans Day holiday

Fri, 11/13/87 Complete axiom systems for first-order logic, soundness
and completeness theorems.

Mon, 11/16/87 Overview of the proof of completeness: Henkinaza-
tion, complete theories.

Wed, 11/18/87 Flowchart Schemas.



29.

30.
31.

32.

33.

34.
35.
36.

Fri, 11/20/87 Park’s lemma; K,<,,{F'|there is an T such that F' terminates in T}.

DROP DATE
Mon, 11/23/87 Flowchart scheme equivalence is not r.e.

Wed, 11/25/87 While program schemes and their structured opera-
tional semantics.

Fri, 11/27/87 NO CLASS Thanksgiving day holiday

Mon, 11/30/87 Equivalence of flowcharts and while programs; dy-
namic logic.

Wed, 12/2/87 Floyd-Hoare logic, partial correctness; concatenation
theory completeness of Hoare logic.

Fri, 12/4/87 Proof of the above, including expressiveness lemma.
Mon, 12/7/87 Resolution theorem proving.

Wed, 12/9/87 Recursive function schemes.
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6.044J/18.423J: Computability, Programming, and Logic Handout 26
Massachusetts Institute of Technology 17 December 1987

Final Exam

Instructions. Do all 8 problems; a total of 200 points is allocated as shown on each
problem. This exam is open book—you may appeal to any results from the text, handouts,
or lectures. In doing a problem, you may also assume the results of any preceding problem
(or problem part) on this exam. You have three hours. Good luck.

Problem 1 [20 points]. [Diagonalization] A language R C {a,b}" is said to separate a
pair of languages A and B iff A C R and B C R. Let d(M) € {a,b}* denote the code of a
Turing machine M as in class notes. Let

K, ={M | M on input d(M) outputs a}
Ky ={M | M on input d(M) outputs b} .

Prove that there is no recursive set R separating K, and Ky. (Hint: Consider the machine
M which computes the function

b ifreR
f(x)={a ifzgR.)

Problem 2 (25 points]. [Post Correspondence Problem] A Post system {(a1, £1), ..., (@, 8x)}
(cf. Manna, §1-5.4) has an infinite solution iff there is an infinite sequence of integers
t1,82,... (1 £1; < k for all § 2> 1) such that

a‘ila‘ia “ e == ﬂil,@ig * e

For example, the Post system with one pair {(a, aa)} has no solution in the ordinary (finite)
sense, but does have an infinite solution. Let

IPCP :={S | S is a Post system with an infinite solution}.

(a) [5 points] Briefly explain why, in Manna'’s reduction of the halting problem for Post
machines to PCP, if the machine diverges then the Post system Manna constructs
has an infinite solution.

(b) [20 points] Show that IPCP is not r.e. (Hint: Slightly modify Manna’s construction
to reduce the complement of the halting problem for Post machines to IPCP.)
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Problem 3 [25 points]. [Semigroup Word Problems] Consider semigroup terms and in-

terpretations over the alphabet {a,b}, i.e., wordsin {a,b}" (cf. Handout 15). The core of

a semigroup interpretation Z is {Z(u) € S | u € {a,b}*}. A set of semigroup equations is

degenerate iff the core of every interpetation which satisfies the equations has exactly one
. element. Let

DG = {£ | € is a finite, degenerate set of semigroup equations}

Prove that DG is r.e. (Hint: Use Completeness.)

Sequence logic is an extension of first-order logic in which there are two kinds of
variables: individual (first-order) variables z,y, z,... which refer as usual to elements of
the domain, and sequence variables, X,Y, Z, ... which refer to finite sequences of elements
of the domain; there will also be first-order terms ¢ and sequence terms T'. The definitions
are precisely what you might expect, but to avoid doubts we now spell them out in more
detail.

For any first-order signature, the terms and wiffs of sequence logic (s-wff’s) are defined
by the following grammar using with three additional symbols =, -, mkseq.

t:= ...first-order terms...
T:= T.T|mkseq(t)|X

atf := ...first-order atomic formulas... |T =T
Au= atf|"A|AANA|Vz. A|VX. A

A model in sequence logic is simply a first-order model. Valuation functions, however,
assign values to sequence variables as well as to individual variables. Namely, let

D* = {(dl,...,dn> ] dl,...,dn € D,n Z O}
be the set of finite sequences of elements from a set D. Then

Deflnition 1. A sequence valuation function over a model M with domain D is a function
I, which assigns an element of D to each individual variable and an element of D* to each
sequence variable, i.e., I,(z) € D and I,(X) € D*. A sequence interpretation I is a pair
(M, I,) where M is a model and I, is a sequence valuation function over M.

The meaning of sequence terms in a sequence interpretation Z = ((D, I..), I,) is de-
fined as in first-order logic with the additional feature that - is interpreted as concatenation,
-, of sequences and mkseq is interpreted as the function which promotes an element to the
sequence of length one consisting of just this element. That is,

o (t)r is defined exactly as in first-order logic.
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o (X)r=I,(X). ot
o (I1'T)r=(T)r (T2)s. o
o (mkseq(?))r = ((t)r)

Satisfaction over a sequence interpretation Z is then defined as in first-order logic with the
addition that the symbol = is interpreted as equality of sequences:

e 7 k= A for a first-order atf A is defined exactly as in first-order logic.
] I # T1 = Tg iff (T1 )1’ = (Tg)l’.
e TE=-A,TE AAB,and T |=Vz.A are defined exactly as in first-order logic.

o T EVX.Aiff for all d* € D* it is the case that Z[X — d*] &= A.

Abusing notation, we write (¢) instead of mkseq(?) in s-wff’s. We also use the other
logical connectives (D, etc.) and quantifiers 3z and 3X which can be expressed in terms
of the connectives above in the usual way. For example, the s-wif

Vz1, 22, X1, X2 ((1)- X1 = (22):X2) D (71 = 22) A (X1 = X3)

EETSY

asserts that every sequence which has a first element has a unique first and rest. This s-wiff
is valid in all models. ol

Problem 4 [20 points]. [Simple wif’s and Compactness]

(a) [3 points] Write an s-wff whose only free variable is X and whose meaning is that X

is the empty sequence A € D*. (Remember that no constant denoting A appears in
s-wif’s.)

(b) [3 points] Write an s-wff whose only free variables are ¢ and X, and whose meaning
is that z occurs in X.

(c) [4 points] Write an s-wff which is valid in precisely those models with finite (non-
empty) domain. .

(d) [10 points] State precisely and explain the conclusion that sequence logic doés not
satisfy the Compactness Property.

Problem 5 {25 points]. [Incompleteness)
Let Th({a,b}*) be the first-order wif’s valid over the structure ({a,b}*,a,b,-) of
strings of a’s and b’s under concatenation. Let s- Valid be the set of valid s-wff’s. ... -

(a) [20 points] Show that Th({a,b}*) <n s-Valid.

(b) [5 points] Conclude a “Godel’s Incompleteness” Theorem for sequence logic. *
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Sequence while program schemes (swps’s) are while program schemes extended to
include sequence variables. That is, swps’s are while program schemes with sequence
assignment statements of the form X := T in addition to ordinary assignment statements
of the form z := t. Tests in swps’s are quantifier-free s-wffs. We also allow sequence
assignment statements of the form X := e whose effect is defined to be setting X to the

~empty sequence, A € D*. For example, if X is a sequence of a’s, then the following swps
has the effect of setting Y equal to X and z equal to a or b depending on the parity of the
length of X.

Yi=¢ z:=a;
while Y # X do

Y:= (a)-Y;

ifY = X thenz:=b else Y:= (a)-Y fi
od

Problem 6 [25 points]. [Induction on Terms and While Program Schemes] This problem
explains why the “extra” sequence assignment statement X := € is needed in swps’s. A
sequence interpretation 7 is A-free iff I,(X) # A for all X.

(a) [10 points] Prove that if Z is A-free, then (T)r # A for all sequence terms T.
(b) [15 points] Conclude that there is no swps without the constant e which halts with X

equal to A in all interpretations.

Problem 7 [30 points]. [Hoare Logic] Let W be the swps given above. Use the axioms
“and rules of Hoare logic, extended to allow s-wff’s as pre- and post-conditions, to prove
the partial correctness assertion

{true}W{3Z.(X = Z-2) = (z = a)}

Problem 8 (30 points]. {While Schemes and Computability] Let 2, be the integers mod n
under addition, and let Zy be the valuation under which all first-order variables are zero
and all sequence variables are A. In this problem we consider swps’s whose only first-order
symbols are 0,1, +,=. Define spectrum(W) for a swps W to be

{n > 1| W halts started in (2,,Z5)} .
(a) [5 points] Explain why spectrum(W) is r.e. for every swps W.

(b) [10 points] Exhibit a swps which, for all n > 1, halts under interpretation (Z,,Z)
with variable X equal to a sequence of n zeroes.

(c) [15 points] Sketch an argument demonstrating that every r.e. subset of {n | n > 1}
is the spectrum of some swps.





