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1 Introduction

The purpose of todays lecture is to explore the landscape of PCPs. In particular three constructions of
Dinur, Raz and H̊astad will be surveyed.

2 Recap from previous lectures

2.1 The PCP class

A language L is in PCPc,s(r, q) if there exists a verifier V such that

• If x ∈ L there exists a proof π, such that V accepts with probability c(n).

• If x 6∈ L then for all proofs π, V accepts with probability at most s(n).

2.2 Adaptive and non–adaptive verifiers

One distinguishes between adaptive and non–adaptive verifiers. For adaptive verifier its ith query can depend
on “the past” i.e. on the previous queries. For non–adaptive verifiers, the positions in the proof to be queried
should be read simultaneously.

By definition adaptive verifiers are stronger than non–adaptive ones. An adaptive verifiers decision of which
position to query next (given the past), may be represented as a decision tree, and therefore by querying
all nodes at once, an adaptive verifier with q queries can be converted into a non–adaptive verifier using 2q

queries.

Though less powerful, the non–adaptive verifiers have the advantage of being simpler to reason about and
in fact the best known PCP constructions have non–adaptive verifiers. However the two types of verifiers
really have different properties as the combination of the following results show. H̊astad in [H̊as01] and
Guruswami, Lewin, Sudan and Trevisan in [GLST98] shows that

NP ⊆ PCP1,0.51 [O(log n), 3] ,

which can be compared to a result of Trevisan and Zwick

NAPCP1,0.51(O(log n, 3) ⊆ P.

Here NAPCPc,s(r, q) denotes the class of languages that has non–adaptive PCP verifiers.

2.3 Generalized graph coloring

Let G with vertex set V and edges E ⊆ V t where t is an integer. Given k colors and constraints
{πe : {1, . . . , k}t → {0, 1}}e∈E , the gap–generalized hypergraph coloring problem GGHCc,s(t, k) is to find
an assignment of colors A : V → {1, . . . , k} satisfying the constraints. UNSAT(G) is the minimal fraction of
unsatisfied edges for any assignment of colors.
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For a given graph G, one may try to separate the two cases UNSAT(G) ≤ 1− c and UNSAT(G) ≥ 1−s, and
this establishes a connection between hypergraph coloring and PCPs: To a proof one associates a hypergraph
whose vertices are the bits of the proof and the hyperedges are queries. A proof can then be thought of as a
coloring of the hypergraph, and the checks done by the verifier, as checking whether certain edge constraints
πe are satisfied. One can prove that

GGHCc,s(t, k) ⊆ NAPCPc,s(O(log n), t log k)
NAPCPc,s(log n, q) ⊆ GGHCc,s(q, 2)

Thus hypergraph coloring problems may be translated to PCPs and vice versa, with appropriate care in the
choice of parameters.

2.4 Hypergraph coloring and coloring of (ordinary) bipartite graphs

Generalized hypergraph coloring can be reduced to coloring ordinary (bipartite) graphs, at the expense of
having to deal with more colors, more specifically

GGHC1,1−ε(t, k) ≤ GeneralizedGraphColoring1,1− ε
t
(kt).

This is done as follows: For a t–regular hypergraph G = (V,E) with constraints πe, construct the ordinary
bipartite graph G′ as follows: Let the left vertex set of G′ be V and the right vertex set be E and connect
a pair of vertices (v, e) in G′ if v ∈ e in the original graph G. The constraint on G′ are now on kt colors
and are saying that the coloring of G′ should be “consistent” with the constraints on G. More specifically,
an assignment of colors will satisfy the constraint π′(v,e) for an edge (v = vi, e = (v1, . . . , vt)) if the color of
vi and the i–th component of the color of e agree, and if the coloring of e satisfies the constraint πe from
the original graph. A coloring of the hypergraph implies a coloring of the associated bipartite graph, and
so the transformation is consistency preserving. Checking the claim on the soundness is left as an exersice.
The transformation first appeared in [Fortnow, Rompel and Sipser].

3 Dinur’s construction

The main ingredients in Dinur’s proof of the PCP theorem [Din06] are the following two lemmas

Lemma 1 (Amplification Lemma) ∀C∃K, ε such that there is a linear time transformation from

GeneralizedGraphColoring(k)→ GeneralizedGraphColoring(K),

mapping G to G̃ such that

• UNSAT(G) = 0 implies UNSAT(G̃) = 0.

• min{ε, C ·UNSAT(G)} ≤ UNSAT(G̃)

For comprehensibility, one may ignore the appearance of ε in the above lemma, and simply read it as a
statement saying that there is a linear time transformation which amplifies gaps.

Lemma 2 (K–reduction Lemma) ∃δ∀K there is a transformation from GeneralizedGraphColoring(K)
to GeneralizedGraphColoring(k) mapping G to G̃, such that

δ ·UNSAT(G) ≤ UNSAT(G̃).

With these two lemmas at hand, Dinur’s proof consists of combining the parameters (and quantifiers) in the
above statements.

There exists “stronger” versions of the PCP theorem, where more attention is paid to the ingoing constant.
The current state of the art is [Moshkovitz, Raz], which shows that

SAT ∈ PCP1−ε,1/2((1 + o(1)) log2 n, 3).

We will not go into the details of this result, but instead survey other constructions by Raz and H̊astad.
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4 Raz’s construction

Raz’s PCP theorem may be stated as a transformation between two instances of the generalized graph
coloring problem for bipartite graphs.

Theorem 3 ∀s, k∃s̄, such that ∀t it holds that

BipartiteGeneralizedGraphColoringc,s(k) ≤ BipartiteGeneralizedGraphColoringct,s̄t(kt).

Furthermore, if s < 1 then s̄ < 1.

Let G = (V = L ∪ R,E) be a bipartite graph, where L and R denotes the left and right vertex set of
G respectively. The proof of the theorem relies on repeating the graph “t–fold”, by constructing a new
bipartite graph G̃ with left vertex set Lt and right vertex set Rt and connecting two nodes (u1, . . . , ut) ∈ Lt
to (v1, . . . , vt) ∈ Rt if ui and vi are connected in G, for all i. The edge constraints in the new graph are
conjunctions of the edge constraints from G:

π((u1,...,ut),(v1,...,vt)) =
∧
i

π(ui,vi).

This is what gives the exponent t on the consistency parameter in the theorem. The hard part is to bound
the soundness, details of the analysis can be found in a survey by Holstein.

By the way we translated PCPs into graph coloring problems, where the verifier probes a (small) number of
random edges, decreasing soundness is like increasing UNSAT. If s < 1, increasing t makes the soundness go
down exponentially, and therefore one may think of Raz’s result as a parallel to Dinur’s gap amplification
theorem. The main differences are:

• In Dinur’s construction the absolute constant ε bounds how UNSAT increases with repeated transfor-
mations. In contrast, with Raz’s construction the soundness can be made arbitrarily close to 0.

• In Dinur’s transformation the size of the resulting graph is O(n), whereas for Raz’s construction it
grows exponentially with t.

Therefore Dinur’s gap amplification and Raz’s transformation, are not equivalent, but are similar, with
different tradeoffs between soundness and size.

5 H̊astad’s construction

H̊astad’s PCP theorem can again be viewed as a result on generalized graph coloring.

Theorem 4 For all δ > 0 there exists ε > 0 such that

GeneralizedGraphColoring1,δ(K) ≤ GGHC1−ε,1/2(3, 2).

The result is a translation from coloring with many (K) colors to coloring with only 2 colors and thus it
may be viewed as a parallel to Dinur’s K–reduction lemma. The theorem implies that

NP ⊆ PCP1−ε,1/2+ε(O(log n), 3).

The proof of the theorem consists of giving a reduction from bipartite graph coloring with K colors (and
so–called projective constraints) to colorings of 3–regular hypergraphs using only 2 colors. A constraint is
said to be projective if π(u, v) only depends on v, i.e. if it is function of this vertex.

Let f : {1, . . . ,K} → {−1, 1} be a function (here {−1, 1} should be thought of as a bit, and this representation
is chosen to facilitate the analysis using Fourier analysis). The value of the function −f at any point is just
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minus the value of f at the same point. Therefore f and −f may be considered equivalent, and modulo this
“equivalence relation” there are 2K−1 functions from {1, . . . ,K} to {−1, 1}.
From G a new bipartite graph G′ is constructed by expanding each vertex v (both on the left and the right
side) to a cloud of 2K−1 vertices, indexed by (u, f) where f is a function of the above type. One should
think of each cloud U as a function table holding values U [f ] = f(Color(u)), except at the positions with
errors. The verifier will then be checking relations between the functions given by these tables.

The verifier will be asking three questions of the form “what is the value of f(Color(u))?”. It will ask three
such questions on an “edge” between one vertex on the left vertex set and two vertices on the right vertex
set. The edge will be chosen randomly, by first taking (u, f) randomly from the left vertex set, then (v, g)
randomly from the right vertex set and then finally (v, f ◦πe), again from the right set, where πe is the edge
constraint. If the chosen vertices are error–free it will hold that

Color(v, g) · Color(u, f) = Color(v, (f ◦ πe) · g),

and the verifier could use this relation as its “check” on the edge. However, these checks are not quite strong
enough for the verifier. Instead checks of the form

Color(v, g) · Color(u, f) = Color(v, (f ◦ πe) · g · η),

are used, where η : {1, . . . ,K} → {−1, 1} is some noisy function such that η(i) = 1 with high probability
1 − ε and η(i) = −1 with probability ε. This scheme suffices to give the result stated in the theorem. The
analysis of the consistency and soundness parameters relies on Fourier analysis of boolean functions.
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