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Lecture 19

Lecturer: Madhu Sudan Scribe: Alex Arkhipov

1. Review of Last Class

Last class we gave a formulation of Probabilistically Checkable Proofs as a col-
oring of a graph that satis�es certain constraints.

De�nition 1.1. The graph k-coloring problem is as follows:

Given a graph G = (E, V ), does there exist a coloring χ : V →
{1, 2, . . . , k} such that for each (u, v) ∈ E, χ(u) 6= χ(v)?

In generalized graph coloring, each edge restricts the coloring of its endpoints by
an arbitary relation, described by an admissibility function Π.

De�nition 1.2. The generalized k-coloring problem is as follows:

Given a graphG = (E, V,Π), which includes map Π : E×{1, 2, . . . , k}×
{1, 2, . . . , k} → {0, 1}, does there exist a coloring χ : V → {1, 2, . . . , k}
such that for each e = (u, v) ∈ E, Π (e, χ (u) , χ (v)) = 1?

In a coloring χ, we say an edge e = (u, v) is invalid if it does not satisfy the
constraint Π (e, χ (u) , χ (v)) = 1. The unsatis�ability UNSAT(G,χ) is fraction of
invalid edges in G, and the unsatis�ability UNSAT(G) of a graph is the minimum
UNSAT(G,χ) over all colorings χ.

Recall the Lemma that we wished to prove that would allow us to reduce the
number of colors:

Lemma 1.3. There exists a k and δ > 0, so that for any K, there is a reduction
function f from K-coloring instances to k-coloring instances so that for any G and
G̃ = f (G),

• If UNSAT(G) = 0, then UNSAT(G̃) = 0.
• UNSAT(G̃) ≥ δUNSAT(G)

We'll �rst see look at a naive attempt to perform this reduction, and see how it
can lead to unsatis�ability falling by more than a constant factor δ.

1.1. Attempt at reduction from K-coloring to 3-coloring. To illustrate the
obstacle to showing Lemma 1.3, we'll sketch a linear time reduction for standard
K-coloring to standard k-coloring, with k = 3. We'll convert K-coloring instance
G to a 3-coloring instance G̃ by replacing each edge of G with a gadget of G̃ that
encodes the same restriction. However, we'll �nd that if UNSAT (G) = ε, then

UNSAT
(
G̃
)
≤ ε

K , and thus cannot satisfy UNSAT(G̃) ≥ δUNSAT(G) for any

constant δ.
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Figure 1.1. The conversion of a vertex of G to one of G̃. The
vertices are marked with their possible colors.

1.1.1. Construction of G̃. Make three special nodes {r, g, b} and connect them with
edges, so that they must be di�erent colors which we'll label red, green, and blue,
which we will also call the three possible colors of the nodes. We may restrict
the possible colors of a node in G̃ by connecting it to each of {r, g, b} we want to
exclude.

For each node u ∈ G, make K+1 nodes u0, . . . uK in G̃. Restrict them to be each
red or green (by connecting each by an edge to the blue node), and furthermore

restrict u0 to be red and uK to be green. Then, in any coloring of G̃, there is some
�rst node uj that marks a switch from red to green; i.e. the �rst i ∈ {1, . . . ,K} so
that uj−1 is red and uj is green. (We may assume that ui is red for i < j and green
for i ≥ j, as we'll see that allowing additional �switches� won't give any advantage
in coloring the graph). To such a coloring of the ui nodes in G, we associate the
node u ∈ G being colored with color i.

We need to enforce the restriction that for each edge (u, v) ∈ G, u and v have

di�erent colors. Correspondingly in G̃, we put in gadgets to ensure that u and v
don't both switch colors at the same value, that there for no i ∈ {1, . . . ,K} so that
ui−1 is red and ui green, and also vi−1 red and vi is green. To do so, for each i, we
put in a gadget with two additional nodes xuvi and yuvi, which are edge-connected
to each other and to ui−1 and ui, and to vi−1 and vi, respectively.

If both u and v have color j, then both the added node xuv and yuv can't be red
or green, and are forced to be blue, which is disallowed. In any other case, valid
colorings exist for the two added nodes. So, we have encoded the restriction for the
edge (u, v) ∈ G.

1.1.2. Analysis of Reduction. From the construction of G̃, it's easy to see that G̃ is
3-colorable if and only G isK-colorable. How does the unsatis�ability of G compare
to that of G̃?

Suppose the best K-coloring of G̃ fails on d edges, so that UNSAT(G) = d/ |G|
(where the size of a graph is its number of edges). Then, for each invalid edge
(u, v) ∈ G, say with χ(u) = χ(v) = i, we may color the (u, v) edge gadget

in G̃ so that is valid for all but one edge by allowing both xuvi and yuvi to be

blue. So, G̃ fails on only d edges and UNSAT
(
G̃
)
≤ d/

∣∣∣G̃∣∣∣. (It is possible that

UNSAT(G̃) is smaller, if multiple invalid edges in G share a vertex u, illegally col-

oring u0, . . . , uK ∈ G̃ gives only one invalid edge in G̃.) Since
∣∣∣G̃∣∣∣ / |G| = Θ(K),
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Figure 1.2. Each edge of G is repaced by a gadget in G̃ that
enforces the constraint the u and v are di�erent colors by enforcing
the fact that the sequences of colors ui and vi cannot switch at the
same point.

UNSAT(G̃) = O
(

1
K

)
UNSAT(G). So, we fail to produce an at most constant re-

duction of unsatis�ability.
In the hopes of �nding a better reduction, we look at a way to construct expo-

nentially long PCP's that we will use to create a better K-coloring to k-coloring
reduction.

2. Quadratic Equation Solvability

We give a scheme for giving a Probabilistically Checkable Proof of an NP-
complete problem that is exponentially-sized and requires a constant number of
queries. This scheme is due to Arora, Lund, Motwani, Sudan, and Szegedy.

2.1. Problem De�nition. The Quadratic Equation Solvability Problem is like
SAT, in that it asks whether a given formula, consisting of the AND of m clauses,
is satis�able. except each of these clauses may be an arbitrary second-degree poly-
nomial in the variables x1, . . . , xn.

De�nition 2.1. The Quadratic Equation Solvability Problem takes as input a
formula φ of n Boolean variables x1, . . . , xn that is the AND of m clauses that
are degree-2 polynomials p1, . . . , pm of the variables x1, . . . , xn over Z2, and asks
whether φ has a satisfying assignment ā (so that pi(ā) = 0 for each i).

Since in a circuit, we may express the relations given by a AND, OR, and NOT
gates by a quadratic expressions, this problem is at least as hard a circuit-SAT,
and thus NP-hard. It is NP hard, since it's easy to verify a satisfying assignment.

2.2. PCP Scheme. Let Z1 be sets of all homogenous linear polynomials in n vari-
ables x1. . . . , xn, and let Z2 be all homogenous quadratic polynomials, respectively.
The PCP will contain information about a satisfying assignment of the QES for-

mula in the form of two tables: T1 and T2, of size 2n and 2n2
, that are claimed to

be list the values of Z1 and Z2, respectively, on some single satisfying assignment
ā. However, since the prover may cheat and put any values in the tables, to check
that the proof is valid, it is up to the veri�er to see that there exists an ā so that
the following three conditions hold:

(1) For each linear polynomial L, T1 (L) = L (ā).
(2) For each quadratic polynomial Q, Q1 (L) = Q (ā)
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(3) For each of the polynomial clauses Pi, Pi (ā) = 0.

The �rst two check the validity of the tables, and then the third trusts the values
in the tables to be valid (i.e. to contain the value of the state polynomial as ā) in
order to check that the assignment claimed is satisfying.

Since we, as the veri�er, may only make a constant number of queries, we cannot
con�rm these conditions with certainty. So, we need to make a scheme so that if
the QES formula cannot be satis�ed, an adversary making the tables is forced to
commit to a large number of discrepancies that we can catch.

We will show that the following veri�cation algorithm works:

Algorithm 2.2. We veri�cation the PCP in three veri�cation steps, corresponding
to the three properties given above:

(1) Pick L1, L2 ∈ Z1 at random, and check that

T1 (L1) + T1 (L2) = T1 (L1 + L2)

(all computations are modulo 2).
(2)

(a) Pick Q1, Q2 ∈ Z2 at random, and check that

T2 (Q1) + T2 (Q2) = T2 (Q1 +Q2)

.
(b) Pick L1, L2 ∈ Z1 and S ∈ Z2 at random, and check that

T2 (S + L1L2) = T2 (S) + T1 (L1)T1 (L2)

.
(3) Pick r ∈ {0, 1}m at random and let Ar =

∑
rjPj. Write

Ar = Qr + Lr + Cr

with Qr ∈ Z2, Lr ∈ Z1, and C constant. Pick S ∈ Z2 at random and check
that

T2 (Qr + S)− T2 (S) + T1 (Lr) + Cr = 0

.

If any of these checks rejects, then reject. Otherwise, accept.

This scheme uses a constant number of queries (speci�cally ten).
We would like to show the following.

Theorem 2.3. The given veri�cation scheme V has the following properties:

• If φ is satis�able, then for tables T1 and T2 as described, then V returns
Y ES.

• If φ is not satis�able, then for any tables T1 and T2, then V returns Y ES
with probability F ≤ 8

9 .

It should be easy to see that the �rst part is true, since giving tables T1 (L) =
L (ā), Q1 (L) = Q (ā) for a valid satisfying assignment ā will pass the three checks
regardless of the random choices made.

For the remainder of the section, will put a bound on F , the probability that we
are falsely led to accept when φ is not satis�able.
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De�ne δ1 and δ2 be the fraction of entries in T1 for which T1 (L) 6= L (ā) (we'll
call these invalid entries), minimized over all satisfying assignments ā, and let δ2
be fraction of invalid entries of T2.

δ1 = min
ā

[
Pr
L

[T1 (L) 6= L (ā)]
]

δ2 = min
ā

[
Pr
Q

[T2 (Q) 6= Q (ā)]
]

We will also use another discrepancy measure that says how nonlinear T2 is

δ3 = min
(cij)

 Pr
L1,L2

T2 (c11, . . . , cnn) 6=
∑
i,j

cijbij


De�ne F1, F2a, F2b, and F3 to be maximum probability that veri�cations steps

(1), (2a), (2b), and (3), respectively, accept, given that φ has no satisfying assign-
ment. Then, F ≤ F1F2F3. We'll show that F ≤ 8/9 by bounding F1, F2, and F3 in
terms of δ1, δ2, and δ3.

Lemma 2.4. The probability F1 that veri�cation step (1) accepts has F1 ≤ 1− 2
9δ1.

Proof. For any two polynomials L1 and L2, it must be true that (L1 + L2) (ā) =
L1 (ā) + L2 (ā) (taken modulo 2). In the �rst veri�cation step, we check that T1

respects this property on a single instance of two linear functions. By a theorem
that we won't prove, for any table T1 and any ā

Pr
L1,L2

[T1 (L1) + T1 (L2) 6= T1 (L1 + L2)] ≥ 2
9
δ1

So, if the table has at least fraction δ1 invalid entries, this probability that we will
reject is at least 2

9δ1. So, the chance of being fooled F1 ≤ 1− 2
9δ1. �

Lemma 2.5. The probability F2a that veri�cation step (2a) accepts has F2a ≤
1− 2

9δ3.

Proof. As in the veri�cation of (1), check the linearity condition T2 (Q1)+T2 (Q2) =
T2 (Q1 +Q2). If we each Q ∈ Z2 as a matrix of coe�cients (cij), and think of T2

as a function of these coe�cients, the linearity property is satis�ed for all Q1 and
Q2 if and only if the function T2 (c11, . . . , cnn) is a linear function of the coe�cients
(cij), i.e. there exists coe�cients bij so that

Q (ā) =
∑
i,j

cijbij

By the theorem we used without proof in the veri�cation for (1), if T2 does not
satisfy this linearity property for some fraction of entries

δ3 = min
(bij)

 Pr
(cij)∈{0,1}n×n

T2 (c11, . . . , cnn) 6=
∑
i,j

cijbij


, then the probability of us catching the error by the linearity check

Pr
Q1,Q2

[T2 (Q1) + T2 (Q2) 6= T2 (Q1 +Q2)] ≥ 2
9
δ3



19-6

So, the probability this step accepts is

F2a ≤ 1− 2
9
δ3

�

Lemma 2.6. The probability F2b that veri�cation step (2b) accepts has F2b ≤
1− δ2

(
2δ1 + δ3 + 3

4

)
.

Proof. We write out a polynomial Q ∈ Z2 in terms of its coe�cents (cij) as

Q (ā) =
∑
i,j

cijaiaj

Using the coe�cient representation from the veri�cation for (1b), we associate Q
with its matrix of n2 coe�cients C = (cij) so that

Q (ā) =
∑
i,j

cijbij

So, to check that Q is a quadratic polynomial, we need to check that the row vector
ā = (a1, a2, . . . , an) has bij = aiaj for each i, j, or equivalently that the matrix
B = āT ā.

We do this using a well-known probabilistic test of matrix equality by picking two
random (row) vectors x, y ∈ {0, 1}n and checking that xByT = xāT āyT . If matrices
B and āT ā di�er in some entry i, j, then with probability at least 1

4 , xBy
T 6=

xāT āyT , since the equality depends on whether xiyj = 1 or 0, which happen with

probabilities 1/4 and 3/4. The condition xByT =
(
xāT

) (
āyT

)
is equivalent to

Qxy (ā) = Lx (ā)Ly (ā)

where Lx and Ly are linear functions with coe�cients given by x and y, and Qxy

is the quadratic polynomial with cij = xiyj .
We check this by querying the tables, using the indirect query T2 (LxLy + S)−

T2 (S) with random S for T2 (LxLy). The check

T2 (S + L1L2) = T2 (S) + T1 (L1)T1 (L2)

will be false if T2 reports an incorrect value for S+L1L2 or S, which happens with
probability at least δ2, and none of the following problems occur:

• T1 (L1) 6= L1 (ā) (probability δ1)
• T1 (L2) 6= L2 (ā) (probability δ1)
•
∑

i,j cijbij = T2 (c11, . . . , cnn) (probability δ3)
• xByT = xāT āyT (probability 3/4 if B 6= āT ā)

So, the probability F2b of rejecting at this step satis�es

F2b ≤ 1− δ2
(

2δ1 + δ3 +
3
4

)
�

Lemma 2.7. If φ has no satisfying assignment, the probability F3 that veri�cation
step (3) accepts has F3 ≤ 1

2 + δ1 + 2δ2.
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Proof. If φ has no satisfying assignment, then for any ā, Pi (ā) = 1 for some i.
With a constant number of queries, we can't even check whether the tables claim
that Pi = 0 for each of the m polynomials Pi, or even a substantial fraction.
However, we can use a trick from the Razborov-Smolensky proof of the circuit
lower bound of evaluating a random linear combination Ar =

∑
rjpj , which has

Ar (ā) =
∑
rjpj (ā), for random r ∈ {0, 1}m. Since the coe�cient ri of a failing

polynomial Pi with Pi (ā) = 1 is equally likely to be 0 or 1, so

Pr
r

[Ar (ā) = 0] =
1
2

The polynomial Ar may not be homogenous. We can uniquely decompose it as
Ar = Qr + Lr + Cr, with Qr ∈ Z2, Lr ∈ Z1, and Cr constant. Then, checking if
Ar (a) = 0 equates to checking that Qr + Lr + Cr = 0.

We do this by checking whether T2 (Qr + S)− T2 (S) + T1 (Lr) + Cr = 0. Since
Ar (ā) = Qr (ā) + Lr (ā) + Cr (ā) and (Qr + S) (ā) − S (ā) = Qr (ā), if φ is not
satis�able, by union bound

F1 = Pr
r

[T2 (Qr + S)− T2 (S) + T1 (Lr) + Cr 6= 0]

≤ Pr
r

[Ar (ā) = 0] + Pr
r

[T1 (Lr) 6= Lr (ā)] + Pr
r,S

[T2 (Qr + S) 6= (Qr + S) (ā)] + Pr
S

[T2 (S) 6= S (ā)]

=
1
2

+ δ1 + 2δ2.

�

Proof. Note that F ≤ F1F2aF2bF3 (this is an inequality, since in F we have the
restriction of using the same T1 and T2 for all the veri�cation steps). So, from the
Lemmas,

F ≤
([

1− 2
9
δ1

])([
1− 2

9
δ3

])([
1− δ2

(
2δ1 + δ3 +

3
4

)])([
1
2

+ δ1 + 2δ2

])
where, [x] denotes min (x, 1), since each of the probabilities F1, F2a, F2b, F3 are at
most 1. �

A computer-aided calculation of the maximum value F over δ1, δ2, δ3 ∈ [0, 1]
gives a maximum value of 8

9 . This proves the theorem.

3. Next class

Next class, we'll use a PCP scheme like the one shown to create a reduction
from K-coloring to k-coloring which has UNSAT(G̃) ≥ δUNSAT(G) for constant
δ, thus satisfying Lemma 1.3. Proving this Lemma will complete the proof for the
existence of a polynomial-size PCP.


