
6.841 Advanced Complexity Theory April 8, 2009

Lecture 17
Lecturer: Madhu Sudan Scribe: Jean Yang

1 Overview

Last lecture we showed PERM ∈ IP ⇒ #P ∈ IP by constructing an IP protocol involving verifying a
polynomial using a curve. In this lecture we review the method for showing PERM ∈ IP and apply the
method first for showing #SAT ∈ IP and then for showing PSPACE ⊆ IP .

In the second half of lecture we discussed “knowledge,” its definition, and its relationship to crytography
and complexity.

1.1 Administrative notes

• No lecture on Monday.

• Madhu will be away–Swastik will lecture on PCP.

2 Review from last time: #P ∈ IP

We showed that PERM ∈ IP problem using a polynomial construction sequence. A cool part is that this
method would work for any problem that we can deconstruct into a sequence of polynomials, so we can also
apply this method to showing #SAT ∈ IP and, eventually, PSPACE ⊆ IP .

2.1 Polynomial construction sequence

Recall from last lecture that we can compute the permanent in field F using the sequence of n polynomials
P1, P2, . . . , P`−1, P` where Pi is the permanent of an i× i matrix. We have the following properties:

Each polynomial of degree ≤ d
Each polynomial has number of variables ≤ m
P0 is computable in time ≤ t
Pi is computable in time t with oracle for Pi−1 with # calls ≤ w = n

We get the last property from the downward self-reducibility of the permanent: Pn(M) =
∑n
i=1m1iPn−1(Mi).

Given a = (a1, . . . , am) ∈ Fm and b ∈ F, we can prove interactively that P`(a) = b in time polynomial in
`, d,F,m, t, w), provided that |F| is sufficiently large.

We showed in the previous lecture a method for verifying PERM by running a curve through the space
and then asking about a random point on the curve. We can work backwards from Pn−1.

2.2 Typical phase of interaction

We show how to verify the question “Pi(a(i)) = b(i)?” for polynomial Pi in a sequence of polynomials.
To verify Pn(M) = a, we can compute the w inputs M1,M2, . . . ,Mw to use the oracle for Pn−1 so

that we can easily compute Pn(M) from Pn−1(M) . . . Pn−1(Mw). For verification purposes we use a curve
C : Zp → Zvp (where Zvp is our input space) such that C(1) = M1, . . . , C(w) = Mw. Note deg(C) ≤ w
(actually deg(C) = w − 1).

The interaction goes as follows:

• We ask the prover “Pn−1 ◦ C =?”

17-1

• The prover comes back with an answer h with degree ≤ d · w.

• The verifier verifies that “Pn(M) = a” is consistent with Pn−1(Mi) = h(i) by picking a t at random
and verifies Pn−1(C(t)) = h(t).

The interaction looks like this:
“Pi(a(i)) = b(i)?”

Verifier Prover
C,h←− Compute v1 . . . vw s.t. Pi(a(i)) can be computed

from Pi−1(v1 . . . v2). Compute curve C such that
C(j) = vj and h← Pi−1(C(t)).

Verify C(i) = vi.
t0−→

Verify b(i) = fi(h(1) . . . h(w)).
Pick t0 ∈ F at random,
a(i−1) = C(t0); b(i−1) = b(t0).

The notes for last lecture explain why we can verify with high probability. We can keep walking backwards
and verifying until we get to the base case, at which point we’ll know the answer with high probability.

2.3 IP protocol for #SAT

Though we get #P ⊆ IP because PERM is #P -complete, we can show why this is quite clearly with a
similar IP protocol for #SAT . We will also use a similar method for showing PSPACE ⊆ IP .

Theorem 1 Let #3SAT be the number of satisfying clauses of formulae of the form φ = c1 ∧ c2 ∧ . . .∧ cm,
where cj = xi1 ∨ xi2 ∨ xi3 .

#3SAT ∈ IP .

Proof We can write a #3SAT formula naturally as a set of polynomials with the desired polynomial
parameters.

We want a clause ci to be satisfied ⇐⇒ the corresponding polynomial expression is equal to 1, and we
want a formula to be satisfied ⇐⇒ every clause is satisified. To convert φ to a polynomial, we have:

x1 . . . xn → y1 . . . yn, where xi is true ⇐⇒ yi = 1
xi → 1− yi
ci → 1− (1− yi1)(1− yi2)y13 = p̂j
φ → Πj p̂j = p(y1, . . . , yn)

To compute φ, we can go from many variables to few variables by computing each polynomial from the
value of the previous polynomial, looking at only 2 places:

p̂0 = p̂
p̂1 = p̂0(y1, . . . , yn−1, 0) + p̂0(y1, . . . , yn−1, 1)

...
p̂i = p̂i−1(y1, . . . , yn−i, 0) + p̂i−1(y1, . . . , yn−i, 1)

...
p̂n() = p̂n−1(0) + p̂n−1(1)

For an interactive proof for the result of the constant function p̂n, we want walk backwards and ask about
the previous function at two points, drawing a curve (line) between them. We know p0 is of low degree, and
summation does not increase the degree of the interactive proof.

A surprising thing is that we can pick a random value of t–everything works when we set t as arbitrary
integers over some field.

17-2

3 PSPACE ⊆ IP

Now we show a PSPACE computation where we want to compute the last step in a sequence of polynomials.
We show how to take a generic PSPACE computation and produce an IP problem by providing

1. a polynomial construction sequence that, given starting and ending configurations, can determine if
we can get from the starting to ending configuration in a specified number of steps, and

2. a polynomial construction to compute each polynomial in the above sequence while meeting the re-
quirements.

Theorem 2 PSPACE ⊆ IP .

Proof Fix a PSPACE language L and machine M . We want to know if, starting from state c0, we reach
state cf in 2s steps, where we use O(s) space.

We want to build a function Ps(x, y) such that
ps(x = (x1, . . . , xn), y = (x1, . . . , xn)) = 1 if x→ y in 2s steps

= 0 if x, y ∈ {0, 1}s otherwise
To relate this polynomial to something smaller, we can look at the midpoint 2s−1:
ps(x, z) = 1 if x→ z in 2s−1 steps

= 0 otherwise
Note that there is exactly one such z, so we can just sum over the possible z’s:
ps(x, y) =

∑
z∈{0,1}s Ps−1(x, z) ◦ Ps−1(z, y)

We have p0(x, y), . . . , ps(x, y), where p0(x, y) is whether we can get from x → y in one step. The final
question is “p(c0, cf) = 1?”

p0 is a polynomial of low degree (O(s) because we are looking at the product of O(s) ∧ conditions),
exists, and is computable. Each expression of the form ps−1(x, z) ◦ ps−1(z, y) increases the degree of z, but
se sum over all z’s, so the degree does not go up in each iteration! Now we have left to solve the problem of
needing the values of exponentially many things in order to take the sum.

We want to get to pn with the polynomial sequence p0, p1, . . . pn−1, pn, but to do so we have to resolve
the issue that pi needs 2s values of pi−1. We can use the #SAT trick and break up the sum into another
series of polynomials. To compute pn−1(x, z), we can define a new sequence of polynomials

Q0
s(x, z, y) = pn−1(x, z) ◦ pn−1(z, y)

...
Qis(x, z, y) = Qi−1

s (x, (z1, . . . , zs−i, 0), y) +Qi−1
s (x, (z1, . . . , zs−i, 1), y)

At the end, we have Ps = Qss. Let c be the degree in each variable. We have:
degree ≤ 4 · c · s
length ≤ O(s2)
width = 2
time = O(s)
variables ≤ 3s

Thus our sequence is good over every large field.

3.1 Notes on the implications and importance of this result

Previously, the class IP was not thought to be this powerful: there was an assumption that the number of
rounds of interaction would collapse to a constant. The IP problem for the permanent was the first very
counterintuitive proof and triggered a series of other proofs.

17-3

4 (Zero) knowledge

In class we introduced the concept of zero knowledge with the graph isomorphism example and then defined
it more formally using the concept of replacing the verifier with a simulator. The professor’s notes contains
more information about information theory and results in zero knowledge which are not included here.

4.1 Definition by example

Consider the graph isomorphism problem: G ' H, we are asking
∃π : V (G)→ V (H)
π one-to-one

such that x↔ y ⇐⇒ π(x)↔ π(y) in H
For a zero knowledge proof, we want the following properties with respect to the verifier V :

• Completeness. If G0 ' G1 then V must accept w.h.p.

• Soundness. If G0 6' G1 then V must reject w.h.p.

• Zero knowledge. If G0 ' G1 then V must not know isomorphism or learn anything other than this
fact.

Consider the following interactive proof [Goldreich, Micali, Wigderson]:
(G0, G1)

Verifier Prover
H←− b ∈R {0, 1}

π : V (Gb)→ V (Gb), π one-to-one
randomly let H ← π(Gb)

choose b′ ∈ {0, 1} b′−→
π′

←− π′ ← π if b′ = b
π′ ← π ◦ π0 if b = 0, b′ = 1

verify H = π′(Gb′) π′ ← π ◦ π−1 if b = 1, b′ = 0
If G0 ' H, H ' G1, then the prover can easily provide a permutation π′ such that π′(Gb′) = H;

otherwise the prover must count on the verifier choosing b′ = b. The prover will try to cheat when one of
these isomorphisms is missing–in this case the prover has probability 1

2 of getting the correct permutation.
Note that we can repeat the interaction, but the prover will have a new H.

Why did we do this proof when simply providing the isomorphism could have sufficed? The motivation is
from crytography: we want to be able to convince others of facts iwthout revealing additional information.

4.2 Definition of zero knowledge

Anecdote. Micali put problem on problem set to prove that you don’t know anything at the end of the
interaction. Cook aid he didn’t know how to prove he can’t know something. This led Micali, Goldwasser,
and Rackoff to come up with a set of definitions that allow you to show this.

We want to be able to formally define the notion “You learn nothing from the fact that (G0, G1) are
isomorphic.”

We use the concept of a “simulation.” At the end of an interaction, we have a nondeterministic transcript
of the interaction. If the verifier can simulate the interaction by sampling from some distribution without
the prover, then we have a zero knowledge proof.

1. Fix verifier’s random coins R.

2. Transcript is still random variable with distribution DR.

17-4

If the verifier can sample from DR on its own, then verifier gains no knwoledge from prover. The
“simulator” samples from DR.

Simulator for graph isomorphism:
Verifier Simulator

b−→ pick π ∈ Sn
H←− H ← π(Gb)
π←−

We get exactly the same distribution as with a prover! Note, however, that in the graph isomorphism
proof, the fact that H is fixed before the verifier responds is important for convincing the verifier, but it does
not change the distribution of transcripts. The sequence only has convincing power–important for soundness.

4.3 Complexity theory of knowledge

We have the following classes of zero knowldge problems, where PZK ⊆ SZK ⊆ CZK:

• Perfect zero knowledge. Simulator can sample exactly from same distribution as interaction.

• Statistical zero knowledge. Simulator can sample from distribution that is 2−n close to the real
interaction. Simulator produces D′R ≈ε DR, so we have

∑
n |D′(n)−D(n)| ≤ 2ε. Equivalently ∀ tests

T = {0, 1}n → {0, 1}, we have |Prn∈DR
[T (n) = 1]− Prn∈D′

R
[T (n) = 1]| ≤ ε.

• Computational zero knowledge. Polynomial time does not suffice to distinguish simulated distribu-
tion from real one. The simulator produces a D′′R such that ∀ poly-time algorithms A, |Prn∈DR

[A(x) =
1] = Prn∈D′′

R
[A(n) = 1]| ≤ ε.

Which is relevant where?
“x ∈ L” in PZK?

SZK? [complexity]
CZK? [cryptography]

4.4 Some notes on SZK

SZK is closed under complementation: L ∈ SZK ⇐⇒ L ∈ SZK. This is surprising and nice because it
gives us a complete promise problem.

Let x1, . . . xn be inputs and y1, . . . , ym be outputs. C(x) when x1, . . . , xn ∈ {0, 1} uniform, independent,
is some distribution on m bit strings. (???)

Let ||C −D|| be the distance between distributions. We have
||C −D|| = 1

2

∑
y∈{0,1}m |Prx[C(x) = y]− Prx[D(x) = y]|

We get the following complete promise problem for SZK:
SDY ES = {(C,D) | ||C −D|| ≥ 2

3}
SDNO = {(C,D) | ||C −D|| ≤ 1

3}
The class SZK is worth examining further. We also have SZK ⊆ AM .

17-5

