
6.841 Advanced Complexity Theory April 7, 2009

Lecture 16
Lecturer: Madhu Sudan Scribe: Paul Christiano

1 Worst-Case vs. Average-Case Complexity

So far we have dealt mostly with the worst-case complexity of problems. We
might also wonder aobut the average-case complexity of a problem, namely,
how difficult the problem is to solve for an instance chosen randomly from some
distribution. It may be the case for a certain problem that hard instances
exist but are extremely rare. Many reductions use very specifically constructed
problems, so their conclusions may not apply to “average” problems from a
class.

For example, consider the problem of sorting a list of integers. We can define
the worst-case complexity:

T (n) = min
A

max
|x|=n

{Running time of A(x)}

where the minimum is taken over all algorithms A such that A(x) always outputs
the list x sorted in increasing order. If we have a distribution D over the
inputs we can define the average case complexity the same way, except that the
minimum is taken over all algorithms A such that A(x) outputs a sorted list
except on a set of small probability. We can define the worst case and average
case complexity of any other language or function in the same way.

We could also define several slightly different notions of average case com-
plexity. For example, we could only consider algorithms A which are correct
on all inputs but we could measure the expected running time instead of the
running time on the worst instance. Notice that this is a strictly weaker notion:
if we have an algorithm running in expected polynomial time, you can convert
it to one which always runs in polynomial time but which is occassionally wrong
by timing your algorithm and terminating it after it has run for a polynomial
number of steps (for an appropriately chosen polynomial). We will always deal
with our stronger definition.

Worst case complexity is a very useful measure for constructing reductions:
we are allowed to reduce to instances of an arbitrarily rare special form in order
to make a statement about worst case complexity. If we are dealing with average
case complexity, reductions become much more difficult to describe. Another
disadvantage of average case complexity is that it is only defined when we have
a probability distribution over the inputs, while there isn’t always a natural
way to define a distribution. For example, if we want to consider the average
case complexity of 3SAT we could use the distribution which chooses one clause

16-1

per variable uniformly at random. But if we did this then simply outputting
“unsatisfiable” would almost always be correct, and the average case complexity
of 3SAT would be constant.

Nevertheless, for some problems, such as the permanent, we are able to
obtain clean results for natural distributions.

2 The Complexity of the Permanent

Preliminaries

Recall
Perm(M) = Perm ({mij}) =

∑
σ

∏
i∈[n]

miσ(i)

where the sum is taken over permutations σ of [n]. If the entries of M are in
{0, 1} then we can form the bipartite graph of which M is the adjacency matrix:
one partition of this graph contains the rows of M and the other contains the
columns. There is an edge between row i and a column j iff mij = 1. Perm(M)
counts the number of perfect matchings in the graph associated to M : this is
clearly in #P.

If we think of the matrix entries Mij as indeterminates in some field Fp,
then Perm(M) is a polynomial of degree n in n2 variables. This gives us a lot of
nice algebraic properties of the permanent. It also gives us intuition about how
to find difficult instances of the permanent: while combinatorial problems often
have a very small set of very difficult instances, for algebraic problems typically
almost all of the instances are equally difficult (except for some low-dimensional
space of degenerate cases). Thus we expect a random instance of permanent to
be about as hard as an adversarially chosen instance.

Theorem 1 (Lipton 89; Beaver,Feigenbaum 88) Because permanent is a
low degree polynomial, it is as hard on a random instance as it is in the worst
case.

More precisely, consider the following two problems.
Worst case: given an adversarially chosen n-bit prime p and a matrix M in

Zn×np , compute Perm(M) ∈ Zp.
Average case: given an n-bit prime p chosen uniformly at random and a

matrix M chosen uniformly at random from Zn×np , compute Perm(M) ∈ Zp.
We make the following claim: you can turn an algorithm A which solves

the average case problem with probability 1 − δ ≥ 1 − 1
3n . (over the choice

of problem instance) into a BPP algorithm for the worst case problem. (The
reduction will use a polynomial number of oracle calls to A.)

The Reduction

We will assume for the reduction that we can compute permanents modulo an
arbitrary prime p rather than a random prime; this isn’t actually necessary but
it makes the proof cleaner.

In general, if f is a degree d polynomial in n variables then you can reduce
computing f(x) in the worst case to computing f(y1), . . . f(yd+1) for uniformly
random (but not independent) yi. The fact that the yi are dependent will not
turn out to be a serious issue: this is because we can query A several times and
its output will not be history dependent. Thus if A works for most inputs, it
works for most of sets of d+ 1 inputs if each input individually looks random.

16-2

We have an algorithm A which works on most inputs; let S be the set of
inputs x such that f(x) 6= A(x). We are given an input x, potentially in S. The
idea is that for most lines in space, most of the points on that line are not in S
(because S is small). Thus if we choose a random line through x, most of the
points on the line are probably not in S. Therefore we should be able to choose
d+ 1 points randomly and use interpolation to find f(x).

More precisely: Choose y ∈ Znp uniformly at random. We will query A(x+iy)
for i = 1, . . . d + 1 and use this to indirectly find f(x). Note that while x + iy
are not independent, each one is uniformly random. Write h(i) = f(x+ iy).

We know
Pr
z

[A(z) = f(z)] ≥ 1− δ

Thus for each i,
Pr
y

[A(x+ iy) = h(i)] ≥ 1− δ

Thus by the union bound,

Pr
y

[∀i : A(x+ iy) = h(i)] ≥ 1− nδ ≥ 2
3

If in fact ∀i : A(x+ iy) = h(i), then after evaluating A(x+ iy) at i = 1, . . . , d+1
we know the value of h at 1, . . . , d+ 1. Given d+ 1 distinct points (xi, αi) on a
degree d polynomial t 7→

∑
i cit

i, we can form the system of linear constraints:
x0

0 x1
0 . . . xd0

x0
1 x1

1 . . . xd1
...

...
x0
d x1

d . . . xdd



c0
c1
...
cd

 =


α0

α1

...
αd


It is a standard theorem from linear algebra that this coefficient matrix is

invertible for distinct xi. Thus there is exactly one polynomial passing through
these points, and we can efficiently compute its coefficients with linear algebra.
This implies in particular that c0 = h(0) = f(x). This value is correct with
probability 2/3 over the choice of y–ie over the coin flips of our algorithm. We
have a BPP algorithm for evaluating f(x), as desired.

3 Towards #P ⊂ IP

We have seen that the worst-case and average-case complexity of permanent
are equal. In this case we say that the permanent is random self reducible. If
a function f can be computed in polynomial time on instances of size n with
using an oracle for smaller instances, we say that f is downward self reducible.

Definition 2 A function f is checkable if there is an oracle machine M which
on input x with oracle A either concludes that A(x) = f(x) with high probability
or else finds a short proof that ∃y : A(y) 6= f(y).

Theorem 3 (Blum, Luby, Rubinfield 90) Whenever f is random self re-
ducible and downward self reducible then f is checkable.

Putting this together with what we have seen so far:

Claim 4 (Nisan 90) The permanent is checkable.

16-3

Proof We can give an explicit algorithm for checking the permanent. We will
do it by induction on the dimension of the matrix. Suppose we have verified
that A correctly computes the permanent of all but 1/k of the matrices of size
k. We will inductively verify that A correctly computes the determinants of all
but 1/(k+1) of the matrices of size k+1. To do this, pick a random k+1×k+1
matrix M and query A(M). Recall from last class that we can write Perm(M)
as a linear combination of the permanents of k+ 1 k× k matrices N1, . . . Nk+1.
(Expand by minors, splitting up the sum of

∑
σ

∏
iMiσ(i) based on the value

σ(1).) Given that A correctly computes the permanents of most k×k matrices,
we can use the random self reduction for permanent to compute the permanent
of each Ni with very high probability. Then we can combine these results to
learn with very high probability whether A correctly computed the permanent
of M . If we repeat this experiment for many randomly chosen M , we can
determine whether A correctly computes permanents of k+ 1× k+ 1 matrices.

Once we know that A correctly computes permanents of most matrices of
dimension dim(M), we can use our random self reduction to determine whether
it correctly computes the determinant of any particular matrix M .

The notion of checkability is related to an interactive proof, but not the
same. The difference is that the protocol A which is being checked responds
in a fixed way to each possible query. A prover on the other hand may adjust
their responses based on the history of their interaction with the verifier. This
may allow a prover to fool a verifier into believing that they are correct even if
no program could convince a checker that they are correct.

4 Towards PSPACE ⊂ IP

Theorem 5 (Lunel, Fortnow, Karloff, Nisan 90) #P ⊂ IP.

Theorem 6 (Shamir 90) PSPACE ⊂ IP.

To prove PSPACE ⊂ IP, we will use the fact that PSPACE languages are
computed in polynomial time by an alternating Turing machines. We would
like to replace existential quantifiers by the prover and the universal queries by
the verifier. When we come to a an existential quantifier, we just need to ask
the verifier which way to go. This works fine: the prover will try and convince
us of the truth of his assertion, so he will honestly report which branch accepts.
Universal quantifiers are more difficult because we must somehow check both
computation paths even though the prover is not motivated to help us.

We would like to verify that both computation paths accept with a single
query. This new query should be false with high probability if either of the
original queries is false, while it should be true if both are true. If we could do
this, we could simultaneously test both branches. This is the reverse of what we
wanted before: earlier we wanted to split a single query into a number of random
queries whose conjunction was equivalent to the original query, where here we
want to combine a number of smaller queries into a single query equivalent to
their conjunction.

Suppose I have a polynomial P and I want to check its value on a number
of points. The prover makes some claims about the values of P at these points.
The way we will check all of these claims simultaneously is to take a curve which
goes through those points, have the prover give us the values of the polynomial
on that curve, and then check this purported value at a random point on the

16-4

curve. If any of the prover’s original claims are wrong, then the prover will
probably also be wrong about the value of P at this random point. We now
make this intuitive approach slightly more precise.

Suppose that the verifier is claiming that P (xi) = αi for each i = 1, . . . , w
for a polynomial P of degree d of n variables. We want to find y and β such
that if P (y) = β then P (xi) = αi for each i (and conversely).

The idea is based on the notion of a curve. A curve C is a collection of
polynomials C(i) defining a function C : Zp → Znp by t 7→ (C(1)(t), . . . C(n)(t)).
The degree of a curve C is defined to be maxi degC(i). The notion of a curve
is useful because if f : Znp → Zp is a polynomial, then f ◦ C is a polynomial of
1 variable of degree degC deg f .

Given w points xi in space, we can find a degree w − 1 curve C such that
C(i) = xi for each i by doing normal polynomial interpolation on each of the n
coordinates.

Now returning to our points xi for which the prover claims P (xi) = αi; pick
a curve C such that C(i) = xi for each i ≤ w. The prover has already made a
claim about the values P (C(1)), P (C(2)) . . . P (C(w)). The verifier sends C to
the prover, who replies with a function h which the prover claims is equal to
f ◦ C (since this is a low-degree univariate polynomial, the prover can send its
description). The verifier can now check that h is consistent with the prover’s
claims for values of f ◦C at 1, 2, . . . w. If not, then the prover has already lied,
so the verifier can reject. Otherwise, the verifier can pick a random t ∈ Zp
and attempt to verify that f(C(t)) = h(t). If the prover is honest, this is easy
to do. If the prover is attempting to lie about one of the values C(i) = xi
then the prover is forced to lie about h. But if the prover lies about h, then
h(x) − f(C(x)) is a non-zero polynomial and is therefore non-zero for most x.
Thus if the prover is lying, it is probably the case that f(C(t)) 6= h(t). But this
is precisely what we wanted: the prover will be forced to commit to the single
false claim f(C(t)) = h(t) unless f(C(i)) = αi for each i.

5 Finishing #P ⊂ IP

We can now give a reduction from permanent for k + 1 × k + 1 matrices to
permanent for k×k matrices which works in the context of an interactive proof
instead of a program checker; we will do this by combining the random reduction
for permanent with the downward reduction for permanent, using the ideas
above. We have some matrix M , and we would like to verify the prover’s claim
that Perm(M) = α. We can write Perm(M) =

∑
iM1i Perm(Ni), where Ni are

the minors of M . Next we can construct a curve C in Zk2

p which passes through
every Ni. Now ask the prover to provide h(x) = Perm(C(x)). Supposing h
is correct, we can use it to compute Perm(M): we take an appropriate linear
combination of h(1), h(2), . . . h(k+ 1). In order to verify h, we choose a random
t ∈ Zp and inductively verify that h(t) is really the permanent of C(t).

Clearly if the prover is honest they will convince the verifier with probability
1. Suppose inductively that for every matrix the prover convinces the verifier
with probability sk on k×k matrices (over the coin flips of the verifier). Then if
the prover attempts to lie by providing an h(x) 6= Perm(C(x)), with probability
1 − k+1

p over the random choice of t, the verifier will choose a t such that
h(t) 6= Perm(C(t)) (since non-zero univariate degree k + 1 polynomials have
at most k + 1 roots). Then the prover convinces the verifier with probability
sk+1 ≤ n/p + sk. Since the permanent of 1 × 1 matrices is easily computed,
s1 = 0. If p is an n-bit prime this implies that sn = O(n2/p) is negligible. This

16-5

is just what we wanted.

16-6

