
6.841 Advanced Complexity Theory April 1, 2009

Lecture 15
Lecturer: Madhu Sudan Scribe: Rotem Oshman

1 Today’s topics

• Private coins ≡ public coins (that is, IP[k] ≡ AM)

– Goldwasser-Sipser approximate counting protocol

• Towards protocols for the Permanent, in the goal of showing that #P ⊆ IP.

2 Review of last lecture

2.1 Graph Non-Isomorphism

The graph non-isomorphism problem is to decide the language GNI = {(G0, G1) | G0 6∼ G1}. Last
lecture we saw a private-coin 2-round protocol for GNI:

• The Verifier chooses a permutation π ∈R Sn, where n is the number of nodes in the graph,
and a bit b ∈R {0, 1}. It sends H = π(Gb) to the Prover.

• The Prover returns with a bit b′.

• The Verifier accepts if b = b′.

If G0 ∼ G1, then the bit b is independent of H , which means that the Prover is essentially guessing
b′ and has a probability of 1/2 of being correct. If G0 6∼ G1, then H identifies b uniquely and the
Prover will always be correct.

2.2 Kilian’s protocol: IP[k] ⊆ AM[poly]

Last time we saw a public-coin protocol through which the Prover could convince the Verifier that
there are “many” coin tosses that would have made the Verifier accept in the original private-coin

protocol. Kilian’s protocol is public coin and has completeness of 1, but the number of rounds in
the protocol depends on the number of random coins used in the original private-coin protocol. For
example, the public-coin protocol we would get for GNI would have O(n log n) rounds instead of 2.

15-1

3 The Goldwasser-Sipser Protocol

Let S ⊆ {0, 1}
n

be a set, such that membership in S is verifiable in AM. We are interested in
solving the promise problem given by

ΠYES = {S : |S| ≥ f(n)}

ΠNO =

{

S : |S| <
f(n)

10n2

}

3.1 Initial attempt

Suppose that f(n) is “very large”: f(n) ≈ 2n (actually a little less than that). In this case, for

YES instances we have |S|
|{0,1}n| ≈ 1, and for NO instances we have |S|

|{0,1}n|

<
∼ 1

n2 . In other words,

when we choose a random string, for YES instances our chance of hitting a member of S is very
high, and for NO instances it is about 1 in n2. We can re-use ideas from the proof that BPP ⊆ ΣP

2

to convince the Verifier that |S| ≥ f(n). The protocol would be as follows.

Verifier Prover

x1, . . . , xk ∈ {0, 1}
n

x ∈R {0, 1}
n

i : xi ⊕ x ∈ S

Query

Response

Verify that
xi ⊕ x ∈ S

Verifier accepts iff it is “con-
vinced” that xi ⊕ x ∈ S.

Unfortunately, this only works when f(n) ≈ 2n

poly .

3.2 Using hasing to overcome small f(n)’s

We can use pairwise-independent hashing to map S to a smaller space {0, 1}
m

, so that if S is large,
then h(S) will be a very large fraction of {0, 1}

m
. If h is a hash function that has no collisions in S

then |h(S)| = |S|; therefore, if we choose m ≈ log f(n) and S is a YES instance (|S| ≥ f(n)), then
in the hash-space we will have |h(S)| = |S| ≈ 2m. Then we can execute the previous protocol in
the hash-space:

15-2

Verifier Proverh ∈R H

x1, . . . , xk ∈ {0, 1}m

x ∈R {0, 1}m

i, y : y ∈ S and h(y) = xi ⊕ x

Query

Response

Verify that
y ∈ S

Verifier accepts iff h(y) = xi ⊕ x
and it is “convinced” that y ∈ S.

where H is a pairwise-independent family of hash functions.
The problem with this is that h(S) is only guaranteed to be large if h has no (or few) collisions

in S; if h(S) is too small we have the same problem we had when f(n) was small — the prover may
not have a good response x1, . . . , xk in the second round.

To decrease the chances of this bad event we will use more than one hash function, so that the
probability that one of the hash functions is good will be very high. We need to make sure that if
S is small (a NO instance), our multiple hash functions will not give the Prover too much freedom
by mapping S to a large fraction of {0, 1}

m
.

3.3 Final protocol

Let m = log f(n) + 2. The protocol is as follows.

15-3

Verifier Proverh1, . . . , hm ∈R H

x1, . . . , xk ∈ {0, 1}m

x ∈R {0, 1}m

i, j, y : y ∈ S and hj(y) = xi ⊕ x

Query

Response

Verify that
y ∈ S

Verifier accepts iff hj(y) = xi ⊕x
and it is “convinced” that y ∈ S.

3.3.1 Analysis

First suppose that S is a NO instance, that is, |S| < f(n)
10n2 . Then

|
⋃

j hj(S)|

|{0, 1}
m
|

≤
m · |S|

2m
<

(log f(n) + 2) · f(n)

10n2 · 4f(n)
≤

1

20n

(In the last step we used the fact that 2 ≤ f(n) ≤ 2n, otherwise the problem definition does not
make sense). It follows that for NO instances, for every choice of x1, . . . , xn that the Prover may
send, the Verifier has a high probability of selecting a string x such that for all i, xi ⊕x 6∈

⋃

j hj(S).
The Prover will not have a response i, j, y that has a high probability of making the Verifier accept.

Now suppose that S is a YES instance, that is, |S| ≥ f(n). We are interested in the probability
of choosing h1, . . . , hm such that for some j ∈ {1, . . . , m} we have |hj(S)| ≥ f(n). This ensures
that the Prover has a response in the second round.

Since each H is pairwise-independent, for any fixed x 6= y ∈ {0, 1}
n

and for every a, b ∈ {0, 1}
m

we have

Pr
h∈H

[h(x) = a ∧ h(y) = b] =
1

4m

and hence,

Pr
h∈H

[h(x) = h(y)] =
∑

a∈{0,1}m

Pr
h∈H

[h(x) = a ∧ h(y) = a] ≤ 2m ·
1

4m
=

1

2m

Let S′ ⊆ S be some subset of size f(n) of S (recall that |S| ≥ f(n)). By a union bound over

15-4

elements of S′ (“unfixing” y) we obtain

Pr
h∈H

[∃y ∈ S′ : x 6= y ∧ h(x) = h(y)] ≤
f(n)

2m
=

f(n)

4f(n)
=

1

4

Therefore,

Pr
h1,...,hm∈H

[∀j∃y ∈ S′ : x 6= y ∧ hj(x) = hj(y)] ≤
1

4m

Finally, by another union bound over the elements of S′ (“unfixing” x this time),

Pr
h1,...,hm∈H

[∃x ∈ S′∀j∃y ∈ S′ : x 6= y ∧ hj(x) = hj(y)] ≤
f(n)

4m
=

f(n)

8f (n)
<

1

f(n)

It follows that with probability all but 1/f(n) there will be at least one hj that maps f(n) elements
of S to distinct elements of {0, 1}m, which implies |

⋃

j hj(S)| ≥ f(n). This is sufficient to use the

BPP ⊆ ΣP
2 -style protocol above.

4 IP[2] ⊆ AM

We will use the Goldwasser-Sipser approximate counting protocol to convert a 2-round private coin
protocol into a constant-round public-coin protocol. Since AM[k] = AM for any constant k (see
problem set #3), this will show that IP[2] ⊆ AM.

A 2-round private-coin protocol looks like this:

Verifier Prover

Chooses
R ∈R {0, 1}

r(n)

q = q(R)

a

Verifier checks
that (R, q, a) is
acceptable

Define Sq,a = {R | (R, q, a) is acceptable}. If we make the simplifying assumption that there is
some number N such that

1. In YES instances, ∀q∃a : |Sq,a| ≥ N , and

2. In NO instances, ∀q∀a : |Sq,a| < N
10n2 , and

15-5

3. N is known to the Verifier,

then the Prover could convince the Verifier that it should accept by sending a pair (q, a) that it
claims has |Sq,a| ≥ N , and then the Verifier and the Prover would run the GS protocol to verify
that |Sq,a| ≥ N . However, in reality, N is not known to the verifier, and furthermore N can depend
on q (that is, N = N(q)).

The solution is to have the Prover provide a number N in the first round that it claims satisfies
|QN | ≥ 2

3ε · 2n

N
, where ε is some constant and where QN = {q | ∃a : |Sq,a| > N}. That is, the prover

provides a number N such that “many” queries q have an answer a with |Sq,a| > N . Then the
Verifier and Prover execute the GS protocol to verify the size of QN . After this, N is used in the
protocol from before.

5 Properties of the Permanent

Recall that perm(A) =
∑

σ

∏n

i=1 Ai,σ(i), where A ∈ Z
n×n
p .

• Random self-reducibility: for fixed A, R ∈ Z
n×n
p , let p(i) = perm(A + i · R). This is a

degree-n polynomial in i. For i = 0 we have p(i) = perm(A).

Suppose that we have an algorithm M that computes perm(R) with probability 1 − ε for
random matrices R. Since Zp is a field, for i 6= 0 and randomly chosen R, A + i · R is also
distributed uniformly. Therefore,

Pr [M(A + i · R) = perm(A + i · R)] ≥ 1 − ε.

It follows that

Pr [∀i ∈ {1, . . . , n} : M(A + i · R) = perm(A + i · R)] ≥ 1 − n · ε,

that is, we can compute w.h.p. the values p(1), . . . , p(n). These values can be used to inter-
polate p (which is of degree n) and compute p(0) = perm(A).

• Downward self-reducibility: suppose we have an algorithm M that computes perm(B)
for B ∈ Z

n−1×n−1
p (a smaller matrix). For an n-by-n matrix A, we can write perm(A) =

∑n

i=1 (a1,i · perm(A \ i)), where A \ i is the matrix obtained from A by removing the first
row and the i-th column. Thus, we can compute perm(A) using n calls to M(B), and if M
terminates in polynomial time then so will the computation of perm(A).

These two properties are used in an alternating manner in an interactive proof for the Permanent
problem.

15-6

