March 18, 2009

Lecture 13

Lecturer: Madhu Sudan

Scribe: Alex Cornejo

1 Overview of today's lecture

- Toda's Theorem: $\mathsf{PH} := \bigcup_{k \in \mathbb{N}} \sum_{k}^{P} \subseteq \mathsf{P}^{\scriptscriptstyle\#\mathsf{P}}$, steps:
- Prove some properties concerning $\exists C, \forall C, \oplus \cdot C, \mathsf{BP} \cdot C$
- Do some operator calculus to prove $\mathsf{PH} \subseteq \mathsf{BP} \cdot \oplus \cdot \mathsf{P}$.
- $\bullet~ {\rm Prove that}~ {\sf BP} \cdot \oplus \cdot {\sf P} \subseteq {\sf P}^{{\scriptscriptstyle \#}{\scriptscriptstyle {\sf P}}}$

2 Review: Operator definitions

Let L be a language, C a complexity class and q(n) some growing function of n.

$$BP_{q(n)} \cdot L = \left\{ \Pi_{yes}^{q(n)}(L), \Pi_{no}^{q(n)}(L) \right\}$$
$$\Pi_{yes}^{q(n)}(L) = \left\{ x \mid \Pr\left[(x, y) \in L\right] \ge 1 - 2^{-q(n)} \right\}$$
$$\Pi_{no}^{q(n)}(L) = \left\{ x \mid \Pr\left[(x, y) \in L\right] \le 2^{-q(n)} \right\}$$

When we omit the q(n) subscript we assume that $q(n) \in \mathsf{P}$.

$BP \cdot L = \{\Pi_{yes}(L), \Pi_{no}(L)\}$	$BP \cdot C = \{BP \cdot L \mid L \in C\}$
$\oplus \cdot L = \{x \mid \#(y) \text{ s.t. } (x, y) \in L \text{ is even}\}$	$\oplus \cdot C = \{ \oplus \cdot L L \in C \}$
$\overline{\oplus} \cdot L = \{ x \mid \#(y) \text{ s.t. } (x, y) \in L \text{ is odd} \}$	$\overline{\oplus} \cdot C = \{ \overline{\oplus} \cdot L L \in C \}$
$\exists \cdot L = \{x \mid \exists y \text{ s.t. } (x, y) \in L\}$	$\exists \cdot C = \{\exists \cdot L L \in C\}$
$\forall \cdot L = \{ x \mid \forall y \text{ s.t. } (x, y) \in L \}$	$\forall \cdot C = \{\forall \cdot L L \in C\}$

For this lecture, the correct way to think about an expression involving Toda's complexity operators is visualizing the execution tree that represents the expression. For example consider a language $L \in \mathsf{BP} \cdot \oplus \cdot \mathsf{P}$, then for $x \in L$ we have the following tree:

3 Operator properties

To prove Toda's theorem we need to prove the following properties:

Property 1. $\oplus \cdot \oplus \cdot C = \oplus \cdot C$

Property 2. $\mathsf{BP} \cdot \mathsf{BP} \cdot C = \mathsf{BP} \cdot C$

Property 3. $\oplus \cdot \mathsf{BP} \cdot C = \mathsf{BP} \cdot \oplus \cdot C$

Property 4. $\exists \cdot C, \forall \cdot C \subseteq \mathsf{BP} \cdot \oplus \cdot C$

Observe that for our purposes it would suffice to prove them for $C \in \{\mathsf{P}, \oplus \cdot \mathsf{P}, \mathsf{BP} \cdot \oplus \cdot \mathsf{P}\}$. Lets warm up by proving $\oplus \cdot C = \overline{\oplus} \cdot C$.

3.1 $\oplus \cdot C = \overline{\oplus} \cdot C$

We define the operator $\neg \cdot$ as:

$$\neg \cdot L = \{ (x, 0y) \mid (x, y) \in L \} \cup \{ (x, 1) \}$$

Consider the language $\overline{\oplus} \cdot \neg \cdot L$, by unravelling the definition of $\overline{\oplus} \cdot$ we have $\overline{\oplus} \cdot \neg \cdot L = \{x | \#(y) \text{ s.t. } (x, y) \in \neg \cdot L \text{ is odd} \}$. However from the definition of $\neg \cdot$ if the number of y's such that $(x, y) \in \neg \cdot L$ is odd then the number of y's such that $(x, y) \in L$ is even, hence $\overline{\oplus} \cdot \neg \cdot L = \oplus \cdot L$. A symmetric argument proves that $\oplus \cdot \neg \cdot L = \overline{\oplus} \cdot L$.

The following diagram succintly encodes the previous argument and demonstrates the equivalence of \oplus · and $\overline{\oplus}$ ·.

3.2 Property 1:
$$\oplus \cdot \oplus \cdot C = \oplus \cdot C$$
.

This is possible since \oplus is associative and for our purposes the multiplicative increase in fan-in does not matter.

3.3 Property 2: $BP \cdot BP \cdot C = BP \cdot C$.

Let q(n) and p(n) be polynomials, then observe

3.4 Property 3: $\oplus \cdot \mathsf{BP} \cdot C = \mathsf{BP} \cdot \oplus \cdot C$.

For a fixed x, the probability of choosing z such that N(x, y) does not work is

 $\Pr\left[M(x,y,z) \neq N(x,y)\right] \leq 2^{-q(n)}$

Hence the probability that there exists a y such that z does not work is

$$\begin{split} \Pr_{z} \left[\exists y \text{ s.t. } M(x, y, z) \neq N(x, y) \right] &\leq \sum_{y} \Pr_{z} \left[M(x, y, z) \neq N(x, y) \right] \\ &= 2^{|y|} 2^{-q(n)} \\ &= 2^{|y| - q(n)} \end{split}$$

Therefore the probability that a particular z works for all choices of y is

$$\Pr_{z} \left[\forall y \ M(x, y, z) = N(x, y) \right] \ge 1 - 2^{|y| - q(n)}$$

So by choosing q(n) sufficiently large we have $\mathsf{BP} \cdot \oplus \cdot C = \oplus \cdot \mathsf{BP} \cdot C$.

3.5 Property 4: $\exists \cdot C \subseteq \mathsf{BP} \cdot \oplus \cdot C$

In some sense the following proof is in the same spirit of the Razborov-Smolensky result we saw in lecture 6, since we are looking to replace an OR gate with a XOR and a BP gate.

For any language $L \in C$ by the argument of Valiant-Vazirani we can construct a machine M'

$$M'(x, y, z) := M(x, y) \land z(y) = \overline{0}$$

such that the language L' (where $L' \in C$) accepted by M' satisfies the following:

$$\exists y : (x,y) \in L \iff \Pr_{z} \left[\#(y) \text{ s.t. } (x,y,z) \in L' \text{ is even} \right] \ge \frac{1}{p(n)}$$
$$\forall y : (x,y) \notin L \iff \Pr_{z} \left[\#(y) \text{ s.t. } (x,y,z) \in L' \text{ is even} \right] = 0$$

Hence Valiant-Vazirani gives us what we want for *weak*-BP instead of BP. We can now use the standard amplification technique by using z_1, \ldots, z_k instead of z and y_1, \ldots, y_k instead of y.

$$\exists y : (x,y) \in L \iff \Pr_{z_1,\dots,z_k} \left[\#(y_1,\dots,y_k) \text{ s.t. } (x,y,z) \in L' \text{ is even} \right] \ge 1 - \left(1 - \frac{1}{p(n)}\right)^k$$
$$\ge 1 - e^{-\frac{k}{p(n)}}$$
$$= 1 - 2^{-\log_2 e \frac{k}{p(n)}}$$

Hence we can choose $k = q(n)p(n)/\log_2 e$ for a polynomial q(n) to get strong-BP. Observe that if C is closed under complement then we also get $\forall \cdot C \subseteq \mathsf{BP} \cdot \oplus \cdot C$ from the same argument.

4 Toda's Theorem

Theorem 1 (Toda's Theorem) $PH \subseteq P^{\#P}$

Proof Assume $\mathsf{BP} \cdot \oplus \cdot \mathsf{P} \subseteq \mathsf{P}^{\#\mathsf{P}}$ (proved in the next theorem), then to prove the statement it suffices to prove that $\mathsf{PH} \subseteq \mathsf{BP} \cdot \oplus \cdot \mathsf{P}$. From the definition of the polynomial hierarchy we have $\mathsf{PH} := \bigcup_{k \in \mathbb{N}} \Sigma_k^P$, we proceed by induction on k.

BASE CASE. This is trivial since by definition $\Sigma_k^P = \Pi_k^P = P$.

INDUCTIVE STEP. As inductive hypothesis we assume that $\Sigma_k^P, \Pi_k^P \subseteq \mathsf{BP} \cdot \oplus \cdot \mathsf{P}$.

by definition of the hierarchy
by hypothesis
by property 4
by property 3
by property 1 and 2

Theorem 2 $BP \cdot \oplus \cdot P \subseteq P^{\#P}$

Proof Suppose we had an operator # that allowed us to count the number of accepting paths, then clearly we could easily use such an operator to add and multiply the number of accepting paths.

Hence #P is almost a ring, except that we do not have a way to subtract or divide the number of accepting paths. Recalling the definition of #P

$$f \in \#\mathsf{P} \iff \exists M \in \mathsf{NP} \text{ s.t. } f(x) = \#(y) \text{ s.t. } M(x,y) \text{ accepts}$$

And we have that

$$f_1, f_2 \in \#\mathsf{P} \Rightarrow f_1 + f_2 \in \#\mathsf{F}$$

 $f_1 * f_2 \in \#\mathsf{P}$

Hence given $f \in \#\mathsf{P}$ we can construct any polynomial g over f, as long as the degrees and coefficients are bounded by a polynomial (*i.e.* $g(x) = f(x)^2 + 3f(x) + 2f(x)^{10}$).

Given a language $L \in \mathsf{P}$ let $L' = BP \oplus L$, then by definition we have

$$x \in L' \iff \Pr_{y} \left[\#(y) \text{ s.t. } (x, y) \in L = 0 \mod 2 \right] \ge 1 - 2^{-q(n)}$$
$$x \notin L' \iff \Pr_{y} \left[\#(y) \text{ s.t. } (x, y) \in L = 1 \mod 2 \right] \le 2^{-q(n)}$$

Unfortunately we cannot count module 2, but what if we could construct a polynomial p such that:

$$\begin{aligned} p(x) &= 0 \mod 2^k \Rightarrow \#(y) \text{ s.t. } (x,y) \in L = 0 \mod 2 \\ p(x) &= 1 \mod 2^k \Rightarrow \#(y) \text{ s.t. } (x,y) \in L = 1 \mod 2 \end{aligned}$$

Assume there are 2^m distinct y's, then we want k large enough to ensure that for the space of y's we care about $p(x) \mod 2^k = p(x)$, clearly k = 2m suffices.

We could build such a polynomial p applying k times a polynomial f such that:

$$f(x) = 0 \mod 2^{2z} \Rightarrow x = 0 \mod 2^{z}$$
$$f(x) = 1 \mod 2^{2z} \Rightarrow x = 1 \mod 2^{z}$$

Unfortunately a polynomial with this properties does not exist. However if we replace 1 with -1 then there is such a polynomial, namely $f(x) = 4x^3 + 3x^4$, and therefore we can construct p with f by a recursion of depth k.

Therefore it follows that $L' \in \mathsf{P}^{\#\mathsf{P}}$ since we can remove the probability operator by just counting the number of accepting states using p and depending if they are $\geq (1 - 2^{-q(n)})2^m$ or $\leq 2^{-1}2^m$ decide if $x \in L'$.