
6.841 Advanced Complexity Theory March 18, 2009

Lecture 13
Lecturer: Madhu Sudan Scribe: Alex Cornejo

1 Overview of today’s lecture

• Toda’s Theorem: PH :=
⋃

k∈N
∑P

k ⊆ P#P, steps:

• Prove some properties concerning ∃C, ∀C, ⊕ ·C, BP · C

• Do some operator calculus to prove PH ⊆ BP · ⊕ ·P.

• Prove that BP · ⊕ ·P ⊆ P#P

2 Review: Operator definitions

Let L be a language, C a complexity class and q(n) some growing function of n.

BPq(n) · L =
{

Πq(n)
yes (L), Πq(n)

no (L)
}

Πq(n)
yes (L) =

{
x | Pr [(x, y) ∈ L] ≥ 1− 2−q(n)

}
Πq(n)

no (L) =
{

x | Pr [(x, y) ∈ L] ≤ 2−q(n)
}

When we omit the q(n) subscript we assume that q(n) ∈ P.

BP · L = {Πyes(L), Πno(L)} BP · C = {BP · L | L ∈ C}
⊕ ·L = {x | #(y) s.t. (x, y) ∈ L is even} ⊕ ·C = {⊕ ·L|L ∈ C}
⊕ · L = {x | #(y) s.t. (x, y) ∈ L is odd} ⊕ · C = {⊕ · L|L ∈ C}
∃ · L = {x | ∃y s.t. (x, y) ∈ L} ∃ · C = {∃ · L|L ∈ C}
∀ · L = {x | ∀y s.t. (x, y) ∈ L} ∀ · C = {∀ · L|L ∈ C}

For this lecture, the correct way to think about an expression involving Toda’s complexity operators is
visualizing the execution tree that represents the expression. For example consider a language L ∈ BP ·⊕ ·P,
then for x ∈ L we have the following tree:

BP

+

M(x, y, z) . . . M(x, y, z)

. . . +

M(x, y, z) . . . M(x, y, z)

y

z z

13-1

3 Operator properties

To prove Toda’s theorem we need to prove the following properties:

Property 1. ⊕ ·⊕ ·C = ⊕ ·C

Property 2. BP · BP · C = BP · C

Property 3. ⊕ ·BP · C = BP · ⊕ ·C

Property 4. ∃ · C, ∀ · C ⊆ BP · ⊕ ·C

Observe that for our purposes it would suffice to prove them for C ∈ {P,⊕ ·P, BP · ⊕ ·P}. Lets warm up
by proving ⊕ ·C = ⊕ · C.

3.1 ⊕ ·C = ⊕ · C
We define the operator ¬· as:

¬ · L = {(x, 0y) | (x, y) ∈ L} ∪ {(x, 1)}

Consider the language⊕·¬·L, by unravelling the definition of⊕· we have⊕·¬·L = {x|#(y) s.t. (x, y) ∈ ¬ · L is odd}.
However from the definition of ¬· if the number of y’s such that (x, y) ∈ ¬ ·L is odd then the number of y’s
such that (x, y) ∈ L is even, hence ⊕ · ¬ · L = ⊕ ·L. A symmetric argument proves that ⊕ ·¬ · L = ⊕ · L.

The following diagram succintly encodes the previous argument and demonstrates the equivalence of ⊕ ·
and ⊕·.

+

M(x, y) M(x, y) . . . M(x, y) 1

y

3.2 Property 1: ⊕ ·⊕ ·C = ⊕ ·C.

+

+

M(x, y, z) . . . M(x, y, z)

. . . +

M(x, y, z) . . . M(x, y, z)

y

z z

+

M(x, y, z) . . . M(x, y, z)

(y, z)⇒

This is possible since ⊕ is associative and for our purposes the multiplicative increase in fan-in does not
matter.

13-2

3.3 Property 2: BP · BP · C = BP · C.

Let q(n) and p(n) be polynomials, then observe

BP

BP

M(x, y, z) . . . M(x, y, z)

. . . BP

M(x, y, z) . . . M(x, y, z)

y

z z

Pr [(x, y) ∈ L)] ≥ 1− 2−q(n)

Pr [(x, y) ∈ L] ≤ 2−q(n)

Pr [(x, y) ∈ L)] ≥ 1− 2−p(n)

Pr [(x, y) ∈ L] ≤ 2−p(n)

BP

M(x, y, z) . . . M(x, y, z)

(y, z)

By union bound

Pr [(x, y) ∈ L)] ≥ 1− 2−p(n) − 2−q(n)

Pr [(x, y) ∈ L] ≤ 2−p(n) + 2−q(n)

⇒

3.4 Property 3: ⊕ ·BP · C = BP · ⊕ ·C.

BP

+

M(x, y, z) . . . M(x, y, z)

. . . +

M(x, y, z) . . . M(x, y, z)

y

z z

N(x, y)
+

BP

M(x, y, z) . . . M(x, y, z)

. . . BP

M(x, y, z) . . . M(x, y, z)

z

y y

⇒

For a fixed x, the probability of choosing z such that N(x, y) does not work is

Pr
z

[M(x, y, z) 6= N(x, y)] ≤ 2−q(n)

Hence the probability that there exists a y such that z does not work is

Pr
z

[∃y s.t. M(x, y, z) 6= N(x, y)] ≤
∑

y

Pr
z

[M(x, y, z) 6= N(x, y)]

= 2|y|2−q(n)

= 2|y|−q(n)

Therefore the probability that a particular z works for all choices of y is

Pr
z

[∀y M(x, y, z) = N(x, y)] ≥ 1− 2|y|−q(n)

So by choosing q(n) sufficiently large we have BP · ⊕ ·C = ⊕ ·BP · C.

3.5 Property 4: ∃ · C ⊆ BP · ⊕ ·C
In some sense the following proof is in the same spirit of the Razborov-Smolensky result we saw in lecture
6, since we are looking to replace an OR gate with a XOR and a BP gate.

13-3

∨

M(x, y, z) . . . M(x, y, z)

y BP

+

M(x, y, z) . . . M(x, y, z)

. . . +

M ′(x, y, z) . . . M ′(x, y, z)

z

y y

⇒

For any language L ∈ C by the argument of Valiant-Vazirani we can construct a machine M ′

M ′(x, y, z) := M(x, y) ∧ z(y) = 0

such that the language L′ (where L′ ∈ C) accepted by M ′ satisfies the following:

∃y : (x, y) ∈ L ⇐⇒ Pr
z

[#(y) s.t. (x, y, z) ∈ L′ is even] ≥ 1
p(n)

∀y : (x, y) /∈ L ⇐⇒ Pr
z

[#(y) s.t. (x, y, z) ∈ L′ is even] = 0

Hence Valiant-Vazirani gives us what we want for weak-BP instead of BP. We can now use the standard
amplification technique by using z1, . . . , zk instead of z and y1, . . . , yk instead of y.

∃y : (x, y) ∈ L ⇐⇒ Pr
z1,...,zk

[#(y1, . . . , yk) s.t. (x, y, z) ∈ L′ is even] ≥ 1− (1− 1
p(n)

)k

≥ 1− e−
k

p(n)

= 1− 2− log2 e k
p(n)

Hence we can choose k = q(n)p(n)/ log2 e for a polynomial q(n) to get strong-BP. Observe that if C is
closed under complement then we also get ∀ · C ⊆ BP · ⊕ ·C from the same argument.

4 Toda’s Theorem

Theorem 1 (Toda’s Theorem) PH ⊆ P#P

Proof Assume BP · ⊕ ·P ⊆ P#P (proved in the next theorem), then to prove the statement it suffices to
prove that PH ⊆ BP · ⊕ ·P. From the definition of the polynomial hierarchy we have PH :=

⋃
k∈N ΣP

k , we
proceed by induction on k.

Base case. This is trivial since by definition ΣP
k = ΠP

k = P .

Inductive step. As inductive hypothesis we assume that ΣP
k , ΠP

k ⊆ BP · ⊕ ·P.

ΣP
k ⊆ ∃ ·ΠP

k−1 by definition of the hierarchy
⊆ ∃ · BP · ⊕ ·P by hypothesis
⊆ BP · ⊕ ·BP · ⊕ ·P by property 4
⊆ BP · BP · ⊕ ·⊕ ·P by property 3
⊆ BP · ⊕ ·P by property 1 and 2

13-4

Theorem 2 BP · ⊕ ·P ⊆ P#P

Proof Suppose we had an operator #· that allowed us to count the number of accepting paths, then
clearly we could easily use such an operator to add and multiply the number of accepting paths.

∗

#

M(x, y) . . . M(x, y)

. . . #

N(x, z) . . . N(x, z)

y z

#

M(x, y) ∧N(x, z) . . . M(x, y) ∧N(x, z)

(y, z)⇒

Hence #P is almost a ring, except that we do not have a way to subtract or divide the number of accepting
paths. Recalling the definition of #P

f ∈ #P ⇐⇒ ∃M ∈ NP s.t. f(x) = #(y) s.t. M(x, y) accepts

And we have that

f1, f2 ∈ #P⇒f1 + f2 ∈ #P

f1 ∗ f2 ∈ #P

Hence given f ∈ #P we can construct any polynomial g over f , as long as the degrees and coefficients
are bounded by a polynomial (i.e. g(x) = f(x)2 + 3f(x) + 2f(x)10).

Given a language L ∈ P let L′ = BP ⊕ ·L, then by definition we have

x ∈ L′ ⇐⇒ Pr
y

[#(y) s.t. (x, y) ∈ L = 0 mod 2)] ≥ 1− 2−q(n)

x /∈ L′ ⇐⇒ Pr
y

[#(y) s.t. (x, y) ∈ L = 1 mod 2)] ≤ 2−q(n)

Unfortunately we cannot count module 2, but what if we could construct a polynomial p such that:

p(x) = 0 mod 2k ⇒ #(y) s.t. (x, y) ∈ L = 0 mod 2

p(x) = 1 mod 2k ⇒ #(y) s.t. (x, y) ∈ L = 1 mod 2

Assume there are 2m distinct y’s, then we want k large enough to ensure that for the space of y’s we care
about p(x) mod 2k = p(x), clearly k = 2m suffices.

We could build such a polynomial p applying k times a polynomial f such that:

f(x) = 0 mod 22z ⇒ x = 0 mod 2z

f(x) = 1 mod 22z ⇒ x = 1 mod 2z

Unfortunately a polynomial with this properties does not exist. However if we replace 1 with −1 then
there is such a polynomial, namely f(x) = 4x3 + 3x4, and therefore we can construct p with f by a recursion
of depth k.

Therefore it follows that L′ ∈ P#P since we can remove the probability operator by just counting the
number of accepting states using p and depending if they are ≥ (1− 2−q(n))2m or ≤ 2−12m decide if x ∈ L′.

13-5

