6.841 Advanced Complexity Theory March 18, 2009

Lecture 13
Lecturer: Madhu Sudan Scribe: Alex Cornejo

1 Overview of today’s lecture

Toda’s Theorem: PH := J, oy ka C P#", steps:

Prove some properties concerning 3C, VC, @ -C, BP - C
e Do some operator calculus to prove PH C BP - & -P.

Prove that BP - & -P C P#?

2 Review: Operator definitions

Let L be a language, C' a complexity class and g(n) some growing function of n.

yes

BPy = {50 (). 1471 }
11900 (1) = {x | Pr((z,y) e L] > 1— 27(,(”)}

yes

) (L) = {x | Pr((z,y) € L] < Q—Q(n)}

When we omit the ¢(n) subscript we assume that g(n) € P.

BP - L = {Ilyes (L), Ino(L)} BP.-C={BP-L|LecC}
@-L={x|#(y) st. (z,y) € L is even} ®-C={®-LIL € C}
@ L={x|#(y) st. (z,y9) € Lisodd} &-C={&-LILeC}
3-L={z|3Jyst. (x,y) €L} 3.c={3-LILeC}
V-L={z|Vyst. (z,y) €L} V.C={V-LILeC}

For this lecture, the correct way to think about an expression involving Toda’s complexity operators is
visualizing the execution tree that represents the expression. For example consider a language L € BP - & -P,
then for z € L we have the following tree:

13-1

3 Operator properties

To prove Toda’s theorem we need to prove the following properties:
Property 1. - ¢-C=6-C
Property 2. BP-BP-C=BP-C
Property 3. ©-BP-C=BP-¢-C
Property 4. 3-C,V-C CBP-¢-C
Observe that for our purposes it would suffice to prove them for C' € {P, & -P,BP - & -P}. Lets warm up
by proving &-C =& - C.
3.1 ©C=0-C

We define the operator —- as:

= L={(z,0y) | (z,y) € L} U{(z, 1)}

Counsider the language ®-—-L, by unravelling the definition of ®- we have ®-—-L = {x|#(y) s.t. (z,y) € = L is odd}.
However from the definition of —- if the number of y’s such that (z,y) € = - L is odd then the number of y’s
such that (x,y) € L is even, hence @ - -+ L = @-L. A symmetric argument proves that &-—-L =& - L.

The following diagram succintly encodes the previous argument and demonstrates the equivalence of & -
and ®-.

| M(z,y) | M(z,y)]

3.2 Property 1: &-&-C =& -C.

(M@y,2) |- [My.2)| |[May,2)] | M,y,2) |

This is possible since @ is associative and for our purposes the multiplicative increase in fan-in does not
matter.

13-2

3.3 Property 2: BP-BP-C =BP-C.
Let g(n) and p(n) be polynomials, then observe

Pr{(z,y) € L)] > 1 —279M

Pr((z,y) € L] <279M

Pr((z,y) € L)] > 1—277"

Pr((z,y) € L] < 27P™

By union bound

Pr{(z,y) € L)] > 1 — 277 _ 971

Pr((z,y) € L] < 277" 4 24

W] [Mews)] M) - [(Mews] o] [iees] [ees] - [Mee)]

For a fixed z, the probability of choosing z such that N(z,y) does not work is

Pr(M(z,y,2) # N(z,y)] < 277

Hence the probability that there exists a y such that z does not work is

Pr[3y s.t. M(,y,2) # N(z,9)] < Y _Pr{M(z,y,2) # N(z,y)]

— 9lylo—q(n)
— 9lyl—a(n)

Therefore the probability that a particular z works for all choices of y is
PrlVy M(z,y,2) = N(z,y)] > 1 -2~
So by choosing g(n) sufficiently large we have BP - &-C' = @ -BP - C.

3.5 Property 4: 4-C CBP-&-C

In some sense the following proof is in the same spirit of the Razborov-Smolensky result we saw in lecture
6, since we are looking to replace an OR gate with a XOR and a BP gate.

13-3

Mewa] [(iewa] [Fepa] 1]

For any language L € C by the argument of Valiant-Vazirani we can construct a machine M’

M'(z,y,2) == M(z,y) A 2(y) =0
such that the language L’ (where L' € C) accepted by M’ satisfies the following:

1
p(n)
Yy :(z,y) ¢ L < f;r [#(y) s.t. (z,y,2) € L' is even] =0

Jy: (z,y) € L < Pr[#(y) s.t. (z,y,2) € L' is even| >

Hence Valiant-Vazirani gives us what we want for weak-BP instead of BP. We can now use the standard

amplification technique by using z1, ..., z; instead of z and yq, ...,y instead of y.
1
Jy:(x,y) €L <= Pr [#1,...,ur) st. (2,9,2) € L iseven] > 1 — (1 — —)F
Z15.-3%k p(n)
>1— e_ﬁ

k
=1 — 9 logaeriy

Hence we can choose k = g(n)p(n)/log, e for a polynomial ¢(n) to get strong-BP. Observe that if C' is
closed under complement then we also get V- C C BP - & -C from the same argument.

4 Toda’s Theorem

Theorem 1 (Toda’s Theorem) PH C P#°

Proof Assume BP-@®-P C P#** (proved in the next theorem), then to prove the statement it suffices to
prove that PH C BP - @ -P. From the definition of the polynomial hierarchy we have PH := |J, oy ka, we
proceed by induction on k.

BASE CASE. This is trivial since by definition X = Hkp = P.

INDUCTIVE STEP. As inductive hypothesis we assume that S 11X C BP - @ -P.

»Pc3.nl by definition of the hierarchy
Cd-BP-@-P by hypothesis
CBP-¢-BP-&-P by property 4
CBP-BP-&-@-P by property 3
CBP-@&-P by property 1 and 2

13-4

Theorem 2 BP-@-P C P#**

Proof Suppose we had an operator #- that allowed us to count the number of accepting paths, then
clearly we could easily use such an operator to add and multiply the number of accepting paths.

(M@ay)| - [May)| [N@z)| o [N

Hence #P is almost a ring, except that we do not have a way to subtract or divide the number of accepting
paths. Recalling the definition of #P

fe#P < IM € NP s.t. f(z) = #(y) s.t. M(z,y) accepts
And we have that

fi,fo€#P=fi+ fo € #P
fi* fo € #P

Hence given f € #P we can construct any polynomial g over f, as long as the degrees and coefficients
are bounded by a polynomial (i.e. g(z) = f(z)? + 3f(z) + 2f(z)?).
Given a language L € P let L’ = BP @ -L, then by definition we have

rel’ < Pri#(y)st. (x,y) € L=0mod 2)] >1—279M
Yy

r¢ L' < Pr[#(y)st. (z,y) € L=1mod 2)] <279M
Y

Unfortunately we cannot count module 2, but what if we could construct a polynomial p such that:

p(x) = 0 mod 2% = #(y) s.t. (x,y) € L =0 mod 2
p(x) =1 mod 2% = #(y) s.t. (z,y) € L =1 mod 2
Assume there are 2™ distinct y’s, then we want k large enough to ensure that for the space of y’s we care

about p(z) mod 2% = p(z), clearly k = 2m suffices.
We could build such a polynomial p applying k times a polynomial f such that:

f(z) =0 mod 2% = z = 0 mod 2*
f(z) =1 mod 2** = z = 1 mod 2*

Unfortunately a polynomial with this properties does not exist. However if we replace 1 with —1 then
there is such a polynomial, namely f(z) = 423 + 32*, and therefore we can construct p with f by a recursion
of depth k.

Therefore it follows that L' € P*® since we can remove the probability operator by just counting the
number of accepting states using p and depending if they are > (1 —279(")2™ or < 2712™ decide if z € L.

|

13-5

