
6.841 Advanced Complexity Theory Mar 11, 2009

Lecture 11

Lecturer: Madhu Sudan Scribe: Colin Jia Zheng

1 Recap

We defined RP as the class of languages accepted by PPT machine with one-sided error bounded below 1/3,
BPP with two-sided error with gap 1/3. RP was shown to be robust in the following sense.

Define RPe such that L ∈ RPe if for some poly-time TM M and random bits y,

x ∈ L ⇒ Pr[M(x, y) rejects] ≤ e(|x|)

x /∈ L ⇒ Pr[M(x, y) accepts] = 0

Then RP1−1/poly(n) = RP = RP1/2poly(n) (the two poly’s may be different polynomials), yet RP1−1/2n =
NP.

We will see that BPP is robust in the similar sense. Define BPPc,s such that L ∈ BPPc,s if for some
poly-time TM M and random bits y,

x ∈ L ⇒ Pr[M(x, y) accepts] ≥ c(|x|)

x /∈ L ⇒ Pr[M(x, y) accepts] ≤ s(|x|)

Let us assume that, as often necessary, that s is “nice”, ie fully time constructible.
(Quick note: If c ≤ s then BPPc,s would contain every language. While it is not required that c(n) ≥ 0.5

and s(n) ≤ 0.5, one can shift the probability by proper amount so that c, s do straddle 0.5.)

2 Amplification for BPP

Using Chernoff bound we will see that BPPf(n)+1/poly(n),f(n)−1/poly(n) = BPP = BPP1−2−poly(n),2−poly(n) .

Theorem 1 (Chernoff bound) Let X1, . . . , Xk ∈ [0, 1] be independent random variables and X =
∑

i Xi/t.

Then Pr[|X − E[X]| ≥ ǫ] ≤ e−(kǫ2/2).

Suppose some poly-time TM M places L in BPPf(n)+1/p(n),f(n)−1/p(n) where p is a polynomial, and f
a “nice” function. Intuitively if one runs M for k times (with different random bits) and output according
to whether the average of k answers exceeds f(n), the error probability should decrease.

By how much? Let random variable Xi denote the output of ith run. For x ∈ L, error occurs if∑
i Xi/k < f(n) ie at least p(n) off expectation, thus with probability O(e−k/2p(n)2) by Chernoff bound.

With k polynomial in n, this can be as small as 2−q(n) for any polynomial q. Likewise for x /∈ L.
Here we have used polynomially many more random bits to reduce error. Can we do with fewer? The

state-of-art, using ideas from pseudorandomness (ie expanders), is that O(k) extra random bits can reduce
error from 1/3 to 2−k.

3 BPP ⊆ P/poly

In advice (ie non-uniform) classes, one piece of (short) advice is expected to help all 2n computations on
length n input. This might seem weak at first, but often times randomization is not more powerful than
non-uniformity. In particular Adleman showed that BPP ⊂ P/poly.

Suppose machine M places L in BPP with error probability below 2−p(n), p(n) > n (okay due to
amplification). Is there a random string y good for all 2n inputs of length n, ie M(x, y) = L(x) for each
x ∈ {0, 1}n? Indeed, for each x only a 2−p(n) fraction of all random strings are bad; summing over all 2n

possible x this fraction is still below 1! Thus some advice works for all inputs as random tape.

11-1

4 BPP ⊆ Σ
p
2 ∩ Π

p
2

How about some uniform class upper bounding BPP? It is clear that BPP ⊆ PSPACE; it is unclear how
BPP is related to NP. Nevertheless we can show something intermediate: BPP ⊆ Σp

2. (Which implies
BPP ⊆ Σp

2 ∩ Πp
2 as BPP is closed under complementation.)

As before, suppose some machine M places L in BPP with error probability below 2−n. Let x be a
length n input, and M uses m random bits on x.

(Note that letting ∃-player show a set of polynomially many strings good for x, as evidence, is not enough.
To decide L by a 2-round debate one must ensure some kind of “fairness”, eg say one might let ∃-player to
produce first half bits of y, ∀-player second half, and see if M(x, y) accepts. This is still too crude to work,
but illustrates the point.)

The idea is we do let ∃-player show a set of polynomially many strings good for x, and the ∀-player tries
to find some bijection mapping all of them to strings bad for x. The bijections allowed are ⊕y′ for any y′.
Intuitively, for x ∈ L it is hard for ∀-player to come up with such bijection that works on all good strings,
and for x /∈ L it is easy (and “easy” in a stronger sense than it is hard in the x ∈ L case).

Formally, one claims

L = {x : ∃y1, . . . , ym∀y′[
∨

1≤i≤m

M(x, yi ⊕ y′) = 1]}

Proof. Suppose x ∈ L. Imagine one picks y1, . . . , ym at random. Probability that
∧

i M(x, yi ⊕ y′) = 0,
for each y′, is below 2−mn; union bound over all possible y′ the probability is still below 1, ie some y1, . . . , ym

make this false for all y′.
Now suppose x /∈ L. Imagine one picks y′ at random. Probability that

∨
i M(x, yi ⊕ y′) = 1, for each

y1, . . . , ym, is at most m2−n < 1, ie some y′ makes this false for all y1, . . . , ym.
This very idea can also be used to show promiseBPP ⊆ promiseRPpromiseRP (ie if P = promiseRP

then P = promiseBPP).

5 Next time

We will talk about promise problems, which arise naturally eg when BPP has no known complete problem
(as we don’t know how to enumerate error-bounded PPTs, ie to verify error-bounded-ness) yet promiseBPP

has complete problems (eg given input (M, x), promised that M is indeed error bounded, does M(x) = 1?).
We will talk about the complexity of UNIQUE − SAT, ie SAT with the promise that the satisfying

assignment is either unique or non-existing. Is UNIQUE − SAT hard? We shall see that NP 6= RP ⇒
UNIQUE − SAT hard. (This problem arises in cryptography, where we want a mapping easy to compute
one-way, but hard to revert. The mapping certainly should be one-to-one, so UNIQUE − SAT may be a
good candidate.)

11-2

