
6.841 Advanced Complexity Theory March 9, 2009

Lecture 10
Lecturer: Madhu Sudan Scribe: Asilata Bapat

Meeting to talk about final projects on Wednesday, 11 March 2009, from 5pm to 7pm. Location: TBA.
Includes food.

1 Overview of today’s lecture

• Randomized computation.

• Complexity classes: RP, coRP, BPP, ZPP.

• Basic properties of these complexity classes.

So far, we know that P is a computationally feasible class. We could try and expand this notion, and then
study where the expanded notions lie in relation with P, NP, etc.

2 Examples of problems which have randomized algorithms

1. Problem: Find an n-bit prime.
Input: N ∈ N, N > 3 such that 2n−1 < N ≤ 2n.
Output: A prime p, such that N ≤ p < 2N .

A polynomial-time algorithm for this problem is as follows. This algorithm is randomized. No deter-
ministic algorithm is known.
1: loop {n times}
2: Pick k randomly and uniformly between N (inclusive) and 2N (exclusive).
3: if k is prime then
4: return k
5: else
6: continue loop.
7: return a random value between N (inclusive) and 2N (exclusive).

A sketch of the proof of correctness of this algorithm is as follows.

Sketch of Proof First we observe that we can always find such a prime. This is the following
lemma, which we state without proof.

Lemma 2.1 (Bertrand’s Postulate) If n is a natural number greater than 3, then there exists a
prime number p such that n ≤ p < 2n.

Apart from Lemma 2.1 the algorithm depends on the Prime Number Theorem, which we state without
proof.

Theorem 2.2 (Prime Number Theorem) For any real number x, let π(x) be the number of primes
less than or equal to x. Then,

lim
x→∞

π(x)
x/ lnx

= 1.

10-1

In this context, the Prime Number Theorem implies that the number of primes between N and 2N is
about 2N

n+1 −
N
n , which is approximately N

n . So the probability of k being prime is approximately 1
n .

Since the algorithm is repeated n times, the probability of it not returning a prime is approximately(
n− 1
n

)n

=
(

1− 1
n

)n

≤ 1
e
.

We will see later that this error probability is small enough for our purposes.

2. Problem: Square-root modulo primes.
Input: An n-bit long prime p, an integer a such that 0 ≤ a ≤ p.
Output: An integer α such that α2 = a (mod p).
Berlekamp, and later Adleman, Manders and Miller, gave randomized polynomial-time algorithms to
solve this problem. A deterministic polynomial-time algorithm is not known.
A randomized polynomial-time algorithm to solve this problem is as follows. First, β is chosen randomly
and uniformly from [p − 1]. If we can solve the equation γ2 = β2α (mod p) for γ, then α = β/γ.
For this, θ is picked randomly and uniformly from [p − 1], and the following equation can be solved,
(x−θ)2 = β2α (mod p). To do this, we use (without proof) the fact that gcd(x2−2xθ+θ2−β2α, x

p−1
2 −1)

is linear in x with probability 1/2.
If we find this gcd q and if it is linear in x, then it will be either x− θ − βα or x− θ − βα, so we can
just return (x− θ − q)/β.

3. Problem: Given k n×n square matrices of integersM1,M2, . . . ,Mk, do there exist integers r1, r2, . . . , rk
such that det(

∑k
i=0 riMi) 6= 0?

A randomized algorithm for this problem is as follows. Pick r1, r2, . . . , rk randomly and uniformly from
{1, 2, . . . , 3n} and check if det(

∑k
i=0 riMi) 6= 0. If so, output ‘yes’; otherwise output ‘no’.

The proof of the correctness of this algorithm is discussed in Section 3.

4. Problem: Equivalence of circuits.
Input: Circuits C1, C2 over integer inputs x1, x2, . . . , xn with addition and multiplication gates and
the constants {−1, 0, 1}.
Output: Is C1 equivalent to C2? (Is the function computed by C1 the same as the function computed
by C2?)
A randomized algorithm for this problem is as follows. (Here, we assume that the size of the circuit
is a polynomial in the number of inputs, to make estimations about the input size of our problem
simpler.)
1: Pick a prime of size about 2O(n) and call it p.
2: Pick x1, x2, . . . , xn randomly and uniformly in Zp.
3: {In the following if-statement, the output of each gate is computed in Zp.}
4: if C1(x1, x2, . . . , xn) = C2(x1, x2, . . . , xn) then
5: return ‘yes’
6: else
7: return ‘no’

Observe that we can have a polynomial-sized circuit that computes 22n

, as follows. (Here, ‘A’ denotes
addition and ‘M’ denotes multiplication).

1 A M M (total n ‘M’ gates) 22n

1

1 2

2

222

222

22

22

10-2

The number 22n

is too big for polynomial-time simulations, and it is clear that we can actually get a
number of this size from a circuit of polynomial size. So we reduce modulo p, so as to restrict all the
possible numbers in our computations to have at most O(n) bits. This ensures that the algorithm does
not exceed polynomial time.

3 Some proofs

To prove the algorithms for finding square-root modulo primes and for checking the equivalence of two
circuits, we will use the following lemma. Recall that we have already used once in a previous lecture.

Lemma 3.1 (Schwarz-Zippel Lemma) Let p(x1, . . . , xn) be a not identically zero polynomial of total
degree d over any (possibly infinite) field F. If α1, . . . , αn are chosen uniformly at random from any finite
set S ⊂ F, then

Pr [p(α1, . . . , αn) = 0] ≤ d

|S|
.

To prove Item 2 (Square-root modulo primes), we have to calculate the probability that the algorithm
makes an error. Note that p(x1, . . . , xk) = det(

∑k
i=0 xiMi) is a polynomial of degree d = n in the variables

xi. Suppose that the polynomial is not identically zero, otherwise the algorithm can never err.
If with the randomly chosen ri, det(

∑k
i=0 riMi) turns out to be non-zero, then there certainly exists an

assignment to the xis such that p(x1, . . . , xi) is non-zero. On the other hand, if with the randomly chosen
ri the quantity p(r1, . . . , ri) is zero, then there is some probability of error. This can be calculated by using
Lemma 3.1. We have chosen the set S to be {1, 2, . . . , 3n}, and the ri have been chosen randomly and
uniformly from S. Therefore,

Pr [p(r1, . . . , rk) = 0] ≤ d

|S|
=

n

3n
=

1
3
.

We will only sketch the proof of Item 4 (Circuit equivalence). For this we need to estimate the error
probability. If for some choice of x1, x2, . . . , xn, we get that C1(x1, . . . , xn) 6= C2(x1, . . . , xn) modulo p, then
the circuits are certainly not equivalent. On the other hand, if C1(x1, . . . , xn) = C2(x1, . . . , xn) modulo
p, then there is some probability of error. We can also represent C1(x1, . . . , xn) and C2(x1, . . . , xn) as
polynomials in x1, . . . , xn. The following facts lead to the proof that the probability of error is sufficiently
small.

• The degrees of the polynomials corresponding to the circuits may be quite large, but Lemma 3.1 still
works because |S| = |Zp| ≥ 2Ω(n).

• The numbers appearing during the computation are no more than n bits long after reduction modulo
p. If the original probability of error is ε, then we can repeat this algorithm poly(n) times to decrease
this to εpoly(n), by using the following well-known result.

Theorem 3.2 (Chinese Remainder Theorem) Let M,N be integers such that for each prime pi

from k distinct primes p1, p2, . . . , pk, M ≡ N (mod pi). Then M ≡ N (mod p1p2 · · · pk).

4 Complexity classes

4.1 Types of randomized algorithms

To start off the discussion of complexity classes, we first consider the kinds of errors that may occur in
a randomized algorithm. For the purposes of the discussion below, we fix ε = 1

3 . We will see later that
this particular choice of ε is not special. Let L be a language, and suppose that our algorithm is deciding
membership of x in L. Then we can have the following types of errors.

10-3

1. Two-sided error:
x ∈ L⇒ probability of error is at most ε, and
x /∈ L⇒ probability of error is at most ε.

The class of polynomial-time algorithms that behave in this manner is called BPP, which stands for
Bounded-error Probabilistic Polynomial-time.

2. One-sided error. There are two types of one-sided error:

(a) x /∈ L⇒ no errors, and
x ∈ L⇒ probability of error is at most ε.
The class of polynomial-time algorithms that behave in this manner is called RP, which stands
for Randomized Polynomial-time.

(b) x ∈ L⇒ no errors, and
x /∈ L⇒ probability of error is at most ε.
The class of polynomial-time algorithms that behave in this manner is called coRP, which stands
for co-Randomized Polynomial-time.

3. Zero-sided error:
x ∈ L⇒ no error,
x /∈ L⇒ no error, but
may not halt on some inputs.

Alternatively, we can say that the running time of the algorithm is a random variable with polynomial
expectation. Or, we can say that the algorithm is permitted to return one of three values, 1 if it
accepts, 0 if it rejects, and ? if it does not know (within some fixed time).

The class of polynomial-time algorithms that behave in this manner is called ZPP, which stands for
Zero-error Probabilistic Polynomial-time.

4.2 Models of randomized computation

A natural model for randomized computation is a Turing Machine M which has a special ‘coin-tossing’ state,
the ‘$’ state.

However, the preferred model for randomized computation is that of Two-input Turing Machines. In this
case, x is the real input and y is an auxiliary input. The input x represents the actual input data, and the
input y captures the randomness used for a particular instance of a randomized computation. A Two-input
Turing Machine M takes in (x, y) and runs deterministically on (x, y). (For the cases of RP, coRP, ZPP and
BPP, M must run in polynomial-time of the input, and therefore y must be a polynomial in the size of x).

4.3 New definitions for complexity classes

Using the language of two-input Turing Machines, we can redefine some of the complexity classes that we
already know. Again, ε = 1

3 . For each of these complexity classes, the language L is in the class if there
is a two-input Turing Machine M with the second input always a polynomial in the size of the first, such
that certain results (defined in the following list) are true. In the following experiments, y is always chosen
uniformly from all the available possibilities.

1. BPP

(a) If x ∈ L then Pry [M(x, y) accepts] ≥ 1− ε.
(b) If x /∈ L then Pry [M(x, y) accepts] ≤ ε.

2. NP

10-4

(a) If x ∈ L then Pry [M(x, y) accepts] > 0.

(b) If x /∈ L then Pry [M(x, y) accepts] = 0.

3. RP

(a) If x ∈ L then Pry [M(x, y) accepts] ≥ 1− ε.
(b) If x /∈ L then Pry [M(x, y) accepts] = 0.

4. coRP

(a) If x ∈ L then Pry [M(x, y) accepts] = 1.

(b) If x /∈ L then Pry [M(x, y) accepts] ≤ ε.

5. ZPP
ZPP cannot be naturally defined with this notation, so we can give the following definition.

ZPP = RP ∩ coRP.

5 Choice of error parameter

What is the ideal choice for the maximum permissible error? Is it on the order of 1/3, 1/n3, 1/2n, or on the
order of 1− 1/n5, 1− 1/2n? Let us only look at the class RP for now. This can be formalized by looking at
the following result.

Lemma 5.1 (Amplification Lemma) Suppose an algorithm M errs with probability e(n), so that if x ∈ L
then Pry [M(x, y) accepts] ≥ 1 − e(n) and if x /∈ L then Pry [M(x, y) accepts] = 0 (when y is chosen
uniformly). Repeat M k(n) times, for some polynomial k. The new algorithm makes errors with the following
probabilities.

x ∈ L⇒ Pry [M(x, y) accepts] ≥ 1− (e(n))k(n),

x /∈ L⇒ Pry [M(x, y) accepts] = 0.

RP with an error probability of e(n) may be written as RPe(n).
If we start with a constant error probability, we can make it as small as 1/2nc

for any c in polynomially
many iterations of the algorithm. This probability is small enough.

If we start with an error probability e(n) = 1− 1/n5, then

(e(n))k(n) =
(

1− 1
n5

)n5l(n)

≤
(

1
e

)l(n)

,

which is small enough if k(n) is a sufficiently large degree polynomial.
But if we start with an error probability e(n) = 1 − 1/2n, then we cannot make the error probability

small enough after polynomially many iterations of the algorithm. In this case, RPe(n) = NP.
But RP1−1/poly(n) = RP1−1/2poly(n) . So the class RP is robust with respect to large changes in the

maximum permissible error probability.

10-5

	Overview of today's lecture
	Examples of problems which have randomized algorithms
	Some proofs
	Complexity classes
	Types of randomized algorithms
	Models of randomized computation
	New definitions for complexity classes

	Choice of error parameter

