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Lecture 7: Communication Complexity and Lower Bounds
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This lecture gives an introduction to Communication Complexity. We go over the properties
and examples of Communication Complexity, Karchmer-Wigderson games, a lower bound related
to PARITY, and log-rank lower bounds.

1 Introduction to Communication Complexity

Communication complexity was introduced by Yao in 1979, and involves the following interac-
tion between Alice and Bob. Alice knows x ∈ {0, 1}n, and Bob knows y ∈ {0, 1}n. Alice
and Bob are allowed to send each other one bit at a time. The goal is to have both of them
compute some z ∈ {0, 1}m such that z = f(x, y). Note that the more general version of this
interaction requires them to output z such that (x, y, z) ∈ R for some predetermined relation
R ⊆ {0, 1}n × {0, 1}n × {0, 1}m.

Given a relation R, then, we ask: how many bits are needed for Alice and Bob to output the
same z that satisfies the relation? To address the problem, we protocols. A protocol Π specifies
the following:

• Given a history of sent bits b1, ..., bi, whether the interaction should stop (and Alice and Bob
computes their output with the bits sent)

• How to calculate z. The protocol should specify functions fA and fB such that, upon stop-
ping, Alice and Bob can calculate z = fA(b1, ..., bi, x) = fB(b1, ..., bi, y)

• Who sends the next bit

• How to calculate the next bit sent. That is, if Alice is to send bit bi+1, the protocol should
specify a g such that bi+1 = g(b1, ..., bi, x).

A protocol Π solves a relation R if it halts and outputs a z such that (x, y, z) ∈ R.

2 Communication Complexity

We define the Communication complexity of a protocol to be CC(Π) = the number of bits
transmitted with Π in the worst case. We consider R that are well-defined in the sense that for
every pair (x, y), there exists some z such that (x, y, z) ∈ R. Then, the communication complexity
of a relation is

CC(R) = min
Π solving R

{CC(Π)}

Using this model, we ignore all computation that Alice and Bob do on their own, and focus on
the number of bits sent between the two. Trivially, an upper bound to this is 2n. Alice and Bob
can both send each other the entirety of their strings, and each can calculate f(x, y). The question
is how much better we can do for different relations.
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3 Karchmer-Wigderson Games

Karchmer and Wigderson came up with the following question: given a f : {0, 1}n → {0, 1}, what
is the circuit depth of f? They address this by creating a relation Rf that is associated with f .
Specifically, we define the relation to be such that (x, y, i) ∈ R if either:

• f(x) = f(y)

• f(x) 6= f(y) and xi 6= yi

The second point is important because if f(x) 6= f(y), then x and y must differ at some position
i. This type of game brings us to the following theorem:

Theorem 1 For every f , depth(f) = Θ(CC(RF )).

Proof
We will first show that CC(Rf ) ≤ depth(f) by creating a protocol that solves Rf . Consider

a circuit C that computes f . The circuit can be viewed as a tree of circuit elements, with a top
element. Without loss of generality, assume that the last element of the circuit is an AND gate,
that f(x) = 0, and that f(y) = 1. We will see that these assumptions will not change the structure
of the proof.

Figure 1: A circuit C computes f , and is rooted at a single AND or OR gate

Because f(y) = 1, both inputs to the top AND must have been 1. . f(x) = 0, means that
at least one of the inputs to the AND was a 0. If it was the left input, Alice will send 0 to
Bob; if the right input, she sends a 1. But now, we have recursed to a lower level in the circuit.
Because one of the subcircuits of the top AND will yield a different output for Alice and Bob, we
have same problem as before, but on a smaller circuit. We recurse in this manner to either C0

and C1, and repeat until we get to the lowest level of the circuit, where the input is simply one
of the bits of x and y. Because this input is different for Alice and Bob, we have identified the
index of difference between x and y. We send one message for every level of the circuit that we
traverse down, so the number of messages is less than the depth of the circuit. We conclude that
CC(Rf ) ≤ depth(f) + O(1).

Note that this argument is also applicable when the top gate is an OR. In that case, because
f(x) = 0, both inputs at the top level must have been 0, and, because f(y) = 1, at least one of the
top inputs for Bob must have been a 1. So in this case, it is Bob who transmits the first bit, and
we can once again recurse to a lower level of the tree.

To show the other direction, we make use of partial functions.
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Definition 2 A partial function is a mapping f : {0, 1, } → {0, 1, ?} where the ‘?’ symbol
represents a “don’t care”

In this direction, we make conversions from protocols to circuits. We create a KM game for
relations on partial functions, and show that CC(Rf ) ≥ depth(f) for all partial functions f .

Say that Π is a protocol that solves Rf . Consider values of x and y such that f(x) = 0, and
f(y) = 1. Say that under this protocol, Alice goes first, and sends a bit b ∈ {0, 1}. But then, we
have partial functions f0 and f1 defined where

f1(x) =
{

f(x) if b(x) = 1,
? otherwise.

f0 is defined analogously for a first bit of 0. After transmitting the first bit, however, Π will
call one of either Π0 or Π1, protocols that solve Rf after the first bit is sent and assumed to be 1 if
we use Π1, and 0 in the other case. Now, we are left with a protocol Πb that is of communication
complexity of one bit less than before. Also, the circuits C0 and C1 for f0 and f1 are of depth one
less than before. We claim that C can be described by C1ORC0. This is because when f0 = 1 or
f1 = 1, f = 1. In addition, when f = 0, both f1 and f0 output 0 as well. Then, C = C1ORC2, and
depth(f) = Θ(CC(Rf )).

4 Bounds for PARITY

It is known that PARITY has no o(n2) sized formula using {AND,OR, NOT} gates. We will show
the power of Communication Complexity by proving the following theorem, which is implied by
the quadratic bound on PARITY:

Theorem 3 depth(PARITY ) ≥ 2 log n−O(1)

Proof This is very easily shown with a communication game. Say that Alice has number x with
odd parity, and Bob has y that has even parity, and that we want to figure out the index i where
x 6= y. We argue that for any protocol Π, Alice must send at least log n bits to Bob.

Let x ∈ {0, 1}n be a random string with parity 0, and let y = x + ej , where ej is a string of all
0’s, except in position j. Then, y has parity 0. In order to figure out which bit is the different one,
Bob must receive at least log2 n bits from Alice (from the Pigeonhole Principle). Similarly, Alice
must receive at least log2 n bits from Bob. We need ≥ 2 log n−O(1) bits in all to solve this. From
the previous theorem, we conclude that the circuit complexity is also ≥ 2 log n−O(1).

It is interesting to note that this circuit bound depends heavily on the basis of gates used. Such
bounds would be different, for example, if we had a basis of {AND,PARITY } gates.

5 Lower bounds for Tiling

Consider a function f : {0, 1}n × {0, 1}n → {0, 1}. It is useful to visualize this function as a n× n
matrix with entry Mx,y = f(x, y). Say that Alice and Bob transmit bits to each other, and have a
transcript b = (b1, b2, ..., bi). Define Sb to be the cells of M that give rise to thise type of interaction.
That is, define Sb = {(x, y)| Π(x, y) produces interaction b}.
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Claim 4 The sets Sb are generalized “rectangles” in the sense that they can be written as a cartesian
product Sa × Sb, where Sa, Sb ⊆ {0, 1}n.

Proof Define Sa to be the projection of Sb onto the first coordinate, and Sb similarly for the
second coordinate. Now, suppose we have (x1, y1), (x2, y2) ∈ Sb. The points xi and yi are the
inputs to Alice and Bob that would have brought them this sequence of interaction. Consider the
point of view of Alice. She receives the same bits of information from Bob, regardless of whether
he had y1 or y2; they are indistinguishable to her. Thus, the points (x1, y2) and (x2, y1) must also
be in Sb.

In these generalized rectangle, all entries of the matrix have the same value. If we communicate
k bits for a protocol, then 2k rectangles will tile the matrix. Thus, the number of tiles to cover
a matrix is ≤ 2CC(f). This observation can be applied to many applications. If we define N0 =
number of rectangles to tile f−1(0), and N1 analogously for 1, then CC(f) ≥ min(log N0, log N1).
This is helpful when f(x, y) = 1 if x = y. In this case, the matrix is simply the 2n × 2n identity
matrix. We need 2n tilings to cover this matrix, so we know that CC(f) ≥ n in this case.

The following theorem is attributed to Yao, and relates circuit complexity to the rank of the
matrix.

Theorem 5 log rank(Mf ) ≤ CC(f).

Proof Consider a matrix with all 0s and a rectangle of 1s. It has rank 1 (because all the rows
of 1 are linearly dependent), and is covered by one rectangle. But then, our matrix Mf can be
decomposed into the sum of zero matrices with all the rectangles that tile it. This is written Mf =
MR1 + ...+MRk. We use the fact that, given matrices A and B, rank(A+B) ≤ rank(A)+rank(B).
But then, we have rank(Mf ) ≤ k =≤ 2CC(f) and so log rank(Mf ) ≤ CC(f) as stated.
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