
6.841 Advanced Complexity Theory Feb 17, 2009

Lecture 4
Lecturer: Madhu Sudan Scribe: Adam Spanbauer

1 Introduction

Today’s lecture will focus on the proof of Barrington’s Theorem:

Barrington’s Theorem: All polynomial-size formulas have an O(1) width braching program.

Barrington proved, in particular, that all polynomial-size formulae have a width 5 branching program. His
proof used a lot of advanced algebra, so the proof presented here will show that all polynomial-size formulae
have a width 8 branching program. The proof was discovered by Ben-Or and Cleve.

2 Summary of concepts covered in previous lectures

2.1 Non-uniform complexity

For each input length, we are allowed to do something different – the mechanism for doing this is assigning
an advice string to each integer, one for each input length, and giving it to the TM along with the input.

The languages that can be decided by a polynomial time TM with polynomial length advice is called P/POLY
and is equivalent to polynomial sized circuits.

An interesting unresolved question in complexity theory is whether NP * P/POLY .

2.2 Circuits

Given by a Directed Acyclic Graph (DAG). Has source nodes for inputs, a collection of gates, connections,
and an output. Circuit gates can have arbitrary fan-out, which means that the output from a gate can be
used arbitrarily many times as an input elsewhere.

2.3 Branching programs

Branching programs are a weaker model of computation than circuits.
BPs roughly correspond to space complexity, that is, they can be thought of as trying to measure non-
uniformly what the space-complexity is.

A BP is a DAG with a few extra restrictions. Every BP has a starting point, variable nodes, and output
nodes. Being at a variable node corresponds to reading that variables value. There are two edges out of each
variable node: a zero edge and a one edge. The BP outputs a zero or a one based on the type of output
node it lands on. To run a BP, follow the edges corresponding to the read variable values until an output
node is reached.

Every function has a branching program of O(2n) that computes it, since the branching program can just
branch and have 2n output nodes, one corresponding to each possible input to the function.

We can compute any function using a constant width branching program by writing down a 3-CNF formula
for it, and then checking each term, one after the other, outputting zero if any of the terms are zero, and
outputting one if it gets through all of the terms.

4-1



2.4 Formulae

Formulae are the weakest model of computation of the three.

They don’t really correspond to anything, but they are useful in trying to prove lower bounds. The idea
would be to prove lower bounds for formulae, then use those results to prove things about branching pro-
grams, and then to prove things about circuits.

Formulae are just circuits with a fan-out of one, that is, the output of each gate can only be used once.

2.5 Relations between the constructs

Formula size roughly ≥ BP size roughly ≥ circuit size, in the sense that if you have a formula, you can always
come up with the same size or only slightly larger equivalent BP, and if you have a BP you can always come
up with the same size or only slightly larger equivalent circuit.

While a branching program can compute any function in O(2n) nodes, or alternatively in constant width,
the real question is whether or not one can have both small size and constant width. In particular, we are
looking to show that every formula can be simulated by a constant width branching program.

3 Example for BP, checking if the sum of the inputs is 0 mod 5

An example of a linear length, constant width BP is a BP to compute the function that returns 1 if the sum
of the inputs is 0 mod 5, and 0 otherwise. The BP simply keeps track of what the current sum of the inputs
mod 5 is by having 5 nodes at every level. (Picture will be here as soon as I know how to do it.)

4 Majority function

MAJ gives 1 if more than n
2 of the inputs are 1, or 0 otherwise.

You can compute MAJ with a polynomial size formula, here are some useful facts:

Define the function:
E[a,b,i](xa, xa+1, ..., xb) = 1 if exactly i of the xa..xb are 1s. Then MAJ is

∨n
i= n

2 +1(E[1,N,i]).

Additionally, E[a,b,i] =
∨i

j=0(E[a,mid,j] ∧ E[mid+1,b,i−j]).

5 Buildup to Barrington’s theorem

Excercise 1: verify that there is a polynomial sized (2-AND, 2-XOR, NOT) formula for MAJ.
Excercise 2: if f has a polynomial sized (2-AND, 2-XOR, NOT) formula then it has a log-depth formula.

There was some effort to show that MAJ does not have an O(1) width polynomial length BP. It is trivial to
show that any width 2 BP for MAJ is exponentially long, and there is a non-trivial proof that any width 3
BP for MAJ is exponentially long. Nothing is known about width 4 BPs, but Barrington showed that there
is a width 5 BP for MAJ that is polynomial length.

Let us define a model of computation that will make the proof much easier.
A Register machine holds 3 bits of information (R1, R2, R3), and at each step it can perform some operation
on these bits. It has polynomially many instructions. Each instruction is of the form Ri ← Rj + xnRk + (Rl

if needed).

4-2



Our input will be (R1, R2, R3) and x1..xn, and we get our output by looking at the final register values:
(R1, R2, R3 + f(x1..xn)R1. This means that if we give (1, 0, 0) as input, we’ll get (1, 0, f(x1..xn)).

Each instruction can be simulated by a width 8 branching program by just keeping track of the 3 bits using
the 23 = 8 nodes per level, and hard-coding in the instructions to the BP.

Now we have everything neccesary to prove Barrington’s Theorem.

6 Proof of Barrington’s Theorem

Lemma: Let f be a function computed by the depth d formula of 2-AND, 2-XOR, and NOT gates. Then f
has a register machine of length 4d computing it.
Proof by induction on d: depth=0 case:
The only possibility is that f(x1, ...xn) = xi. Then the register machine with the single instruction
R3 ← R3 + xiR1 computes it.
f = NOT f1 case:
R3 ← R3 + f1R1

R3 ← R3 + R1

This gives the output (R1, R2, R3 + R1 + R1f1) = (R1, R2, R3 + R1(NOTf1))

f = f1 XOR f2 case:
R3 ← R3 + f1R1

R3 ← R3 + f2R1

This gives the output (R1, R2, R3 + R1f1 + R1f2) = (R1, R2, R3 + R1(f1 + f2))

f = f1 AND f2 case:
R2 ← R2 + f1R1

R3 ← R3 + f2R2

R2 ← R2 + f1R1

R3 ← R3 + f2R2

This gives the output (R1, R2, R3 + R1f1f2)

Since the largest number of instructions used for any gate was 4, the most instructions our register machine
could have is 4d.

Barrington’s Theorem: All polynomial-size formulas have an O(1) width braching program.
Proof: By excercise 2, the formula has an equivalent log-depth formula. Then by the previous lemma, there
is a register machine with 4log n instructions, that is, polynomial length instructions.

4-3


