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In today’s lecture, we will focus on non-uniform models of computation. In non-uniform computation, we
have a different gadget/program/machine for each input size for a given problem. Specifically, in this lecture,
we will focus on circuit families (which are equivalent to deterministic Turing Machines (DTMs) with advice
strings), branching programs and formulas, and compare them. Finally, we will study Neciporuk’s lower
bound on the succinctness of branching programs.

1 Circuits and Circuit Families

A circuit is a directed acyclic graph (DAG), where the nodes are of three kinds: input nodes, logic gates and an
output node. The goal of a circuit with n input nodes is to compute a boolean function f : {0, 1}n → {0, 1}1
in the following way: if a boolean vector x̄ = (x1, x2, . . . , xn) is fed to the n input nodes, then the logic gates
compute the function f(x̄) and output it at the output node. A basis is a set of logic gates that can be used
to compute any boolean function.

A circuit C has two main complexity measures:

• The size of circuit C, denoted by SIZE(C) is the number of edges in C.2 For a function f , C− SIZE(f) =
minCcomputesf SIZE(C). C− SIZE(f) depends on the basis of gates used in the circuit, but only upto
a constant factor.

• The depth of circuit C, denoted by DEPTH(C) is the longest path in C.

The following is a set of simple facts about circuits:

• Given a circuit C of size S, evaluating C(x̄) for an input vector x̄ takes O(S2) time.

• To simulate a DTIME(t(n)) TM on an input of length n, we need a circuit of size O(t(n)2).

• For any function f : {0, 1}n → {0, 1}, C− SIZE(f) = O(2n) (compare this to the fact that some
functions might take much longer to compute).

• Circuits of size at most S (S ≥ n, where n is the input size) can compute roughly SS logS different
functions. (This can be used to show that there are functions (in fact, even a random function) which
have circuit complexity of Ω(2n/n). In fact, the worst-case complexity of an n-input function is also
(1− o(1))2n/n.)

A circuit family {Cn} is an infinite sequence of circuits, one for each input size. It is said to compute
function f : {0, 1}∗ → {0, 1} if Cn computes the function f |n : {0, 1}n → {0, 1}, which is identical to the
function f , except that the input is restricted to be of length n.

We now compare functions that can be computed by poly-sized circuits families and those that have
poly-time DTMs (i.e. the complexity class P). Clearly, a poly-time DTM can be simulated by a poly-sized
circuit (follows from the second fact we mentioned above). However, the converse is not true. Consider, for
instance, the language

L = {1n : 1n is the unary representation of a TM M and a string x such that M halts on x}.
1In general, a circuit may have m ≥ 1 output nodes and compute a function f : {0, 1}n → {0, 1}m.
2Often, the size of a circuit is defined as the number of logic gates (i.e. internal nodes) in the circuit. The two definitions

are identical upto polynomial factors.
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Clearly, there is a poly-sized circuit family for L; the answer for a specific n can be hard-coded in the circuit.
However, this is the halting problem which is known to be undecidable; therefore, in particular, L /∈ P.

This leads us to the definition of advice strings. A deterministic TM M with advice sequence ā =
(a1, a2, . . .), where ai ∈ {0, 1}∗, accepts the following language:

L(M, ā) = {x : M(x, a|x|)accepts}. (1)

If `(n) = |an| and M runs in time t(n), then

L(M, ā) ∈ DTIME(t(n))/`(n). (2)

In particular,
P/poly = ∪polynomialsp,qDTIME(p(n))/q(n) (3)

is equivalent to poly-sized circuits in computation power. If a language is in P/poly, then the advice string
for input length n can be hard-coded into the poly-sized circuit simulating the poly-time DTM for the
language. On the other hand, if a language has a poly-sized circuit family, then the corresponding circuits
can be used as advice strings to the DTM, which simply evaluates the input for the circuit.

If one can show that NP 6⊆ P/poly, then it would follow that P6=NP3. However, for problems in NP,
the best lower bound known on the length of the advice string required is 4.5n.

2 Branching Programs

A branching program (BP) is a DAG computing some function f : {0, 1}n → {0, 1}. The nodes of the
DAG are of two types: branching nodes, each of which represents an input variable and has two outgoing
edges labeled 0 and 1 respectively, and two output nodes labeled 0 and 1 and having no outgoing edges. To
compute the function for a given input, we start at a designated input node and take the outgoing edge at
each branching node corresponding to the value of the variable in the input. Finally, we reach the output
node corresponding to the value of the function for the given input.

A BP is said to be layered if the nodes can be partitioned into layers L1, L2, . . . , Lk such that all edges
are from nodes in layer Li to those in layer Li+1, for any i. The primary complexity measures of a layered
BP B are the following:

• WIDTH(B) = maxi |Li|, and

• SIZE(B) =
∑
i |Li|.

We mention the following facts abouts BPs:

• A language having a log-space DTM (i.e. is in the complexity class L) has a poly-sized BP.

• A circuit can simulate a BP with roughly the same size, but not vice-versa.

3 Formulas

A formula is a circuit where each logic gate has maximum out-degree of 1. The following facts about formulas
are worth mentioning:

• A change of basis of the logic gates affects the depth of a formula computing a function by only a
constant factor, but its size can change by a polynomial factor.

3Minor typo in previous version corrected by Madhu.
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• If for function f , F− SIZE(f) and F −DEPTH(f) respectively represent the minimum size and depth
of a formula computing f , then

F −DEPTH(f) = O(log F− SIZE(f)). (4)

• For any formula, there is a BP computing the same function whose size at most a polynomial factor
greater than that of the formula.

4 Neciporuk’s Lower Bound

We construct an explicit family of boolean functions that require BPs of almost quadratic size. Consider any
function f with a BP of size BP− SIZE(f). Let S be a subset of input variables of f and BP− SIZES(f)
denote the number of nodes in the BP of f that read the variables in S. Now, if S1, S2, . . . , Sk is a partition
of the input variables of f , then

BP− SIZE(f) =
k∑
i=1

BP− SIZESi(f). (5)

Now, consider the function f where all the variables other than those in Si have been fixed by an assignment
ρ. Let this function be denoted by f |ρ. Then

BP− SIZESi
(f) ≥ BP− SIZE(f |ρ). (6)

We define a function f (called distinctness) on an input of length kl, where the input is grouped into k
groups of length l each. Let us denote the input by x̄ = (x̄1, x̄2, . . . , x̄k), where x̄i = (xi1, xi2, . . . , xil). Then,
f is defined as follows:

f(x̄) =
{

1 , if x̄i 6= x̄j , ∀i 6= j
0 , otherwise. (7)

Now, suppose we fix all inputs except x̄i, i.e. x̄j = āj for j 6= i. This can be done in(
2l

k − 1

)
≥
(

2l

k

)k
(8)

ways. Thus, the number of different functions on x̄i is at least ( 2l

k )k. But, we know that a BP of size s can
represent at most 2O(s) functions. Thus,

BP− SIZESi
(f) = Ω(lk − k log k). (9)

Therefore,

BP− SIZE(f) = Ω(k(lk − k log k)) = Ω
(

n2

log2 n

)
, (10)

by setting k = n/ log n and l = log n.
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