Problem Set 3

Problems

1. Promise-RP and Promise-BPP

- (a) Define the promise classes Promise-RP (prRP) and Promise-BPP (prBPP) so that they have complete (promise) problems, and so that they include RP and BPP (respectively).
- (b) Define prRP^{prRP} and prBPP^{prBPP}.
- (c) Prove that $prBPP^{prBPP} \subset prBPP$.
- (d) Prove that $prRP^{prRP} = prBPP$. *Hint:* Review the proof of $BPP \subset \Sigma^2$.
- (e) Conclude that if P = prRP, then P = prBPP.

2. The hierarchy does not have fixed-polynomial size circuits

Prove that for any fixed k, $\text{TIME}(n^k)/n^k$ (or roughly equivalently $\text{SIZE}(n^k)$), the class of functions computed by circuits of size n^k) does not contain the Polynomial Hierarchy. (More credit for showing that lower levels of the hierarchy are not contained in $\text{TIME}(n^k)/n^k$. [Corrected 3/17/09.]

3. PH vs. PSPACE Prove that there is an oracle A such that $PH^A \neq PSPACE^A$. *Hint:* Parity is not in AC^0 .

4. Sparse NP-complete languages

A language L is said to be *sparse* if there exists a k such that for all sufficiently large n, $|L \cap \{0,1\}^n| < n^k$. Prove that if a sparse language is NP-complete, then the Polynomial Hierarchy collapses. (*More* credit for collapsing it to *lower* levels).

5. $\operatorname{AM}[2] = \operatorname{AM}$

Write out the explicit definition of the complexity classes $BP \cdot \exists \cdot P$ and $BP \cdot \exists \cdot BP \cdot \exists \cdot P$. Prove that these two classes are equal.