Problem Set 2 (Revised)

1. Counting in logarithmic depth:

The goal of this question is to give a logarithmic depth circuit to compute the number of ones in the input, i.e., to compute $b = \sum_{i=1}^{n} x_i$. (Assume integers are represented naturally as bits, i.e., so $b = \sum_{i=0}^{\ell} b_j 2^j$ where $b_0, \ldots, b_{\ell} \in \{0, 1\}$.)

- (a) For $k = 1, \ldots, \ell + 1$, let $b_k = \sum_{i=1}^n x_i \pmod{2^k}$, $c_k = \sum_{i=1}^{n/2} x_i \pmod{2^k}$, and $d_k = \sum_{i=n/2+1}^n x_i \pmod{2^k}$. Given c_k , d_k and b_{k-1} (in bits) give an NC⁰ circuit (constant depth, binary-and, binary-or, circuit) to compute b_k .
- (b) Using the above (or otherwise) give a logarithmic depth circuit to compute b.

2. Robustness of NC^1 :

Prove that a function $f : \{0,1\}^n \to \{0,1\}$ has a logarithmic depth circuit \Leftrightarrow it has a logdepth formula \Leftrightarrow it has a polynomial sized formula \Leftrightarrow it has an O(1)-width polynomial sized branching program.

3. Circuit-Size Hierarchy:

Let $f(n) = O(2^n/n)$ be a growing function. For every (sufficiently large) n prove that there is a function $g : \{0, 1\}^n \to \{0, 1\}$ that is computed by an $f(n) \log f(n)$ -size circuit, but not by any o(f(n))-size circuit.

4. Poly-size Circuits (Corrected):

- Prove that, unless P = NP, there exists a decision problem L ∈ P /_{poly} − P that is not NP-hard.
- Prove that $\text{TIME}(2^{O(n^{\log n})}) \not\subset \mathbf{P}/_{\text{poly}}$.
- 5. CNF, DNF, and Branching Programs: Prove that if a function $g : \{0, 1\}^n \to \{0, 1\}$ can be expressed as a k-DNF formula and an ℓ -CNF formula, then it has a branching program of depth $f(k, \ell)$ (independent of n) for some function f.
- 6. Majority (Revised):

For odd n, define $\operatorname{Maj}_n : \{0,1\}^n \to \{0,1\}$ to be the value taken by a majority of the input bits. Prove that for any constant d, Maj_n does not have a family of depth-d polynomial size circuits with three kinds of allowed gates: $\operatorname{AND}_{\infty}$, $\operatorname{OR}_{\infty}$ and $\operatorname{PARITY}_{\infty}$ (AND with unbounded fanin, OR with unbounded fan-in and PARITY with unbounded fan-in, respectively). To begin with, try to prove that $\{\operatorname{Maj}_n\}_n \notin AC^0$.

You may assume that "Parity-Mod-3" (Is the sum of n bits zero mod 3) is not solvable by constant depth poly-sized circuits with AND_{∞} , OR_{∞} and $PARITY_{\infty}$ gates.