
1

Fall 2006 6.831 UI Design and Implementation 1

Lecture 7: Prototyping

2

Fall 2006 6.831 UI Design and Implementation 2

UI Hall of Fame or Shame?

Today’s candidate for the Halls of Fame and Shame is the Windows calculator.

It looks and works just like a familiar desk calculator, a stable interface that many people are familiar with.
It’s a familiar metaphor, and trivial for calculator users to pick up and use.

Unfortunately it deviates from the metaphor in some small ways, largely because the buttons are limited to text
labels. The square root button is labeled “sqrt” rather than the root symbol. The multiplication operator is *
instead of X.

This interface adheres to its metaphor so carefully that it passes up some tremendous opportunities to improve
on the desk calculator interface. Why only one line of display? A history, analogous to the paper tape printed
by some desk calculators, would cost almost nothing. Why only one memory slot? Why display “M” instead
of the actual number stored in memory? All these issues violate the visibility of system state heuristic. A
more serious violation of the same heuristic: the interface actually has invisible modes. When I’m entering a
number, pressing a digit appends it to the number. But after I press an operator button, the next digit I press
starts a new number. There’s no visible feedback about what low-level mode I’m in. Nor can I tell, once it’s
time to push the = button, what computation will actually be made.

Most of the buttons are cryptically worded (recognition, not recall). MC, MR, MS, and M+? What’s the
difference between CE and C? My first guess was that CE meant “Clear Error” (for divide-by-zero errors and
the like); some people in class suggested that it means “Clear Everything”. In fact, it means “Clear Entry”,
which just deletes the last number you entered without erasing the previous part of the computation. “C”
actually clears everything.

It turns out that this interface also lets you type numbers on the keyboard, but the interface doesn’t give a hint
(affordance) about that possibility. In fact, in a study of experienced GUI users who were given an onscreen
calculator like this one to use, 13 of 24 never realized that they could use the keyboard instead of the mouse
(Nielsen, Usability Engineering, p. 61-62). One possible solution to this problem would be to make the
display look more like a text field, with a blinking cursor in it, implying “type here”. Text field appearance
would also help the Edit menu, which offers Copy and Paste commands without any obvious selection
(external consistency).

Finally, we might also question the use of small blue text to label the buttons, which is hard to read, and the
use of both red and blue labels in the same interface, since chromatic aberration forces red and blue to be
focused differently. Both decisions tend to cause eyestrain over periods of long use.

3

Fall 2006 6.831 UI Design and Implementation 3

Today’s Topics

• Paper prototypes

• Computer prototypes

• Wizard of Oz prototypes

Today we’re going to talk about protototyping: producing cheaper, less accurate renditions

of your target interface. Prototyping is essential in the early iterations of a spiral design

process, and it’s useful in later iterations too.

4

Fall 2006 6.831 UI Design and Implementation 4

Why Prototype?

• Get feedback earlier, cheaper

• Experiment with alternatives

• Easier to change or throw away

We build prototypes for several reasons, all of which largely boil down to cost.

First, prototypes are much faster to build than finished implementations, so we can evaluate

them sooner and get early feedback about the good and bad points of a design.

Second, if we have a design decision that is hard to resolve, we can build multiple

prototypes embodying the different alternatives of the decision.

Third, if we discover problems in the design, a prototype can be changed more easily, for

the same reasons it could be built faster. Prototypes are more malleable. Most important, if

the design flaws are serious, a prototype can be thrown away. It’s important not to commit

strongly to design ideas in the early stages of design. Unfortunately, writing and debugging

a lot of code creates a psychological sense of commitment which is hard to break. You

don’t want to throw away something you’ve worked hard on, so you’re tempted to keep

some of the code around, even if it really should be scrapped.

The prototyping techniques we’ll see in this lecture actually force you to throw the

prototype away. For example, a paper mockup won’t form any part of a finished software

implementation. This is a good mindset to have in early iterations, since it maximizes your

creative freedom.

5

Fall 2006 6.831 UI Design and Implementation 5

Prototype Fidelity

• Low fidelity: omits details

• High fidelity: more like finished product

An essential property of a prototyping technique is its fidelity, which is simply how similar

it is to the finished interface. Low-fidelity prototypes omit details, use cheaper materials, or

use different interaction techniques. High-fidelity prototypes are very similar to the

finished product.

6

Fall 2006 6.831 UI Design and Implementation 6

Fidelity is Multidimensional

• Breadth: % of features covered

–Only enough features for certain tasks

• Depth: degree of functionality

– Limited choices, canned responses, no
error handling

horizontal
prototype

vertical
prototype

scenario

front end

different features

back end

Fidelity is not just one-dimensional, however. Prototypes can be low- or high-fidelity in

various different ways (Carolyn Snyder, Paper Prototyping, 2003).

Breadth refers to the fraction of the feature set represented by the prototype. A prototype

that is low-fidelity in breadth might be missing many features, having only enough to

accomplish certain specific tasks. A word processor prototype might omit printing and

spell-checking, for example.

Depth refers to how deeply each feature is actually implemented. Is there a backend behind

the prototype that’s actually implementing the feature? Low-fidelity in depth may mean

limited choices (e.g., you can’t print double-sided), canned responses (always prints the

same text, not what you actually typed), or lack of robustness and error handling (crashes if

the printer is offline).

A diagrammatic way to visualize breadth and depth is shown (following Nielsen, Usability

Engineering, p. 94). A horizontal prototype is all breadth, and little depth; it’s basically a

frontend with no backend. A vertical prototype is the converse: one area of the interface is

implemented deeply. The question of whether to build a horizontal or vertical prototype

depends on what risks you’re trying to mitigate. In user interface design, horizontal

prototypes are more common, since they address usability risk. But if some aspect of the

application is a risky implementation – you’re not sure if it can be implemented to meet the

requirements – then you may want to build a vertical prototype to test that.

A special case lies at the intersection of a horizontal and a vertical prototype. A scenario

shows how the frontend would look for a single concrete task. Scenarios are great for

visualizing a design, but they’re hard to evaluate with users.

7

Fall 2006 6.831 UI Design and Implementation 7

More Dimensions of Fidelity

• Look: appearance, graphic design

–Sketchy, hand-drawn

• Feel: input method

–Pointing & writing feels very different from
mouse & keyboard

Two more crucial dimensions of a prototype’s fidelity are, loosely, its look and its feel.

Look is the appearance of the prototype. A hand-sketched prototype is low-fidelity in look,

compared to a prototype that uses the same widget set as the finished implementation. Feel

refers to the physical methods by which the user interacts with the prototype. A user

interacts with a paper mockup by pointing at things to represent mouse clicks, and writing

on the paper to represent keyboard input. This is a low-fidelity feel for a desktop application

(but it may not be far off for a tablet PC application).

8

Fall 2006 6.831 UI Design and Implementation 8

Paper Prototype

• Interactive paper mockup
– Sketches of screen appearance

– Paper pieces show windows, menus, dialog boxes

• Interaction is natural
– Pointing with a finger = mouse click

– Writing = typing

• A person simulates the computer’s operation
– Putting down & picking up pieces

– Writing responses on the “screen”

– Describing effects that are hard to show on paper

• Low fidelity in look & feel

• High fidelity in depth (person simulates the backend)

Paper prototypes are an excellent choice for early design iterations. A paper prototype is a

physical mockup of the interface, mostly made of paper. It’s usually hand-sketched on

mutiple pieces, with different pieces showing different menus, dialog boxes, or window

elements.

The key difference between mere sketches and a paper prototype is interactivity. A paper

prototype is brought to life by a design team member who simulates what the computer

would do in response to the user’s “clicks” and “keystrokes”, by rearranging pieces, writing

custom responses, and occasionally announcing some effects verbally that are too hard to

show on paper. Because a paper prototype is actually interactive, you can actually user-test

it: give users a task to do and watch how they do it.

A paper prototype is clearly low fidelity in both look and feel. But it can be arbitrarily high

fidelity in breadth at very little cost (just sketching, which is part of design anyway). Best

of all, paper prototypes can be high-fidelity in depth at little cost, since a human being is

simulating the backend.

9

Fall 2006 6.831 UI Design and Implementation 9

Why Paper Prototyping?

• Faster to build
– Sketching is faster than programming

• Easier to change
– Easy to make changes between user tests, or even during a

user test

– No code investment– everything will be thrown away (except
the design)

• Focuses attention on big picture
– Designer doesn’t waste time on details

– Customer makes more creative suggestions, not nitpicking

• Nonprogrammers can help
– Only kindergarten skills are required

But why use paper? And why hand sketching rather than a clean drawing from a drawing

program?

Hand-sketching on paper is faster. You can draw many sketches in the same time it would

take to draw one user interface with code. For most people, hand-sketching is also faster

than using a drawing program to create the sketch.

Paper is easy to change. You can even change it during user testing. If part of the prototype

was a problem for one user, you can scratch it out or replace it before the next user arrives.

Surprisingly, paper is more malleable than digital bits in many ways.

Hand-sketched prototypes in particular are valuable because they focus attention on the

issues that matter in early design without distracting anybody with details. When you’re

sketching by hand, you aren’t bothered with details like font, color, alignment, whitespace,

etc. In a drawing program, you would be faced with all these decisions, and you might

spend a lot of time on them – time that would clearly be wasted if you have to throw away

this design. Hand sketching also improves the feedback you get from users. They’re less

likely to nitpick about details that aren’t relevant at this stage. They won’t complain about

the color scheme if there isn’t one. More important, however, a hand-sketch design seems

less finished, less set in stone, and more open to suggestions and improvements. Architects

have known about this phenomenon for many years. If they show clean CAD drawings to

their clients in the early design discussions, the clients are less able to discuss needs and

requirements that may require radical changes in the design. In fact, many CAD tools have

an option for rendering drawings with a “sketchy” look for precisely this reason.

A final advantage of paper prototyping: no special skills are required. So graphic designers,

usability specialists, and even users can help create prototypes and operate them.

10

Fall 2006 6.831 UI Design and Implementation 10

Tools for Paper Prototyping

• White poster board (11”x14”)
– For background, window frame

• Big (unlined) index cards (4”x6”, 5”x8”)
– For menus, window contents, and dialog boxes

• Restickable glue
– For keeping pieces fixed

• White correction tape
– For text fields, checkboxes, short messages

• Overhead transparencies
– For highlighting, user “typing”

• Photocopier
– For making multiple blanks

• Pens & markers, scissors, tape

Here are the elements of a paper prototyping toolkit.

Although standard (unlined) paper works fine, you’ll get better results from sturdier
products like poster board and index cards. Use poster board to draw a static background,
usually a window frame. Then use index cards for the pieces you’ll place on top of this
background. You can cut the index cards down to size for menus and window internals.

Restickable Post-it Note glue, which comes in a roll-on stick, is a must. This glue lets you
make all of your pieces sticky, so they stay where you put them. You can find this glue at
Pearl Arts in Central Square; it’s not found in the Coop.

Post-it correction tape is another essential element. It’s a roll of white tape with Post-it
glue on one side. Correction tape is used for text fields, so that users can write on the
prototype without changing it permanently. You peel off a length of tape, stick it on your
prototype, let the user write into it, and then peel it off and throw it away. Correction tape
comes in two widths, “2 line” and “6 line”. The 2-line width is good for single-line text
fields, and the 6-line width for text areas. You can get correction tape at the Office Max in
East Cambridge.

Overhead transparencies are useful for two purposes. First, you can make a selection
highlight by cutting a piece of transparency to size and coloring it with a transparency
marker. Second, when you have a form with several text fields in it, it’s easier to just lay a
transparency over the form and let the users write on that, rather than sticking a piece of
correction tape in every field. Pearl Arts in Central Square sells colored transparencies
that you can use for selection highlighting.

If you have many similar elements in your prototype, a photocopier can save you time.

And, of course, the usual kindergarten equipment: pens, markers, scissors, tape.

11

Fall 2006 6.831 UI Design and Implementation 11

Tips for Good Paper Prototypes

• Make it larger than life

• Make it monochrome

• Replace tricky visual feedback with
audible descriptions

–Tooltips, drag & drop, animation, progress

bar

• Keep pieces organized

–Use folders & open envelopes

A paper prototype should be larger than life-size. Remember that fingers are bigger than a

mouse pointer, and people usually write bigger than 12 point. So it’ll be easier to use your

paper prototype if you scale it up a bit. It will also be easier to see from a distance, which is

important because the prototype lies on the table, and because when you’re testing users,

there may be several observers taking notes who need to see what’s going on. Big is good.

Don’t worry too much about color in your prototype. Use a single color. It’s simpler, and it

won’t distract attention from the important issues. Needless to say, don’t use yellow.

You don’t have to render every visual effect in paper. Some things are just easier to say

aloud: “the basketball is spinning.” “A progress bar pops up: 20%, 50%, 75%, done.” If

your design supports tooltips, you can tell your users just to point at something and ask

“What’s this?”, and you’ll tell them what the tooltip would say. If you actually want to test

the tooltip messages, however, you should prototype them on paper.

Figure out a good scheme for organizing the little pieces of your prototype. One approach

is a three-ring binder, with different screens on different pages. Most interfaces are not

sequential, however, so a linear organization may be too simple. Two-pocket folders are

good for storing big pieces, and letter envelopes (with the flap open) are quite handy for

keeping menus.

12

Fall 2006 6.831 UI Design and Implementation 12

Hand-Drawn or Not?

Here are some of the prototypes made by an earlier class. Should a paper prototype be

hand-sketched or computer-drawn? Generally hand-sketching is better in early design, but

sometimes realistic images can be constructive additions. Top left is a prototype for an

interface that will be integrated into an existing program (IBM Eclipse), so the prototype is

mostly constructed of modified Eclipse screenshots. The result is very clean and crisp, but

also tiny – it’s hard to read from a distance. It may also be harder for a test user to focus on

commenting about the new parts of the interface, since the new features look just like

Eclipse. A hybrid hand-sketched/screenshot interface might work even better.

The top right prototype shows such a hybrid – a interface designed to integrate into a web

browser. Actual screenshots of web pages are used, mainly as props, to make the prototype

more concrete and help the user visualize the interface better. Since web page layout isn’t

the problem the interface is trying to solve, there’s no reason to hand-sketch a web page.

The bottom photo shows a pure hand-sketched interface that might have benefited from

such props -- a photo organizer could use real photographs to help the user think about what

kinds of things they need to do with photographs. This prototype could also use a window

frame – a big posterboard to serve as a static background.

13

Fall 2006 6.831 UI Design and Implementation 13

Size Matters

Both of these prototypes have good window frames, but the big one on the right is easier to

read and manipulate.

14

Fall 2006 6.831 UI Design and Implementation 14

The Importance of Writing Big and

Dark

This prototype is even easier to read. Markers are better than pencil. (Whiteout and

correction tape can fix mistakes as well as erasers can!) Color is also neat, but don’t bother

unless color is a design decision that needs to be tested, as it is in this prototype. If color

doesn’t really matter, monochromatic prototypes work just as well.

15

Fall 2006 6.831 UI Design and Implementation 15

Post-it Glue and Transparencies are

Good

The prototype on the left has lots of little pieces that have trouble staying put. Post-it glue

can help with that.

On the right is a prototype that’s completely covered with a transparency. Users can write

on it directly with dry-erase marker, which just wipes off – a much better approach than

water-soluble transparency markers. With multiple layers of transparency, you can let the

user write on the top layer, while you use a lower layer for computer messages, selection

highlighting, and other effects.

16

Fall 2006 6.831 UI Design and Implementation 16

How to Test a Paper Prototype

• Roles for design team

– Computer

• Simulates prototype

• Doesn’t give any feedback that the computer wouldn’t

– Facilitator

• Presents interface and tasks to the user

• Encourages user to “think aloud” by asking questions

• Keeps user test from getting off track

– Observer

• Keeps mouth shut, sits on hands if necessary

• Takes copious notes

Once you’ve built your prototype, you can put it in front of users and watch how they use it.

We’ll see much more about user testing in a later lecture, including ethical issues. But

here’s a quick discussion of user testing in the paper prototyping domain.

There are three roles for your design team to fill:

The computer is the person responsible for making the prototype come alive. This person

moves around the pieces, writes down responses, and generally does everything that a real

computer would do. In particular, the computer should not do anything that a real computer

wouldn’t. Think mechanically, and respond mechanically.

The facilitator is the human voice of the design team and the director of the testing session.

The facilitator explains the purpose and process of the user study, obtains the user’s

informed consent, and presents the user study tasks one by one. While the user is working

on a task, the facilitator tries to elicit verbal feedback from the user, particularly

encouraging the user to “think aloud” by asking probing (but not leading) questions. The

facilitator is responsible for keeping everybody disciplined and the user test on the right

track.

Everybody else in the room (aside from the user) is an observer. The most important rule

about being an observer is to keep your mouth shut and watch. Don’t offer help to the user,

even if they’re missing something obvious. Bite your tongue, sit on your hands, and just

watch. The observers are the primary note takers, since the computer and the facilitator are

usually too busy with their duties.

17

Fall 2006 6.831 UI Design and Implementation 17

What You Can Learn from a Paper Prototype

• Conceptual model
– Do users understand it?

• Functionality
– Does it do what’s needed? Missing features?

• Navigation & task flow
– Can users find their way around?

– Are information preconditions met?

• Terminology
– Do users understand labels?

• Screen contents
– What needs to go on the screen?

Paper prototypes can reveal many usability problems that are important to find in early

stages of design. Fixing some of these problems require large changes in design. If users

don’t understand the metaphor or conceptual model of the interface, for example, the entire

interface may need to be scrapped.

18

Fall 2006 6.831 UI Design and Implementation 18

What You Can’t Learn

• Look: color, font, whitespace, etc

• Feel: Fitts’s Law issues

• Response time

• Are small changes noticed?

– Even the tiniest change to a paper prototype is

clearly visible to user

• Exploration vs. deliberation

– Users are more deliberate with a paper prototype;

they don’t explore or thrash as much

But paper prototypes don’t reveal every usability problem, because they are low-fidelity in several dimensions.

Obviously, graphic design issues that depend on a high-fidelity look will not be discovered. Similarly,

interaction issues that depend on a high-fidelity feel will also be missed. For example, Fitts’s Law problems

like buttons that are too small, too close together, or too far away will not be detected in a paper prototype.

The human computer of a paper prototype rarely reflects the speed of an implemented backend, so issues of

response time – whether feedback appears quickly enough, or whether an entire task can be completed within

a certain time constraint -- can’t be tested either.

Paper prototypes don’t help answer questions about whether subtle feedback will even be noticed. Will users

notice that message down in the status bar, or the cursor change, or the highlight change? In the paper

prototype, even the tiniest change is grossly visible, because a person’s arm has to reach over the prototype

and make the change. (If many changes happen at once, of course, then some of them may be overlooked

even in a paper prototype, a clearly discernible. This is related to an interesting cognitive phenomenon called

change blindness.)

There’s an interesting qualitative distinction between the way users use paper prototypes and the way they use

real interfaces. Experienced paper prototypers report that users are more deliberate with a paper prototype,

apparently thinking more carefully about their actions. This may be partly due to the simulated computer’s

slow response; it may also be partly a social response, conscientiously trying to save the person doing the

simulating from a lot of tedious and unnecessary paper shuffling. More deliberate users make fewer mistakes,

which is bad, because you want to see the mistakes. Users are also less likely to randomly explore a paper

prototype.

These drawbacks don’t invalidate paper prototyping as a technique, but you should be aware of them. Several

studies have shown that low-fidelity prototypes identify substantially the same usability problems as high-

fidelity prototypes (Virzi, Sokolov, & Karis, “Usability problem identification using both low- and hi-fidelity

prototypes”, CHI ’96; Catani & Biers, “Usability evaluation and prototype fidelity”, Human Factors &

Ergonomics 1998).

19

Fall 2006 6.831 UI Design and Implementation 19

Computer Prototype

• Interactive software simulation

• High-fidelity in look & feel

• Low-fidelity in depth

–Paper prototype had a human simulating

the backend; computer prototype doesn’t

–Computer prototype is typically horizontal:

covers most features, but no backend

So at some point we have to depart from paper and move our prototypes into software. A

typical computer prototype is a horizontal prototype. It’s high-fi in look and feel, but low-

fi in depth – there’s no backend behind it. Where a human being simulating a paper

prototype can generate new content on the fly in response to unexpected user actions, a

computer prototype cannot.

20

Fall 2006 6.831 UI Design and Implementation 20

What You Can Learn From Computer

Prototypes

• Everything you learn from a paper prototype, plus:

• Screen layout
– Is it clear, overwhelming, distracting, complicated?

– Can users find important elements?

• Colors, fonts, icons, other elements
– Well-chosen?

• Interactive feedback
– Do users notice & respond to status bar messages, cursor

changes, other feedback

• Fitts’s Law issues
– Controls big enough? Too close together? Scrolling list is too

long?

Computer prototypes help us get a handle on the graphic design and dynamic feedback of

the interface.

21

Fall 2006 6.831 UI Design and Implementation 21

Why Use Prototyping Tools?

• Faster than coding

• No debugging

• Easier to change or throw away

• Don’t let Java do your graphic design

One way to build a computer prototype is just to program it directly in an implementation

language, like Java or C++, using a user interface toolkit, like Swing or MFC. If you don’t

hook in a backend, or use stubs instead of your real backend, then you’ve got a horizontal

prototype.

But it’s often better to use a prototyping tool instead. Building an interface with a tool is

usually faster than direct coding, and there’s no code to debug. It’s easier to change it, or

even throw it away if your design turns out to be wrong. Recall Cooper’s concerns about

prototyping: your computer prototype may become so elaborate and precious that it

becomes your final implementation, even though (from a software engineering point of

view) it might be sloppily designed and unmaintainable.

Also, when you go directly from paper prototype to code, there’s a tendency to let your UI

toolkit handle all the graphic design for you. That’s a mistake. For example, Java has

layout managers that automatically arrange the components of an interface. Layout

managers are powerful tools, but they produce horrible interfaces when casually or lazily

used. A prototyping tool will help you envision your interface and get its graphic design

right first, so that later when you move to code, you know what you’re trying to persuade

the layout manager to produce.

Even with a prototyping tool, computer prototypes can still be a tremendous amount of

work. When drag & drop was being considered for Microsoft Excel, a couple of Microsoft

summer interns were assigned to develop a prototype of the feature using Visual Basic.

They found that they had to implement a substantial amount of basic spreadsheet

functionality just to test drag & drop. It took two interns their entire summer to build the

prototype that proved that drag & drop was useful. Actually adding the feature to Excel

took a staff programmer only a week. This isn’t a fair comparison, of course – maybe six

intern-months was a cost worth paying to mitigate the risk of one fulltimer-week, and the

interns certainly learned a lot. But building a computer prototype can be a slippery slope, so

don’t let it suck you in too deeply. Focus on what you want to test, i.e., the design risk you

need to mitigate, and only prototype that.

22

Fall 2006 6.831 UI Design and Implementation 22

Computer Prototyping Techniques

• Storyboard

–Sequence of painted screenshots

connected by hyperlinks (“hotspots”)

• Form builder

–Real windows assembled from a palette of

widgets (buttons, text fields, labels, etc.)

• Wizard of Oz

–Computer frontend, human backend

There are two major techniques for building a computer prototype.

A storyboard is a sequence (a graph, really) of fixed screens. Each screen has one or more

hotspots that you can click on to jump to another screen. Sometimes the transitions between

screens also involve some animation in order to show a dynamic effect, like mouse-over

feedback or drag-drop feedback.

A form builder is a tool for drawing real, working interfaces by dragging widgets from a

palette and positioning them on a window.

A Wizard of Oz prototype is a kind of hybrid of a computer prototype and a paper

prototype; the user interacts with a computer, but there’s a human behind the scenes

figuring out how the user interface should respond.

23

Fall 2006 6.831 UI Design and Implementation 23

Storyboarding Tools

• HTML
– image maps

• Flash/Director
– animation + actions

• PowerPoint
– images + links + animation

• All these tools have scripting languages, too
– Help orchestrate the transitions

• For high fidelity look, take screenshots of
widgets from a form builder

Here are some tools commonly used for storyboarding.

A PowerPoint presentation is just a slide show. Each slide shows a fixed screenshot, which

you can draw in a paint program and import, or which you can draw directly in PowerPoint.

A PowerPoint storyboard doesn’t have to be linear slide show. You can create hyperlinks

that jump to any slide in the presentation.

Macromedia Flash (formerly Director) is a tool for constructing multimedia interfaces. It’s

particularly useful for prototyping interfaces with rich animated feedback.

HTML is also useful for storyboarding. Each screen is an imagemap. Macromedia

Dreamweaver makes it easy to build HTML imagemaps.

All these tools have scripting languages – PowerPoint has Basic, Flash/Director has a

language called Lingo, and HTML has Javascript – so you can write some code to

orchestrate transitions, if need be.

If your storyboards need standard widgets like buttons or text boxes, you can create some

widgets in a form builder and take static screenshots of them for your storyboard.

You can find Flash, Director, and Dreamweaver installed in MIT’s New Media Center

(search for it in Google), a cluster of Macs on the first floor of building 26. The room is

sometimes used for classes during the day, but is open to the MIT community at other

times.

24

Fall 2006 6.831 UI Design and Implementation 24

Pros & Cons of Storyboarding

• Pros

–You can draw anything

• Cons

–No text entry

–Widgets aren’t active

–“Hunt for the hotspot”

The big advantage of storyboarding is similar to the advantage of paper: you can draw

anything on a storyboard. That frees your creativity in ways that a form builder can’t, with

its fixed palette of widgets.

The disadvantages come from the storyboard’s static nature. All you can do is click, not

enter text. You can still have text boxes, but clicking on a text box might make its content

magically appear, without the user needing to type anything. Similarly, scrollbars, list

boxes, and buttons are just pictures, not active widgets. Watching a real user in front of a

storyboard often devolves into a game of “hunt for the hotspot”, like children’s software

where the only point is to find things on the screen to click on and see what they do. The

hunt-for-the-hotspot effect means that storyboards are largely useless for user testing, unlike

paper prototypes. In general, horizontal computer prototypes are better evaluated with other

techniques, like heuristic evaluation.

25

Fall 2006 6.831 UI Design and Implementation 25

Form Builders

• HTML pages and forms
– Natural if you’re building a web application

– May have low-fidelity look otherwise

• Java GUI builders
– Sun NetBeans

– Eclipse Visual Editor

– Borland JBuilder

• Other GUI builders
– Visual Basic, .NET Windows Forms

– Mac Interface Builder

– Qt Designer

• Tips
– Use absolute positioning for now

Here are some form builder tools.

HTML is a natural tool to use if you’re building a web application. You can compose static

HTML pages simulating the dynamic responses of your web interface. Although the

responses are canned, your prototype is still better than a storyboard, because its screens are

more active than mere screenshots: the user can actually type into form fields, scroll

through long displays, and see mouse-over feedback. Even if you’re building a desktop or

handheld application, HTML may still be useful. For example, you can mix static

screenshots of some parts of your UI with HTML form widgets (buttons, list boxes, etc)

representing the widget parts. It may be hard to persuade HTML to render a desktop

interface in a high-fidelity way, however.

Visual Basic is the classic form builder. Many custom commercial applications are built

entirely with Visual Basic.

There are several form builders for Java. Sun NetBeans and Borland JBuilder (Personal

Edition) can be downloaded free.

Be careful when you’re using a form builder for prototyping to avoid layout managers when

you’re doing your initial graphic designs. Instead, use absolute positioning, so you can put

each component where you want it to go. Java GUI builders may need to be told not to use a

layout manager.

26

Fall 2006 6.831 UI Design and Implementation 26

Pros & Cons of Form Builders

• Pros

–Actual controls, not just pictures of them

–Can hook in some backend if you need it

• But then you won’t want to throw it away

• Cons

–Limits thinking to standard widgets

–Useless for rich graphical interfaces

Unlike storyboards, form builders use actual working widgets, not just static pictures. So

the widgets look the same as they will in the final implementation (assuming you’re using a

compatible form builder – a prototype in Visual Basic may not look like a final

implementation in Java).

Also, since form builders usually have an implementation language underneath them –

which may even be the same implementation language that you’ll eventually use for your

final interface -- you can also hook in as much or as little backend as you want.

On the down side, form builders give you a fixed palette of standard widgets, which limits

your creativity as a designer, and which makes form builders largely useless for prototyping

rich graphical interfaces, e.g., a circuit-drawing editor. Form builders are great for the

menus and widgets that surround a graphical interface, but can’t simulate the “insides” of

the application window.

27

Fall 2006 6.831 UI Design and Implementation 27

Wizard of Oz Prototype

• Software simulation with a human in the loop

to help

• “Wizard of Oz” = “man behind the curtain”

– Wizard is usually but not always hidden

• Often used to simulate future technology

– Speech recognition

– Learning

• Issues

– Two UIs to worry about: user’s and wizard’s

– Wizard has to be mechanical

Part of the power of paper prototypes is the depth you can achieve by having a human simulate the backend.

A Wizard of Oz prototype also uses a human in the backend, but the frontend is an actual computer system

instead of a paper mockup. The term Wizard of Oz comes from the movie of the same name, in which the

wizard was a man hiding behind a curtain, controlling a massive and impressive display.

In a Wizard of Oz prototype, the “wizard” is usually but not always hidden from the user. Wizard of Oz

prototypes are often used to simulate future technology that isn’t available yet, particularly artificial

intelligence. A famous example was the listening typewriter (Gould, Conti, & Hovanyecz, “Composing letters

with a simulated listening typewriter,” CACM v26 n4, April 1983). This study sought to compare the

effectiveness and acceptability of isolated-word speech recognition, which was the state of the art in the early

80’s, with continuous speech recognition, which wasn’t possible yet. The interface was a speech-operated text

editor. Users looked at a screen and dictated into a microphone, which was connected to a typist (the wizard)

in another room. Using a keyboard, the wizard operated the editor showing on the user’s screen.

The wizard’s skill was critical in this experiment. She could type 80 wpm, she practiced with the simulation

for several weeks (with some iterative design on the simulator to improve her interface), and she was careful

to type exactly what the user said, even exclamations and parenthetical comments or asides. The computer

helped make her responses a more accurate simulation of computer speech recognition. It looked up every

word she typed in a fixed dictionary, and any words that were not present were replaced with X’s, to simulate

misrecognition. Furthermore, in order to simulate the computer’s ignorance of context, homophones were

replaced with the most common spelling, so “done” replaced “dun”, and “in” replaced “inn”. The result was

an extremely effective illusion. Most users were surprised when told (midway through the experiment) that a

human was listening to them and doing the typing.

Thinking and acting mechanically is harder for a wizard than it is for a paper prototype simulator, because the

tasks for which Wizard of Oz testing is used tend to be more “intelligent”. It helps if the wizard is personally

familiar with the capabilities of similar interfaces, so that a realistic simulation can be provided. (See Maulsby,

1993) It also helps if the wizard’s interface can intentionally dumb down the responses, as was done in the

Gould study.

A key challenge in designing a Wizard of Oz prototype is that you actually have two interfaces to worry about:

the user’s interface, which is presumably the one you’re testing, and the wizard’s.

