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A
bstract

W
e

trained
a

large,deep
convolutionalneuralnetw

ork
to

classify
the

1.2
m

illion
high-resolution

im
ages

in
the

Im
ageN

etL
SV

R
C

-2010
contestinto

the
1000

dif-
ferentclasses.

O
n

the
testdata,w

e
achieved

top-1
and

top-5
errorrates

of37.5%
and

17.0%
w

hich
is

considerably
better

than
the

previous
state-of-the-art.

T
he

neuralnetw
ork,w

hich
has

60
m

illion
param

eters
and

650,000
neurons,consists

of
five

convolutionallayers,som
e

of
w

hich
are

follow
ed

by
m

ax-pooling
layers,

and
three

fully-connected
layers

w
ith

a
final1000-w

ay
softm

ax.
To

m
ake

train-
ing

faster,
w

e
used

non-saturating
neurons

and
a

very
efficient

G
PU

im
plem

en-
tation

of
the

convolution
operation.

To
reduce

overfitting
in

the
fully-connected

layers
w

e
em

ployed
a

recently-developed
regularization

m
ethod

called
“dropout”

that
proved

to
be

very
effective.

W
e

also
entered

a
variant

of
this

m
odel

in
the

IL
SV

R
C

-2012
com

petition
and

achieved
a

w
inning

top-5
testerrorrate

of15.3%
,

com
pared

to
26.2%

achieved
by

the
second-bestentry.

1
Introduction

C
urrentapproaches

to
objectrecognition

m
ake

essentialuse
of

m
achine

learning
m

ethods.
To

im
-

prove
their

perform
ance,w

e
can

collectlarger
datasets,learn

m
ore

pow
erfulm

odels,and
use

bet-
ter

techniques
for

preventing
overfitting.

U
ntilrecently,datasets

of
labeled

im
ages

w
ere

relatively
sm

all—
on

the
orderoftens

ofthousands
ofim

ages
(e.g.,N

O
R

B
[16],C

altech-101/256
[8,9],and

C
IFA

R
-10/100

[12]).
Sim

ple
recognition

tasks
can

be
solved

quite
w

ellw
ith

datasets
of

this
size,

especially
if

they
are

augm
ented

w
ith

label-preserving
transform

ations.
For

exam
ple,the

current-
best

error
rate

on
the

M
N

IST
digit-recognition

task
(<0.3%

)
approaches

hum
an

perform
ance

[4].
B

utobjects
in

realistic
settings

exhibitconsiderable
variability,so

to
learn

to
recognize

them
itis

necessary
to

use
m

uch
larger

training
sets.

A
nd

indeed,the
shortcom

ings
of

sm
allim

age
datasets

have
been

w
idely

recognized
(e.g.,Pinto

etal.[21]),butithas
only

recently
becom

e
possible

to
col-

lectlabeled
datasets

w
ith

m
illions

ofim
ages.T

he
new

largerdatasets
include

L
abelM

e
[23],w

hich
consists

of
hundreds

of
thousands

of
fully-segm

ented
im

ages,and
Im

ageN
et[6],w

hich
consists

of
over15

m
illion

labeled
high-resolution

im
ages

in
over22,000

categories.

To
learn

aboutthousands
ofobjects

from
m

illions
ofim

ages,w
e

need
a

m
odelw

ith
a

large
learning

capacity.
H

ow
ever,

the
im

m
ense

com
plexity

of
the

object
recognition

task
m

eans
that

this
prob-

lem
cannotbe

specified
even

by
a

datasetas
large

as
Im

ageN
et,so

our
m

odelshould
also

have
lots

of
prior

know
ledge

to
com

pensate
for

all
the

data
w

e
don’t

have.
C

onvolutional
neural

netw
orks

(C
N

N
s)constitute

one
such

class
ofm

odels
[16,11,13,18,15,22,26].T

heircapacity
can

be
con-

trolled
by

varying
theirdepth

and
breadth,and

they
also

m
ake

strong
and

m
ostly

correctassum
ptions

about
the

nature
of

im
ages

(nam
ely,

stationarity
of

statistics
and

locality
of

pixel
dependencies).

T
hus,com

pared
to

standard
feedforw

ard
neural

netw
orks

w
ith

sim
ilarly-sized

layers,C
N

N
s

have
m

uch
few

erconnections
and

param
eters

and
so

they
are

easierto
train,w

hile
theirtheoretically-best

perform
ance

is
likely

to
be

only
slightly

w
orse.
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D
espite

the
attractive

qualitiesofC
N

N
s,and

despite
the

relative
efficiency

oftheirlocalarchitecture,
they

have
stillbeen

prohibitively
expensive

to
apply

in
large

scale
to

high-resolution
im

ages.L
uck-

ily,currentG
PU

s,paired
w

ith
a

highly-optim
ized

im
plem

entation
of

2D
convolution,are

pow
erful

enough
to

facilitate
the

training
of

interestingly-large
C

N
N

s,and
recentdatasets

such
as

Im
ageN

et
contain

enough
labeled

exam
ples

to
train

such
m

odels
w

ithoutsevere
overfitting.

T
he

specific
contributions

of
this

paper
are

as
follow

s:
w

e
trained

one
of

the
largestconvolutional

neuralnetw
orks

to
date

on
the

subsets
of

Im
ageN

etused
in

the
IL

SV
R

C
-2010

and
IL

SV
R

C
-2012

com
petitions

[2]
and

achieved
by

far
the

best
results

ever
reported

on
these

datasets.
W

e
w

rote
a

highly-optim
ized

G
PU

im
plem

entation
of

2D
convolution

and
allthe

other
operations

inherentin
training

convolutionalneuralnetw
orks,w

hich
w

e
m

ake
available

publicly
1.

O
ur

netw
ork

contains
a

num
ber

of
new

and
unusualfeatures

w
hich

im
prove

its
perform

ance
and

reduce
its

training
tim

e,
w

hich
are

detailed
in

Section
3.T

he
size

ofournetw
ork

m
ade

overfitting
a

significantproblem
,even

w
ith

1.2
m

illion
labeled

training
exam

ples,so
w

e
used

severaleffective
techniques

for
preventing

overfitting,
w

hich
are

described
in

Section
4.

O
ur

final
netw

ork
contains

five
convolutional

and
three

fully-connected
layers,

and
this

depth
seem

s
to

be
im

portant:
w

e
found

that
rem

oving
any

convolutionallayer(each
ofw

hich
contains

no
m

ore
than

1%
ofthe

m
odel’s

param
eters)resulted

in
inferiorperform

ance.

In
the

end,the
netw

ork’s
size

is
lim

ited
m

ainly
by

the
am

ountofm
em

ory
available

on
currentG

PU
s

and
by

the
am

ountof
training

tim
e

thatw
e

are
w

illing
to

tolerate.
O

ur
netw

ork
takes

betw
een

five
and

six
days

to
train

on
tw

o
G

T
X

580
3G

B
G

PU
s.

A
llof

our
experim

ents
suggestthatour

results
can

be
im

proved
sim

ply
by

w
aiting

forfasterG
PU

s
and

biggerdatasets
to

becom
e

available.

2
T

he
D

ataset

Im
ageN

etisa
datasetofover15

m
illion

labeled
high-resolution

im
agesbelonging

to
roughly

22,000
categories.

T
he

im
ages

w
ere

collected
from

the
w

eb
and

labeled
by

hum
an

labelers
using

A
m

a-
zon’s

M
echanicalTurk

crow
d-sourcing

tool.
Starting

in
2010,as

partof
the

PascalV
isualO

bject
C

hallenge,an
annualcom

petition
called

the
Im

ageN
etL

arge-Scale
V

isualR
ecognition

C
hallenge

(IL
SV

R
C

)has
been

held.IL
SV

R
C

uses
a

subsetofIm
ageN

etw
ith

roughly
1000

im
ages

in
each

of
1000

categories.In
all,there

are
roughly

1.2
m

illion
training

im
ages,50,000

validation
im

ages,and
150,000

testing
im

ages.

IL
SV

R
C

-2010
is

the
only

version
of

IL
SV

R
C

for
w

hich
the

testsetlabels
are

available,so
this

is
the

version
on

w
hich

w
e

perform
ed

m
ostof

our
experim

ents.
Since

w
e

also
entered

our
m

odelin
the

IL
SV

R
C

-2012
com

petition,in
Section

6
w

e
reportour

results
on

this
version

of
the

datasetas
w

ell,forw
hich

testsetlabelsare
unavailable.O

n
Im

ageN
et,itiscustom

ary
to

reporttw
o

errorrates:
top-1

and
top-5,w

here
the

top-5
error

rate
is

the
fraction

of
testim

ages
for

w
hich

the
correctlabel

is
notam

ong
the

five
labels

considered
m

ostprobable
by

the
m

odel.

Im
ageN

etconsists
ofvariable-resolution

im
ages,w

hile
oursystem

requires
a

constantinputdim
en-

sionality.
T

herefore,
w

e
dow

n-sam
pled

the
im

ages
to

a
fixed

resolution
of

256
×

256.
G

iven
a

rectangularim
age,w

e
firstrescaled

the
im

age
such

thatthe
shorterside

w
as

oflength
256,and

then
cropped

outthe
central256×

256
patch

from
the

resulting
im

age.W
e

did
notpre-process

the
im

ages
in

any
other

w
ay,exceptfor

subtracting
the

m
ean

activity
over

the
training

setfrom
each

pixel.
So

w
e

trained
ournetw

ork
on

the
(centered)raw

R
G

B
values

ofthe
pixels.

3
T

he
A

rchitecture

T
he

architecture
of

our
netw

ork
is

sum
m

arized
in

Figure
2.

It
contains

eight
learned

layers
—

five
convolutional

and
three

fully-connected.
B

elow
,

w
e

describe
som

e
of

the
novel

or
unusual

features
of

our
netw

ork’s
architecture.

Sections
3.1-3.4

are
sorted

according
to

our
estim

ation
of

theirim
portance,w

ith
the

m
ostim

portantfirst.

1http://code.google.com
/p/cuda-convnet/
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3.1
R

eL
U

N
onlinearity

Figure
1:

A
four-layer

convolutional
neural

netw
ork

w
ith

R
eL

U
s(solid

line)reaches
a

25%
training

errorrate
on

C
IFA

R
-10

six
tim

es
faster

than
an

equivalentnetw
ork

w
ith

ta
n
h

neurons
(dashed

line).
T

he
learning

rates
for

each
net-

w
ork

w
ere

chosen
independently

to
m

ake
train-

ing
as

fast
as

possible.
N

o
regularization

of
any

kind
w

as
em

ployed.
T

he
m

agnitude
of

the
effect

dem
onstrated

here
varies

w
ith

netw
ork

architecture,butnetw
orks

w
ith

R
eL

U
s

consis-
tently

learn
severaltim

es
fasterthan

equivalents
w

ith
saturating

neurons.

T
he

standard
w

ay
to

m
odel

a
neuron’s

output
f

as
a

function
of

its
input

x
is

w
ith

f
(x
)

=
tan

h
(x
)

or
f
(x
)
=

(1
+
e −

x
) −

1.
In

term
s

of
training

tim
e

w
ith

gradient
descent,

these
saturating

nonlinearities
are

m
uch

slow
er

than
the

non-saturating
nonlinearity

f
(x
)
=

m
ax

(0
,x

).
Follow

ing
N

air
and

H
inton

[20],
w

e
refer

to
neurons

w
ith

this
nonlinearity

as
R

ectified
L

inearU
nits

(R
eL

U
s).D

eep
convolutionalneuralnet-

w
orks

w
ith

R
eL

U
s

train
severaltim

es
fasterthan

their
equivalents

w
ith

tan
h

units.
T

his
is

dem
onstrated

in
Figure

1,
w

hich
show

s
the

num
ber

of
iterations

re-
quired

to
reach

25%
training

error
on

the
C

IFA
R

-10
dataset

for
a

particular
four-layer

convolutional
net-

w
ork.

T
his

plot
show

s
that

w
e

w
ould

not
have

been
able

to
experim

entw
ith

such
large

neuralnetw
orks

for
this

w
ork

if
w

e
had

used
traditionalsaturating

neuron
m

odels.

W
e

are
not

the
first

to
consider

alternatives
to

tradi-
tional

neuron
m

odels
in

C
N

N
s.

For
exam

ple,
Jarrett

etal.[11]claim
thatthe

nonlinearity
f
(x
)
=
|tan

h
(x
)|

w
orks

particularly
w

ellw
ith

theirtype
ofcontrastnor-

m
alization

follow
ed

by
local

average
pooling

on
the

C
altech-101

dataset.
H

ow
ever,on

this
datasetthe

pri-
m

ary
concern

is
preventing

overfitting,
so

the
effect

they
are

observing
is

different
from

the
accelerated

ability
to

fitthe
training

setw
hich

w
e

reportw
hen

us-
ing

R
eL

U
s.Fasterlearning

hasa
greatinfluence

on
the

perform
ance

oflarge
m

odels
trained

on
large

datasets.

3.2
Training

on
M

ultiple
G

PU
s

A
single

G
T

X
580

G
PU

has
only

3G
B

ofm
em

ory,w
hich

lim
its

the
m

axim
um

size
ofthe

netw
orks

thatcan
be

trained
on

it.Itturns
outthat1.2

m
illion

training
exam

ples
are

enough
to

train
netw

orks
w

hich
are

too
big

to
fiton

one
G

PU
.T

herefore
w

e
spread

the
netacross

tw
o

G
PU

s.
C

urrentG
PU

s
are

particularly
w

ell-suited
to

cross-G
PU

parallelization,as
they

are
able

to
read

from
and

w
rite

to
one

another’s
m

em
ory

directly,w
ithoutgoing

through
hostm

achine
m

em
ory.

T
he

parallelization
schem

e
that

w
e

em
ploy

essentially
puts

half
of

the
kernels

(or
neurons)

on
each

G
PU

,
w

ith
one

additionaltrick:
the

G
PU

s
com

m
unicate

only
in

certain
layers.

T
his

m
eans

that,for
exam

ple,the
kernels

oflayer3
take

inputfrom
allkernelm

aps
in

layer2.H
ow

ever,kernels
in

layer4
take

input
only

from
those

kernel
m

aps
in

layer
3

w
hich

reside
on

the
sam

e
G

PU
.

C
hoosing

the
pattern

of
connectivity

is
a

problem
for

cross-validation,
but

this
allow

s
us

to
precisely

tune
the

am
ount

of
com

m
unication

untilitis
an

acceptable
fraction

ofthe
am

ountofcom
putation.

T
he

resultantarchitecture
is

som
ew

hatsim
ilarto

thatofthe
“colum

nar”
C

N
N

em
ployed

by
C

ireşan
etal.[5],exceptthatourcolum

ns
are

notindependent(see
Figure

2).T
his

schem
e

reduces
ourtop-1

and
top-5

error
rates

by
1.7%

and
1.2%

,
respectively,

as
com

pared
w

ith
a

net
w

ith
half

as
m

any
kernels

in
each

convolutionallayer
trained

on
one

G
PU

.T
he

tw
o-G

PU
nettakes

slightly
less

tim
e

to
train

than
the

one-G
PU

net 2.

2T
he

one-G
PU

netactually
has

the
sam

e
num

ber
of

kernels
as

the
tw

o-G
PU

netin
the

finalconvolutional
layer.

T
his

is
because

m
ostof

the
net’s

param
eters

are
in

the
firstfully-connected

layer,w
hich

takes
the

last
convolutionallayeras

input.
So

to
m

ake
the

tw
o

nets
have

approxim
ately

the
sam

e
num

berofparam
eters,w

e
did

nothalve
the

size
of

the
finalconvolutionallayer

(nor
the

fully-conneced
layers

w
hich

follow
).

T
herefore

this
com

parison
is

biased
in

favor
of

the
one-G

PU
net,since

itis
bigger

than
“half

the
size”

of
the

tw
o-G

PU
net.

3



3.3
L

ocalR
esponse

N
orm

alization

R
eL

U
s

have
the

desirable
property

that
they

do
not

require
input

norm
alization

to
prevent

them
from

saturating.Ifatleastsom
e

training
exam

ples
produce

a
positive

inputto
a

R
eL

U
,learning

w
ill

happen
in

that
neuron.

H
ow

ever,w
e

still
find

that
the

follow
ing

local
norm

alization
schem

e
aids

generalization.D
enoting

by
a
ix
,y

the
activity

ofa
neuron

com
puted

by
applying

kernel
iatposition

(x
,y
)

and
then

applying
the

R
eL

U
nonlinearity,the

response-norm
alized

activity
b
ix
,y

is
given

by
the

expression

b
ix
,y
=
a
ix
,y / 

k
+
α

m
in
(N

−
1
,i+

n
/
2
)

∑
j
=
m
a
x
(0
,i−

n
/
2
) (a

jx
,y )

2 
β

w
here

the
sum

runs
over

n
“adjacent”

kernelm
aps

atthe
sam

e
spatialposition,and

N
is

the
total

num
berofkernelsin

the
layer.T

he
ordering

ofthe
kernelm

apsisofcourse
arbitrary

and
determ

ined
before

training
begins.

T
his

sortof
response

norm
alization

im
plem

ents
a

form
of

lateralinhibition
inspired

by
the

type
found

in
realneurons,creating

com
petition

for
big

activities
am

ongstneuron
outputs

com
puted

using
differentkernels.T

he
constants

k
,n
,α

,and
β

are
hyper-param

eters
w

hose
values

are
determ

ined
using

a
validation

set;w
e

used
k
=

2,
n
=

5,
α
=

10
−
4,and

β
=

0
.75.

W
e

applied
this

norm
alization

afterapplying
the

R
eL

U
nonlinearity

in
certain

layers
(see

Section
3.5).

T
hisschem

e
bearssom

e
resem

blance
to

the
localcontrastnorm

alization
schem

e
ofJarrettetal.[11],

butours
w

ould
be

m
ore

correctly
term

ed
“brightness

norm
alization”,since

w
e

do
notsubtractthe

m
ean

activity.
R

esponse
norm

alization
reduces

our
top-1

and
top-5

error
rates

by
1.4%

and
1.2%

,
respectively.W

e
also

verified
the

effectiveness
ofthis

schem
e

on
the

C
IFA

R
-10

dataset:a
four-layer

C
N

N
achieved

a
13%

testerrorrate
w

ithoutnorm
alization

and
11%

w
ith

norm
alization

3.

3.4
O

verlapping
Pooling

Pooling
layers

in
C

N
N

s
sum

m
arize

the
outputs

ofneighboring
groups

ofneurons
in

the
sam

e
kernel

m
ap.

Traditionally,the
neighborhoods

sum
m

arized
by

adjacentpooling
units

do
notoverlap

(e.g.,
[17,11,4]).To

be
m

ore
precise,a

pooling
layercan

be
thoughtofas

consisting
ofa

grid
ofpooling

units
spaced

s
pixels

apart,each
sum

m
arizing

a
neighborhood

ofsize
z
×
z

centered
atthe

location
of

the
pooling

unit.
If

w
e

set
s
=
z,w

e
obtain

traditional
local

pooling
as

com
m

only
em

ployed
in

C
N

N
s.

If
w

e
set

s
<
z,

w
e

obtain
overlapping

pooling.
T

his
is

w
hat

w
e

use
throughout

our
netw

ork,w
ith

s
=

2
and

z
=

3.
T

his
schem

e
reduces

the
top-1

and
top-5

error
rates

by
0.4%

and
0.3%

,respectively,as
com

pared
w

ith
the

non-overlapping
schem

e
s
=

2
,z

=
2,w

hich
produces

outputofequivalentdim
ensions.W

e
generally

observe
during

training
thatm

odels
w

ith
overlapping

pooling
find

itslightly
m

ore
difficultto

overfit.

3.5
O

verallA
rchitecture

N
ow

w
e

are
ready

to
describe

the
overallarchitecture

ofourC
N

N
.A

s
depicted

in
Figure

2,the
net

contains
eightlayers

w
ith

w
eights;the

firstfive
are

convolutionaland
the

rem
aining

three
are

fully-
connected.T

he
outputofthe

lastfully-connected
layerisfed

to
a

1000-w
ay

softm
ax

w
hich

produces
a

distribution
overthe

1000
class

labels.O
urnetw

ork
m

axim
izes

the
m

ultinom
iallogistic

regression
objective,w

hich
is

equivalentto
m

axim
izing

the
average

across
training

cases
ofthe

log-probability
ofthe

correctlabelunderthe
prediction

distribution.

T
he

kernels
of

the
second,fourth,and

fifth
convolutionallayers

are
connected

only
to

those
kernel

m
aps

in
the

previous
layer

w
hich

reside
on

the
sam

e
G

PU
(see

Figure
2).

T
he

kernels
of

the
third

convolutionallayer
are

connected
to

allkernelm
aps

in
the

second
layer.

T
he

neurons
in

the
fully-

connected
layers

are
connected

to
allneurons

in
the

previous
layer.

R
esponse-norm

alization
layers

follow
the

firstand
second

convolutionallayers.M
ax-pooling

layers,ofthe
kind

described
in

Section
3.4,follow

both
response-norm

alization
layers

as
w

ellas
the

fifth
convolutionallayer.

T
he

R
eL

U
non-linearity

is
applied

to
the

outputofevery
convolutionaland

fully-connected
layer.

T
he

firstconvolutionallayerfilters
the

224×
224×

3
inputim

age
w

ith
96

kernels
ofsize

11×
11×

3
w

ith
a

stride
of

4
pixels

(this
is

the
distance

betw
een

the
receptive

field
centers

of
neighboring

3W
e

cannotdescribe
this

netw
ork

in
detaildue

to
space

constraints,butitis
specified

precisely
by

the
code

and
param

eterfiles
provided

here:http://code.google.com
/p/cuda-convnet/.
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Figure
2:

A
n

illustration
ofthe

architecture
ofourC

N
N

,explicitly
show

ing
the

delineation
ofresponsibilities

betw
een

the
tw

o
G

PU
s.O

ne
G

PU
runsthe

layer-partsatthe
top

ofthe
figure

w
hile

the
otherrunsthe

layer-parts
atthe

bottom
.T

he
G

PU
s

com
m

unicate
only

atcertain
layers.T

he
netw

ork’s
inputis

150,528-dim
ensional,and

the
num

berofneuronsin
the

netw
ork’srem

aining
layersisgiven

by
253,440–186,624–64,896–64,896–43,264–

4096–4096–1000.

neurons
in

a
kernelm

ap).
T

he
second

convolutionallayer
takes

as
inputthe

(response-norm
alized

and
pooled)outputofthe

firstconvolutionallayerand
filters

itw
ith

256
kernels

ofsize
5
×

5
×

48.
T

he
third,fourth,and

fifth
convolutionallayersare

connected
to

one
anotherw

ithoutany
intervening

pooling
or

norm
alization

layers.
T

he
third

convolutional
layer

has
384

kernels
of

size
3
×

3
×

256
connected

to
the

(norm
alized,

pooled)
outputs

of
the

second
convolutional

layer.
T

he
fourth

convolutionallayer
has

384
kernels

of
size

3
×

3
×

192
,and

the
fifth

convolutionallayer
has

256
kernels

ofsize
3
×
3
×
19
2.T

he
fully-connected

layers
have

4096
neurons

each.

4
R

educing
O

verfitting

O
ur

neuralnetw
ork

architecture
has

60
m

illion
param

eters.
A

lthough
the

1000
classes

of
IL

SV
R

C
m

ake
each

training
exam

ple
im

pose
10

bits
of

constrainton
the

m
apping

from
im

age
to

label,this
turns

outto
be

insufficientto
learn

so
m

any
param

eters
w

ithoutconsiderable
overfitting.B

elow
,w

e
describe

the
tw

o
prim

ary
w

ays
in

w
hich

w
e

com
batoverfitting.

4.1
D

ata
A

ugm
entation

T
he

easiestand
m

ostcom
m

on
m

ethod
to

reduce
overfitting

on
im

age
data

is
to

artificially
enlarge

the
datasetusing

label-preserving
transform

ations
(e.g.,[25,4,5]).

W
e

em
ploy

tw
o

distinctform
s

of
data

augm
entation,

both
of

w
hich

allow
transform

ed
im

ages
to

be
produced

from
the

original
im

ages
w

ith
very

little
com

putation,so
the

transform
ed

im
ages

do
not

need
to

be
stored

on
disk.

In
ourim

plem
entation,the

transform
ed

im
ages

are
generated

in
Python

code
on

the
C

PU
w

hile
the

G
PU

is
training

on
the

previous
batch

ofim
ages.So

these
data

augm
entation

schem
es

are,in
effect,

com
putationally

free.

T
he

firstform
ofdata

augm
entation

consists
ofgenerating

im
age

translations
and

horizontalreflec-
tions.W

e
do

this
by

extracting
random

224×
224

patches
(and

theirhorizontalreflections)from
the

256×
256

im
agesand

training
ournetw

ork
on

these
extracted

patches 4.T
hisincreasesthe

size
ofour

training
setby

a
factor

of
2048,though

the
resulting

training
exam

ples
are,of

course,highly
inter-

dependent.W
ithoutthis

schem
e,ournetw

ork
suffers

from
substantialoverfitting,w

hich
w

ould
have

forced
us

to
use

m
uch

sm
allernetw

orks.A
ttesttim

e,the
netw

ork
m

akes
a

prediction
by

extracting
five

224
×

224
patches

(the
four

corner
patches

and
the

center
patch)

as
w

ell
as

their
horizontal

reflections
(hence

ten
patches

in
all),and

averaging
the

predictions
m

ade
by

the
netw

ork’s
softm

ax
layeron

the
ten

patches.

T
he

second
form

of
data

augm
entation

consists
of

altering
the

intensities
of

the
R

G
B

channels
in

training
im

ages.
Specifically,

w
e

perform
PC

A
on

the
set

of
R

G
B

pixel
values

throughout
the

Im
ageN

ettraining
set.To

each
training

im
age,w

e
add

m
ultiples

ofthe
found

principalcom
ponents,

4T
his

is
the

reason
w

hy
the

inputim
ages

in
Figure

2
are

2
2
4
×

2
2
4
×

3-dim
ensional.
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w
ith

m
agnitudes

proportionalto
the

corresponding
eigenvalues

tim
es

a
random

variable
draw

n
from

a
G

aussian
w

ith
m

ean
zero

and
standard

deviation
0.1.

T
herefore

to
each

R
G

B
im

age
pixel

I
x
y
=

[I
Rx
y ,I

Gx
y ,I

Bx
y ] T

w
e

add
the

follow
ing

quantity:

[p
1 ,p

2 ,p
3 ][α

1 λ
1 ,α

2 λ
2 ,α

3 λ
3 ] T

w
here

p
i

and
λ
i

are
ith

eigenvector
and

eigenvalue
of

the
3
×

3
covariance

m
atrix

of
R

G
B

pixel
values,

respectively,
and

α
i

is
the

aforem
entioned

random
variable.

E
ach

α
i

is
draw

n
only

once
for

allthe
pixels

of
a

particular
training

im
age

untilthatim
age

is
used

for
training

again,atw
hich

pointitis
re-draw

n.
T

his
schem

e
approxim

ately
captures

an
im

portantproperty
of

naturalim
ages,

nam
ely,thatobjectidentity

is
invariantto

changes
in

the
intensity

and
colorofthe

illum
ination.T

his
schem

e
reduces

the
top-1

errorrate
by

over1%
.

4.2
D

ropout

C
om

bining
the

predictions
of

m
any

differentm
odels

is
a

very
successfulw

ay
to

reduce
testerrors

[1,
3],

but
it

appears
to

be
too

expensive
for

big
neural

netw
orks

that
already

take
several

days
to

train.
T

here
is,how

ever,a
very

efficientversion
of

m
odelcom

bination
thatonly

costs
abouta

factor
of

tw
o

during
training.

T
he

recently-introduced
technique,

called
“dropout”

[10],
consists

of
setting

to
zero

the
output

of
each

hidden
neuron

w
ith

probability
0.5.

T
he

neurons
w

hich
are

“dropped
out”

in
this

w
ay

do
not

contribute
to

the
forw

ard
pass

and
do

not
participate

in
back-

propagation.So
every

tim
e

an
inputispresented,the

neuralnetw
ork

sam
plesa

differentarchitecture,
butallthese

architecturesshare
w

eights.T
histechnique

reducescom
plex

co-adaptationsofneurons,
since

a
neuron

cannot
rely

on
the

presence
of

particular
other

neurons.
It

is,
therefore,

forced
to

learn
m

ore
robustfeatures

thatare
usefulin

conjunction
w

ith
m

any
differentrandom

subsets
ofthe

other
neurons.

A
t

test
tim

e,
w

e
use

all
the

neurons
but

m
ultiply

their
outputs

by
0.5,

w
hich

is
a

reasonable
approxim

ation
to

taking
the

geom
etric

m
ean

of
the

predictive
distributions

produced
by

the
exponentially-m

any
dropoutnetw

orks.

W
e

use
dropoutin

the
firsttw

o
fully-connected

layers
ofFigure

2.W
ithoutdropout,ournetw

ork
ex-

hibitssubstantialoverfitting.D
ropoutroughly

doublesthe
num

berofiterationsrequired
to

converge.

Figure
3:

96
convolutionalkernels

of
size

1
1×

1
1×

3
learned

by
the

firstconvolutional
layeron

the
2
2
4×

2
2
4×

3
inputim

ages.T
he

top
48

kernelsw
ere

learned
on

G
PU

1
w

hile
the

bottom
48

kernels
w

ere
learned

on
G

PU
2.See

Section
6.1

fordetails.

5
D

etailsoflearning

W
e

trained
our

m
odels

using
stochastic

gradient
descent

w
ith

a
batch

size
of128

exam
ples,m

om
entum

of0.9,and
w

eightdecay
of0.0005.W

e
found

thatthis
sm

allam
ount

of
w

eightdecay
w

as
im

portantfor
the

m
odelto

learn.
In

otherw
ords,w

eightdecay
here

isnotm
erely

a
regularizer:

itreduces
the

m
odel’s

training
error.

T
he

update
rule

for
w

eight
w

w
as

v
i+

1
:=

0.9
·v
i −

0.0005
·
ε·w

i −
ε· 〈

∂
L

∂
w ∣∣w

i 〉
D

i

w
i+

1
:=

w
i
+
v
i+

1

w
here

iis
the

iteration
index,

v
is

the
m

om
entum

variable,
ε

is
the

learning
rate,and 〈

∂
L
∂
w ∣∣w

i 〉
D

i

is

the
average

over
the

ith
batch

D
i

of
the

derivative
of

the
objective

w
ith

respectto
w

,evaluated
at

w
i .

W
e

initialized
the

w
eights

in
each

layer
from

a
zero-m

ean
G

aussian
distribution

w
ith

standard
de-

viation
0.01.

W
e

initialized
the

neuron
biases

in
the

second,fourth,and
fifth

convolutionallayers,
as

w
ellas

in
the

fully-connected
hidden

layers,w
ith

the
constant1.

T
his

initialization
accelerates

the
early

stages
oflearning

by
providing

the
R

eL
U

s
w

ith
positive

inputs.
W

e
initialized

the
neuron

biases
in

the
rem

aining
layers

w
ith

the
constant0.

W
e

used
an

equal
learning

rate
for

all
layers,

w
hich

w
e

adjusted
m

anually
throughout

training.
T

he
heuristic

w
hich

w
e

follow
ed

w
as

to
divide

the
learning

rate
by

10
w

hen
the

validation
error

rate
stopped

im
proving

w
ith

the
currentlearning

rate.
T

he
learning

rate
w

as
initialized

at0.01
and
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reduced
three

tim
es

prior
to

term
ination.

W
e

trained
the

netw
ork

for
roughly

90
cycles

through
the

training
setof1.2

m
illion

im
ages,w

hich
took

five
to

six
days

on
tw

o
N

V
ID

IA
G

T
X

580
3G

B
G

PU
s.

6
R

esults

O
ur

results
on

IL
SV

R
C

-2010
are

sum
m

arized
in

Table
1.

O
ur

netw
ork

achieves
top-1

and
top-5

test
set

error
rates

of
37.5%

and
17.0%

5.
T

he
best

perform
ance

achieved
during

the
IL

SV
R

C
-

2010
com

petition
w

as
47.1%

and
28.2%

w
ith

an
approach

thataverages
the

predictions
produced

from
six

sparse-coding
m

odels
trained

on
different

features
[2],

and
since

then
the

best
pub-

lished
results

are
45.7%

and
25.7%

w
ith

an
approach

that
averages

the
predictions

of
tw

o
classi-

fiers
trained

on
Fisher

V
ectors

(FV
s)

com
puted

from
tw

o
types

of
densely-sam

pled
features

[24].

M
odel

Top-1
Top-5

Sparse
coding

[2]
47.1%

28.2%
SIF

T
+

F
V

s
[24]

45.7%
25.7%

C
N

N
37.5%

17.0%

Table
1:

C
om

parison
ofresults

on
IL

SV
R

C
-

2010
test

set.
In

italics
are

best
results

achieved
by

others.

W
e

also
entered

our
m

odel
in

the
IL

SV
R

C
-2012

com
-

petition
and

report
our

results
in

Table
2.

Since
the

IL
SV

R
C

-2012
testsetlabels

are
notpublicly

available,
w

e
cannotreporttesterror

rates
for

allthe
m

odels
that

w
e

tried.
In

the
rem

ainder
of

this
paragraph,

w
e

use
validation

and
test

error
rates

interchangeably
because

in
our

experience
they

do
notdiffer

by
m

ore
than

0.1%
(see

Table
2).T

he
C

N
N

described
in

this
paperachieves

a
top-5

error
rate

of
18.2%

.
A

veraging
the

predictions
of

five
sim

ilar
C

N
N

s
gives

an
error

rate
of

16.4%
.

Training
one

C
N

N
,

w
ith

an
extra

sixth
con-

volutional
layer

over
the

last
pooling

layer,
to

classify
the

entire
Im

ageN
et

Fall
2011

release
(15M

im
ages,

22K
categories),

and
then

“fine-tuning”
it

on
IL

SV
R

C
-2012

gives
an

error
rate

of
16.6%

.
A

veraging
the

predictions
of

tw
o

C
N

N
s

that
w

ere
pre-trained

on
the

entire
Fall

2011
re-

lease
w

ith
the

aforem
entioned

five
C

N
N

s
gives

an
error

rate
of

15.3%
.

T
he

second-best
con-

test
entry

achieved
an

error
rate

of
26.2%

w
ith

an
approach

that
averages

the
predictions

of
sev-

eral
classifiers

trained
on

FV
s

com
puted

from
different

types
of

densely-sam
pled

features
[7].

M
odel

Top-1
(val)

Top-5
(val)

Top-5
(test)

SIF
T

+
F

V
s

[7]
—

—
26.2%

1
C

N
N

40.7%
18.2%

—
5

C
N

N
s

38.1%
16.4%

16.4%
1

C
N

N
*

39.0%
16.6%

—
7

C
N

N
s*

36.7%
15.4%

15.3%

Table
2:

C
om

parison
of

error
rates

on
IL

SV
R

C
-2012

validation
and

testsets.
In

italics
are

bestresults
achieved

by
others.

M
odels

w
ith

an
asterisk*

w
ere

“pre-trained”
to

classify
the

entire
Im

ageN
et2011

Fall
release.See

Section
6

fordetails.

Finally,
w

e
also

report
our

error
rates

on
the

Fall2009
version

of
Im

ageN
etw

ith
10,184

categories
and

8.9
m

illion
im

ages.
O

n
this

datasetw
e

follow
the

convention
in

the
literature

of
using

half
of

the
im

ages
for

training
and

half
for

testing.
Since

there
is

no
es-

tablished
testset,oursplitneces-

sarily
differs

from
the

splits
used

by
previous

authors,butthis
does

notaffectthe
results

appreciably.
O

ur
top-1

and
top-5

error
rates

on
this

dataset
are

67.4%
and

40.9%
,attained

by
the

netdescribed
above

butw
ith

an
additional,sixth

convolutionallayeroverthe
lastpooling

layer.T
he

bestpublished
results

on
this

datasetare
78.1%

and
60.9%

[19].

6.1
Q

ualitative
E

valuations

Figure
3

show
s

the
convolutionalkernels

learned
by

the
netw

ork’s
tw

o
data-connected

layers.
T

he
netw

ork
has

learned
a

variety
offrequency-and

orientation-selective
kernels,as

w
ellas

various
col-

ored
blobs.

N
otice

the
specialization

exhibited
by

the
tw

o
G

PU
s,a

resultof
the

restricted
connec-

tivity
described

in
Section

3.5.
T

he
kernels

on
G

PU
1

are
largely

color-agnostic,w
hile

the
kernels

on
on

G
PU

2
are

largely
color-specific.

T
his

kind
of

specialization
occurs

during
every

run
and

is
independentofany

particularrandom
w

eightinitialization
(m

odulo
a

renum
bering

ofthe
G

PU
s).

5T
he

error
rates

w
ithoutaveraging

predictions
over

ten
patches

as
described

in
Section

4.1
are

39.0%
and

18.3%
.
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Figure
4:

(L
eft)E

ightIL
SV

R
C

-2010
testim

ages
and

the
five

labels
considered

m
ostprobable

by
ourm

odel.
T

he
correctlabelis

w
ritten

under
each

im
age,and

the
probability

assigned
to

the
correctlabelis

also
show

n
w

ith
a

red
bar(ifithappens

to
be

in
the

top
5).(R

ight)Five
IL

SV
R

C
-2010

testim
ages

in
the

firstcolum
n.T

he
rem

aining
colum

ns
show

the
six

training
im

ages
thatproduce

feature
vectors

in
the

lasthidden
layer

w
ith

the
sm

allestE
uclidean

distance
from

the
feature

vectorforthe
testim

age.

In
the

leftpanelof
Figure

4
w

e
qualitatively

assess
w

hatthe
netw

ork
has

learned
by

com
puting

its
top-5

predictions
on

eighttestim
ages.

N
otice

thateven
off-center

objects,such
as

the
m

ite
in

the
top-left,can

be
recognized

by
the

net.
M

ost
of

the
top-5

labels
appear

reasonable.
For

exam
ple,

only
othertypes

ofcatare
considered

plausible
labels

forthe
leopard.In

som
e

cases
(grille,cherry)

there
is

genuine
am

biguity
aboutthe

intended
focus

ofthe
photograph.

A
notherw

ay
to

probe
the

netw
ork’s

visualknow
ledge

is
to

considerthe
feature

activations
induced

by
an

im
age

atthe
last,4096-dim

ensionalhidden
layer.

If
tw

o
im

ages
produce

feature
activation

vectors
w

ith
a

sm
allE

uclidean
separation,w

e
can

say
thatthe

higher
levels

of
the

neuralnetw
ork

consider
them

to
be

sim
ilar.

Figure
4

show
s

five
im

ages
from

the
testsetand

the
six

im
ages

from
the

training
setthatare

m
ostsim

ilar
to

each
of

them
according

to
this

m
easure.

N
otice

thatatthe
pixellevel,the

retrieved
training

im
ages

are
generally

notclose
in

L
2

to
the

query
im

ages
in

the
first

colum
n.Forexam

ple,the
retrieved

dogs
and

elephants
appearin

a
variety

ofposes.W
e

presentthe
results

form
any

m
ore

testim
ages

in
the

supplem
entary

m
aterial.

C
om

puting
sim

ilarity
by

using
E

uclidean
distance

betw
een

tw
o

4096-dim
ensional,real-valued

vec-
torsisinefficient,butitcould

be
m

ade
efficientby

training
an

auto-encoderto
com

pressthese
vectors

to
shortbinary

codes.T
hisshould

produce
a

m
uch

betterim
age

retrievalm
ethod

than
applying

auto-
encoders

to
the

raw
pixels

[14],w
hich

does
notm

ake
use

ofim
age

labels
and

hence
has

a
tendency

to
retrieve

im
ages

w
ith

sim
ilarpatterns

ofedges,w
hetherornotthey

are
sem

antically
sim

ilar.

7
D

iscussion

O
ur

results
show

that
a

large,
deep

convolutional
neural

netw
ork

is
capable

of
achieving

record-
breaking

results
on

a
highly

challenging
dataset

using
purely

supervised
learning.

It
is

notable
thatour

netw
ork’s

perform
ance

degrades
if

a
single

convolutionallayer
is

rem
oved.

For
exam

ple,
rem

oving
any

of
the

m
iddle

layers
results

in
a

loss
of

about
2%

for
the

top-1
perform

ance
of

the
netw

ork.So
the

depth
really

is
im

portantforachieving
ourresults.

To
sim

plify
our

experim
ents,w

e
did

notuse
any

unsupervised
pre-training

even
though

w
e

expect
thatitw

illhelp,especially
if

w
e

obtain
enough

com
putationalpow

er
to

significantly
increase

the
size

ofthe
netw

ork
w

ithoutobtaining
a

corresponding
increase

in
the

am
ountoflabeled

data.T
hus

far,ourresults
have

im
proved

as
w

e
have

m
ade

ournetw
ork

largerand
trained

itlongerbutw
e

still
have

m
any

orders
of

m
agnitude

to
go

in
order

to
m

atch
the

infero-tem
poralpathw

ay
of

the
hum

an
visual

system
.

U
ltim

ately
w

e
w

ould
like

to
use

very
large

and
deep

convolutional
nets

on
video

sequences
w

here
the

tem
poralstructure

provides
very

helpfulinform
ation

thatis
m

issing
orfarless

obvious
in

static
im

ages.
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