
6.440 Essential Coding Theory Feb 27, 2008

Lecture 7

Lecturer: Madhu Sudan Scribe: Huy Nguyen

1 Administrative

• Problem set 2 is out.

• Problem set 1 is still to be graded.

2 Lecture Overview

Binary codes

• Concatenated codes[Forney]

• Justesen codes

• BCH codes

3 Review

1. Rozencraft ensemble is an ensemble of functions that maps x ∈ F →
〈x, ax〉. This construction gives good code for most values of α but we do
not know which α.

2. Reed-Solomon code is the code that maps each message M(·), a polyno-
mial with coefficients in Fq(q ≥ n), to an n-tuple 〈M(α1), · · · ,M(αn)〉.
The catch here is that it is not a binary code.

3. Multivariate polynomial codes: There are many ways to apply multivari-
able polynomials to build codes but there is no real punchline here.

4. Hadamard codes

HHT = nI where H ∈ {−1,+1}n×n

The codewords are the rows of the matrix

[

H

−H

]

.

Today we will use the Rozencraft ensemble and the Reed-Solomon code to
build nice families of codes. Recall the goal from last time was to construct
good code over small field size. Ideally we want to get binary codes from Reed-
Solomon codes, which requires q ≥ n.

7-1

Figure 1: The encoding process of the naive code

4 Naive method to convert non-binary code to
binary

In this section we will describe a naive idea to get binary codes. Let’s start
with Reed-Solomon (RS) code over F2t , t = log n. We can represent each field
element using a t-bit string. Suppose the original RS code is a [n, k, n − k]n
code (this code can be obtained by evaluating the polynomial at all points of
the field F2t).

The encoding maps a message in {0, 1}kt to a codeword in {0, 1}nt. We can
find a representation of the code such that the distance of the code does not
change (it might even go up). For example we can use a mapping that preserve
correspondence F2t → F

t
2. This yields a [nt, kt, n− k]2 code. Let’s compute the

relative rate and distance:

R =
k

n
=

kt

nt

old δ =
n − k

n

new δ =
n − k

n log n
→ 0

Obviously the new relative distance is much worse than the old relative
distance. Recall that the distance is equal to the minimum number of ones
in each non-zero codewords. The problem here is that we cannot avoid the
sparse representations if the representation is too compact (we only use t bits to
represent 2t values). Fortunately, the error-correcting code comes to the rescue
here. We can use error-correcting codes to represent F2t much more nicely as
described in the next section.

7-2

Figure 2: The encoding process of RS · Cin

5 Concatenated codes [Forney ’66]

Let’s pick some nice code Cin (the inner code), Cin : {0, 1}t → {0, 1}2t. Suppose
Cin is some [2t, t, δin · 2t] code where δin is a good constant. We know that Cin

exists. For example we can pick δin = H−1(1
2) (Gilbert-Varshamov code). Use

Cin to represent elements of F2t .
The entire process RS ·Cin gives a composed code [2nt, kt, ?]2. But what is

the distance? We can apply a simple counting argument to compute distance.
The original kt-bit message is non-zero. When we convert it to k elements of Fn,
this sequence is also non-zero. After applying the Reed-Solomon code, we get n

elements of Fn, and at least n−k of which are non-zero. Finally, after applying
Cin to each of n elements, at least n− k of them are non-zero codewords. Each
non-zero codeword in Cin has at least δin · 2t non-zero bits. Therefore, RS ·Cin

is a [2nt, kt, δin(n − k)(2t)]2 code.
In general, if Couter is a [n1, k1, d1] code and Cin is a [n2, k2, d2] code, the

composed code is a [n1n2, k1k2, d1d2] code. We only need to make sure that the
number of codewords of Cin is equal to the field size of Couter. For example, Cin

is [n2, k2, d2]q and Couter is [n1, k1, d1]qk2 . Similarly, if the rate and distance of
Couter are R1, δ1 and of Cin are R2, δ2, concatenation gives the rate R = R1R2

and distance δ = δ1δ2.
The good thing about this code is that Couter can be over a large alphabet

size, which is usually easier to construct. The bad news is we still don’t know
how to get R2, δ2 > 0. Forney’s idea is that because n2 is small compared
to n1 (in the specific case of RS · Cin, n2 is only logarithmic compared to
n1). Therefore, we can use the Gilbert-Varshamov search, which has running
time exponential in n2 but still polynomial in n1, to find a good inner code.
For example, k = n

2 , R1 = 1
2 , d = n

2 , δ1 = 1
2 . The outer alphabet has size

2k2 ≥ n → k2 ≥ log n. Using Varshamov search, we get the inner code of
length 2 log n, and distance d2 = H−1(1

2)(2 log n) over field size q = 2. The

7-3

concatenation gives a [2n log n, n
2 log n,H−1(1

2) log nn
2]2 code. This code has

rate R = 1
4 and distance δ = H−1(1

2) · 1
2 .

There has been a debate in the community regarding whether this coding
scheme is explicit or not. Some people think it is explicit because it has a poly-
nomial time construction. On the flip side, some people think it is not explicit
and is still “search”. Formally, their definition of explicit is that we should be
able to compute the (i, j) entry of the generator matrix in time poly(log n).

6 Justesen’s code

In Forney’s code, we use the same Cin to encode n elements of F2t in a RS
codeword. However, there is no reason why we have to use the same Cin. In
fact, we only need to make sure that most of the encoding of n elements are
good. Recall that actually most of the codes in the Rozencraft ensemble are
good, so we can just use the ensemble.

The encoding process is as follows. Pick F2t , n = 2t. Assume Fn = {α1, · · · , αn}.
Let k = n

2 . Let the message m(x) = (m0, · · · ,mk−1) ∈ F
k
n ≡ {0, 1}k log n. Let

M(x) =
∑

mix
i. We encode m(x) by 〈M(αi), αiM(αi)〉

n
i=1. We won’t go into

the details of the proof but the distance of this code is roughly the same as that
of Forney’s code.

Note that in the example we gave, the rate δ = H−1(1
2) 1

2 is not as good as
the bound H−1(3

4) for R = 1
2 but this is basically the best we know how to do

construct explicitly.

7 BCH code

Let’s revisit the problem of finding codes with small distance. If we want a code
of distance 3, we can use Hamming code. What about some higher distance?
Says we want a code of distance 5.

Applying the Hamming bound, we get

2k · (1 +

(

n

1

)

+

(

n

2

)

) ≤ 2n

2k · θ(n2) ≤ 2n

n − k ≥ (2 − o(1)) log n

On the other hand, let’s take RS code and choose n−k = 5, we get the code
[n, n−4, 5]n. Applying the naive idea, we get the code [n log n, (n−4) log n, 5]2.
Let n′ = n log n, k′ = (n − 4) log n. We get a code [n′, k′, 5]2 where n′ − k′ =
4 log n ≤ 4 log n′.

This code differs from the Hamming bound by 2 log n. Can we do better?
As it turns out, BCH code can actually achieve the Hamming bound. Let’s see
how.

7-4

Let C1 be the code over Fn = F2t , n = 2t with the following parity check
matrix:

H =











1 α1 α2
1 α3

1

1 α2 α2
2 α3

2
...

...
...

...
1 αn α2

n α3
n











C1 is a [n, n − 4, 5]n code. The reason why the code has distance 5 is as
follows. If the code has distance 4, there exists 4 rows of H that are linearly
dependent. However, this cannot happen because the submatrix consisting of
4 rows of H is a Vandemonde matrix whose determinant is non-zero when the
elements are distinct.

Now consider CBCH = C ∩ {0, 1}n. Clearly, the length and the distance of
the code do not change so CBCH = [n, ?, 5]2. The main question here is how
many codewords there are in CBCH . We know that the all zero codeword is in
CBCH but is there any other codeword?

Let’s represent all entries in Fn by vectors such that:

F2t ←→ F
t
2

α ←→ Vα (respect addition)

1 ←→ (100 · · · 0)

Apply the representation above to H and we get a new matrix:

H ′ =











1 Vα1
Vα2

1

Vα3

1

1 Vα2
Vα2

2

Vα3

1

...
...

...
...

1 Vαn
Vα2

n
Vα3

1











If a {0, 1} vector X = (x1 · · ·xn) satisfies XH ′ = 0 then

∑

xiVαi
= 0

VP

xiαi
= 0

∑

xiαi = 0

XH = 0

Consider a matrix H̃ equal to H ′ with the third column removed:

H̃ =











1 Vα1
Vα3

1

1 Vα2
Vα3

1

...
...

...
1 Vαn

Vα3

1











Claim 1 For any X ∈ {0, 1}n such that XH̃ = 0, XH = 0.

7-5

Proof The only question is whether
∑

xiα
2
i = 0. Over Fpt , (x + y)p =

xp + yp ∀x, y. Therefore,

∑

xiα
2
i =

∑

x2
i α

2
i

= (
∑

xiαi)
2

=
∑

xiαi

= 0

The second and third columns of H̃ impose on the code log n linear constraints
each so the dimension of the code is n − 2 log n − 1. Thus, CBCH is a [n, n −
2 log n − 1, 5] code.

In general, the BCH code of distance d has the following parity check matrix:











1 α1 α2
1 · · · αd−2

1

1 α2 α2
2 · · · αd−2

2
...

...
...

. . .
...

1 αn α2
n · · · αd−2

n











→











1 α1 α3
1 · · · αd−2

1

1 α2 α3
2 · · · αd−2

2
...

...
...

. . .
...

1 αn α3
n · · · αd−2

n











The number of columns is 1+ ⌈d−2
2 ⌉ log n so the binary code we get satisfies

n − k ≤ ⌈d−2
2 ⌉ log n.

By the Hamming bound for code of length n and distance d,

2k

(

n
d
2

)

≤ 2n → n − k ≥
d

2
log

n

d

In the case d = no(1), n− k ≥ d
2 log n. Thus, BCH is essentially optimal as long

as d is small.
The problem is more difficult for bigger alphabet. Consider code over the

ternary alphabet {0, 1, 2}. The Hamming bound is n − k ≥ d
2 log3 n. BCH

technique gives n− k = 2
3d log3 n and we do not know how to get a better code

in this case.

7-6

