
6.440 Essential Coding Theory Feb 25, 2008

Lecture 06
Lecturer: Madhu Sudan Scribe: Christina Wright

1 Admin

• PS2 will go out today, Due next Friday (03/07)

• mailing list? [handed around new signed sheet]

• scribe? sign up.

2 Today: Algebraic Codes

• Wozencraft Emsemble

• Reed-Solomon

• Multivariate Polynomials

• concatenation; Forney; Justesen [not covered]

3 Review

We’ve worked with (n, k, d) codes, R ≡ k
n , δ ≡ d

n .
’Gilbert-Varshamov’ proved existence of codes.
Now we want to construct them.
Though we still won’t achieve R = 1−H(δ) today.

3.1 Algebra Review

• Finite fields exist and can be computed efficiently.

• Polynomials over (finite) fields have few zeros.

Both of these facts will be useful for constructing error-correcting codes.
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4 Wozencraft Ensemble

The Wozencraft ensemble is not itself a code, but rather a collection of codes
{Cα} where all codes Cα have R = 1

2 . At least one code satisfies δ ≥ H−1( 1
2 )

[or R = 1−H(δ)]. This ensemble of codes relies only on the first algebraic fact:
that finite fields exist.

Code Ensemble Size
Gilbert 22k

Varshamov 2n
2

Wozencraft 2n

4.1 Construction

• k bits → n = 2k bits (other variations are possible)

• Choose a finite field, F, of size 2k, F = F2k ↔ Fk2 (mapping is addition
preserving)

• code maps one elements in F to two elements in F : Cα : x →< x,αx >
, x ∈ F, α 6= 0

4.2 Behavior

Lemma 1 Choose α at random. Let τ = H−1( 1
2 )− ε. Then

Prα∈F[δ(Cα) ≤ τ ]→ exp(−k) (1)

Where F is the multiplicative group (no zeros).

Claim 1 < x, y > 6=< 0, 0 > then there exists at most one α such that < x, y >∈
Cα. aka Cα’s are disjoint. Proof: α = x−1y if x is invertible.

Elementary Fact 1 For linear codes C: ∆(C) = minx6=y{∆(x, y)}. If we fix
y = 0 then we get ∆(C) = minx 6=0,x∈C{wt(x)}

We say α is bad if ∃ < x, y >∈ Cα s.t. 0 < wt(< x, y >) < τn. (not enough
distance) Each vector can make at most one code bad, since it can only belong
to one code. Thus,
# α bad ≤ (# vectors < x, y > s.t. 0 < wt(< x, y >) < τn) ≤ 2H(τ)n

4.2.1 How many α’s?

2n/2. So,

Pr[α bad] ≤ 2H(τ)n

2n/2
= 2−ε

′n (2)
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4.2.2 What does the generator matrix of Cα look like?

k × 2k : [I|Mα]. Thus, < vβ > [I|Mα] =< vαβ >

5 Reed-Solomon

The Wozencraft ensemble relied on the fact that finite fields exist, now we will
use the second fact (that polynomials over finite fields have few roots) to create
codes.

idea: [diagram]

For Reed-Solomon codes we choose 3 parameters: Σ, n, k

• Σ = Fq (large)

• n distinct points in Fq: α1, α2, ..., αn ∈ Fq [n ≤ q]

• 1 ≤ k ≤ n

We can then think of our message, m0...mk−1 ∈ Σk = Fk, as a poly-
nomial: M(x) =

∑k−1
i=0 mix

i. Then the encoding of the message is M →<
M(α1),M(α2), ...,M(αn) >. This is a linear code which maps Σk → Σn.

distance(RS) = min
M 6=0

#α s.t. M(α) 6= 0

= n−max
M 6=0

#α s.t. M(α) 6= 0

= n− (k − 1)

The last line utilizes the limitation on the number of roots a polynomial can
have. This code is great if you want to use a large alphabet.

5.1 Linear Codes and Duels

If we have a code C, with a generator matrix G, and a parity check matrix H,
then the dual of that code is C ′ = C⊥, with generator matrix G′ = HT , and
parity check matrix H ′ = GT .

[diagram]

A code that achieves the Singleton Bond (concretely, not in the limit) is
called Maximum Distance Separable (MDS).

Lemma 1 MDS linear code =⇒ duel is also MDS code
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6 Multivariate Polynomial Codes

Now we want to construct codes that use smaller alphabets.

[diagram]

Schwartz-Zippel lemma 1 [r < q] Let f be a degree r non-zero multivariate
polynomial over Fq then

Prα1...αm∈RFm
q

[f(α) = 0] ≤ r

q
(3)

Proof induction on m. omitted.

This bound is tight. Also note that the right side of the equation does not
involve m.

6.1 construction

We specify the code by (Fq, r,m)

• Fkq → Fnq

• k = # coefficients =
(
r+m
r
)
≥ ( rm )m or (mr )r

• n = qm

• δ = 1− r/q

example: m = 2 then Fkq → Fq
2

q and r = q/2, k =
(r

2
)
≈ q2

8 . R = 1/8, δ =
1/2. The alphabet size is order square root of the length of the code.

So we have a loss in rate from the Reed-Solomon code, but a smaller alpha-
bet size by a factor of a square root. In general R is roughly ( 1

m )m

PCP: k → poly(k) and δ(C) = 1/2 (or some constant). We can get Σ to be
exponentially small, q = (log(k))2

6.2 Reed-Muller (or Hagamard) Codes

We want a binary alphabet (q = 2). r = 0 doesn’t give us enough to work
with, so let’s try r = 1. The k, the number of coefficients, is (m+ 1) choose 1,
which is just (m+ 1). So we have the coefficients a0, a1, ..., am which gives the
polynomial A(x1, ..., xm) = a0 +

∑m
i=1 aixi. We map (m + 1) bits to 2m bits,

and achieve δ(C) = 1− r/q = 1/2, which is tight by the Plotkin Bound.
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We can construct a code from a Hagamard matrix, H. A Hagamard ma-
trix is an n × n matrix with entries ±1. When we have a Hagamard matrix
that satisfies HHT = n ∗ I then we can create a nice error correcting code.
We consider each row to be a codeword, giving n words of length n. (log(n)
bits→ n bits) Note that the distance between any two rows of this matrix is 1/2.

To construct the Hagamard code we use the matrix
[
H
−H

]
. We know the

distance between the first row of H and the first row of −H must be n since
they differ at every location. The the distance between another row i of H and
the first row of −H is n minus the distance between row 1 and row i of H,
which is 1/2. So the distance comes to n− 1/2.
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